mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 23:51:29 -07:00
Files

They're never dynamically allocated, and are almost always string literals, so const is more appropriate.
1489 lines
36 KiB
C
1489 lines
36 KiB
C
/*
|
|
* untangle.c: Game about planar graphs. You are given a graph
|
|
* represented by points and straight lines, with some lines
|
|
* crossing; your task is to drag the points into a configuration
|
|
* where none of the lines cross.
|
|
*
|
|
* Cloned from a Flash game called `Planarity', by John Tantalo.
|
|
* <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
|
|
* this. The Flash game had a fixed set of levels; my added value,
|
|
* as usual, is automatic generation of random games to order.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - This puzzle, perhaps uniquely among the collection, could use
|
|
* support for non-aspect-ratio-preserving resizes. This would
|
|
* require some sort of fairly large redesign, unfortunately (since
|
|
* it would invalidate the basic assumption that puzzles' size
|
|
* requirements are adequately expressed by a single scalar tile
|
|
* size), and probably complicate the rest of the puzzles' API as a
|
|
* result. So I'm not sure I really want to do it.
|
|
*
|
|
* - It would be nice if we could somehow auto-detect a real `long
|
|
* long' type on the host platform and use it in place of my
|
|
* hand-hacked int64s. It'd be faster and more reliable.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
#define CIRCLE_RADIUS 6
|
|
#define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
|
|
#define PREFERRED_TILESIZE 64
|
|
|
|
#define FLASH_TIME 0.30F
|
|
#define ANIM_TIME 0.13F
|
|
#define SOLVEANIM_TIME 0.50F
|
|
|
|
enum {
|
|
COL_SYSBACKGROUND,
|
|
COL_BACKGROUND,
|
|
COL_LINE,
|
|
#ifdef SHOW_CROSSINGS
|
|
COL_CROSSEDLINE,
|
|
#endif
|
|
COL_OUTLINE,
|
|
COL_POINT,
|
|
COL_DRAGPOINT,
|
|
COL_NEIGHBOUR,
|
|
COL_FLASH1,
|
|
COL_FLASH2,
|
|
NCOLOURS
|
|
};
|
|
|
|
typedef struct point {
|
|
/*
|
|
* Points are stored using rational coordinates, with the same
|
|
* denominator for both coordinates.
|
|
*/
|
|
long x, y, d;
|
|
} point;
|
|
|
|
typedef struct edge {
|
|
/*
|
|
* This structure is implicitly associated with a particular
|
|
* point set, so all it has to do is to store two point
|
|
* indices. It is required to store them in the order (lower,
|
|
* higher), i.e. a < b always.
|
|
*/
|
|
int a, b;
|
|
} edge;
|
|
|
|
struct game_params {
|
|
int n; /* number of points */
|
|
};
|
|
|
|
struct graph {
|
|
int refcount; /* for deallocation */
|
|
tree234 *edges; /* stores `edge' structures */
|
|
};
|
|
|
|
struct game_state {
|
|
game_params params;
|
|
int w, h; /* extent of coordinate system only */
|
|
point *pts;
|
|
#ifdef SHOW_CROSSINGS
|
|
int *crosses; /* mark edges which are crossed */
|
|
#endif
|
|
struct graph *graph;
|
|
int completed, cheated, just_solved;
|
|
};
|
|
|
|
static int edgecmpC(const void *av, const void *bv)
|
|
{
|
|
const edge *a = (const edge *)av;
|
|
const edge *b = (const edge *)bv;
|
|
|
|
if (a->a < b->a)
|
|
return -1;
|
|
else if (a->a > b->a)
|
|
return +1;
|
|
else if (a->b < b->b)
|
|
return -1;
|
|
else if (a->b > b->b)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = 10;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
int n;
|
|
char buf[80];
|
|
|
|
switch (i) {
|
|
case 0: n = 6; break;
|
|
case 1: n = 10; break;
|
|
case 2: n = 15; break;
|
|
case 3: n = 20; break;
|
|
case 4: n = 25; break;
|
|
default: return FALSE;
|
|
}
|
|
|
|
sprintf(buf, "%d points", n);
|
|
*name = dupstr(buf);
|
|
|
|
*params = ret = snew(game_params);
|
|
ret->n = n;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->n = atoi(string);
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, int full)
|
|
{
|
|
char buf[80];
|
|
|
|
sprintf(buf, "%d", params->n);
|
|
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Number of points";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = NULL;
|
|
ret[1].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = atoi(cfg[0].u.string.sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, int full)
|
|
{
|
|
if (params->n < 4)
|
|
return "Number of points must be at least four";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Small number of 64-bit integer arithmetic operations, to prevent
|
|
* integer overflow at the very core of cross().
|
|
*/
|
|
|
|
typedef struct {
|
|
long hi;
|
|
unsigned long lo;
|
|
} int64;
|
|
|
|
#define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo))
|
|
#define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1)
|
|
|
|
static int64 mulu32to64(unsigned long x, unsigned long y)
|
|
{
|
|
unsigned long a, b, c, d, t;
|
|
int64 ret;
|
|
|
|
a = (x & 0xFFFF) * (y & 0xFFFF);
|
|
b = (x & 0xFFFF) * (y >> 16);
|
|
c = (x >> 16) * (y & 0xFFFF);
|
|
d = (x >> 16) * (y >> 16);
|
|
|
|
ret.lo = a;
|
|
ret.hi = d + (b >> 16) + (c >> 16);
|
|
t = (b & 0xFFFF) << 16;
|
|
ret.lo += t;
|
|
if (ret.lo < t)
|
|
ret.hi++;
|
|
t = (c & 0xFFFF) << 16;
|
|
ret.lo += t;
|
|
if (ret.lo < t)
|
|
ret.hi++;
|
|
|
|
#ifdef DIAGNOSTIC_VIA_LONGLONG
|
|
assert(((unsigned long long)ret.hi << 32) + ret.lo ==
|
|
(unsigned long long)x * y);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int64 mul32to64(long x, long y)
|
|
{
|
|
int sign = +1;
|
|
int64 ret;
|
|
#ifdef DIAGNOSTIC_VIA_LONGLONG
|
|
long long realret = (long long)x * y;
|
|
#endif
|
|
|
|
if (x < 0)
|
|
x = -x, sign = -sign;
|
|
if (y < 0)
|
|
y = -y, sign = -sign;
|
|
|
|
ret = mulu32to64(x, y);
|
|
|
|
if (sign < 0) {
|
|
ret.hi = -ret.hi;
|
|
ret.lo = -ret.lo;
|
|
if (ret.lo)
|
|
ret.hi--;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC_VIA_LONGLONG
|
|
assert(((unsigned long long)ret.hi << 32) + ret.lo == realret);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int64 dotprod64(long a, long b, long p, long q)
|
|
{
|
|
int64 ab, pq;
|
|
|
|
ab = mul32to64(a, b);
|
|
pq = mul32to64(p, q);
|
|
ab.hi += pq.hi;
|
|
ab.lo += pq.lo;
|
|
if (ab.lo < pq.lo)
|
|
ab.hi++;
|
|
return ab;
|
|
}
|
|
|
|
/*
|
|
* Determine whether the line segments between a1 and a2, and
|
|
* between b1 and b2, intersect. We count it as an intersection if
|
|
* any of the endpoints lies _on_ the other line.
|
|
*/
|
|
static int cross(point a1, point a2, point b1, point b2)
|
|
{
|
|
long b1x, b1y, b2x, b2y, px, py;
|
|
int64 d1, d2, d3;
|
|
|
|
/*
|
|
* The condition for crossing is that b1 and b2 are on opposite
|
|
* sides of the line a1-a2, and vice versa. We determine this
|
|
* by taking the dot product of b1-a1 with a vector
|
|
* perpendicular to a2-a1, and similarly with b2-a1, and seeing
|
|
* if they have different signs.
|
|
*/
|
|
|
|
/*
|
|
* Construct the vector b1-a1. We don't have to worry too much
|
|
* about the denominator, because we're only going to check the
|
|
* sign of this vector; we just need to get the numerator
|
|
* right.
|
|
*/
|
|
b1x = b1.x * a1.d - a1.x * b1.d;
|
|
b1y = b1.y * a1.d - a1.y * b1.d;
|
|
/* Now construct b2-a1, and a vector perpendicular to a2-a1,
|
|
* in the same way. */
|
|
b2x = b2.x * a1.d - a1.x * b2.d;
|
|
b2y = b2.y * a1.d - a1.y * b2.d;
|
|
px = a1.y * a2.d - a2.y * a1.d;
|
|
py = a2.x * a1.d - a1.x * a2.d;
|
|
/* Take the dot products. Here we resort to 64-bit arithmetic. */
|
|
d1 = dotprod64(b1x, px, b1y, py);
|
|
d2 = dotprod64(b2x, px, b2y, py);
|
|
/* If they have the same non-zero sign, the lines do not cross. */
|
|
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
|
|
(sign64(d1) < 0 && sign64(d2) < 0))
|
|
return FALSE;
|
|
|
|
/*
|
|
* If the dot products are both exactly zero, then the two line
|
|
* segments are collinear. At this point the intersection
|
|
* condition becomes whether or not they overlap within their
|
|
* line.
|
|
*/
|
|
if (sign64(d1) == 0 && sign64(d2) == 0) {
|
|
/* Construct the vector a2-a1. */
|
|
px = a2.x * a1.d - a1.x * a2.d;
|
|
py = a2.y * a1.d - a1.y * a2.d;
|
|
/* Determine the dot products of b1-a1 and b2-a1 with this. */
|
|
d1 = dotprod64(b1x, px, b1y, py);
|
|
d2 = dotprod64(b2x, px, b2y, py);
|
|
/* If they're both strictly negative, the lines do not cross. */
|
|
if (sign64(d1) < 0 && sign64(d2) < 0)
|
|
return FALSE;
|
|
/* Otherwise, take the dot product of a2-a1 with itself. If
|
|
* the other two dot products both exceed this, the lines do
|
|
* not cross. */
|
|
d3 = dotprod64(px, px, py, py);
|
|
if (greater64(d1, d3) && greater64(d2, d3))
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* We've eliminated the only important special case, and we
|
|
* have determined that b1 and b2 are on opposite sides of the
|
|
* line a1-a2. Now do the same thing the other way round and
|
|
* we're done.
|
|
*/
|
|
b1x = a1.x * b1.d - b1.x * a1.d;
|
|
b1y = a1.y * b1.d - b1.y * a1.d;
|
|
b2x = a2.x * b1.d - b1.x * a2.d;
|
|
b2y = a2.y * b1.d - b1.y * a2.d;
|
|
px = b1.y * b2.d - b2.y * b1.d;
|
|
py = b2.x * b1.d - b1.x * b2.d;
|
|
d1 = dotprod64(b1x, px, b1y, py);
|
|
d2 = dotprod64(b2x, px, b2y, py);
|
|
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
|
|
(sign64(d1) < 0 && sign64(d2) < 0))
|
|
return FALSE;
|
|
|
|
/*
|
|
* The lines must cross.
|
|
*/
|
|
return TRUE;
|
|
}
|
|
|
|
static unsigned long squarert(unsigned long n) {
|
|
unsigned long d, a, b, di;
|
|
|
|
d = n;
|
|
a = 0;
|
|
b = 1L << 30; /* largest available power of 4 */
|
|
do {
|
|
a >>= 1;
|
|
di = 2*a + b;
|
|
if (di <= d) {
|
|
d -= di;
|
|
a += b;
|
|
}
|
|
b >>= 2;
|
|
} while (b);
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Our solutions are arranged on a square grid big enough that n
|
|
* points occupy about 1/POINTDENSITY of the grid.
|
|
*/
|
|
#define POINTDENSITY 3
|
|
#define MAXDEGREE 4
|
|
#define COORDLIMIT(n) squarert((n) * POINTDENSITY)
|
|
|
|
static void addedge(tree234 *edges, int a, int b)
|
|
{
|
|
edge *e = snew(edge);
|
|
|
|
assert(a != b);
|
|
|
|
e->a = min(a, b);
|
|
e->b = max(a, b);
|
|
|
|
add234(edges, e);
|
|
}
|
|
|
|
static int isedge(tree234 *edges, int a, int b)
|
|
{
|
|
edge e;
|
|
|
|
assert(a != b);
|
|
|
|
e.a = min(a, b);
|
|
e.b = max(a, b);
|
|
|
|
return find234(edges, &e, NULL) != NULL;
|
|
}
|
|
|
|
typedef struct vertex {
|
|
int param;
|
|
int vindex;
|
|
} vertex;
|
|
|
|
static int vertcmpC(const void *av, const void *bv)
|
|
{
|
|
const vertex *a = (vertex *)av;
|
|
const vertex *b = (vertex *)bv;
|
|
|
|
if (a->param < b->param)
|
|
return -1;
|
|
else if (a->param > b->param)
|
|
return +1;
|
|
else if (a->vindex < b->vindex)
|
|
return -1;
|
|
else if (a->vindex > b->vindex)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
|
|
|
|
/*
|
|
* Construct point coordinates for n points arranged in a circle,
|
|
* within the bounding box (0,0) to (w,w).
|
|
*/
|
|
static void make_circle(point *pts, int n, int w)
|
|
{
|
|
long d, r, c, i;
|
|
|
|
/*
|
|
* First, decide on a denominator. Although in principle it
|
|
* would be nice to set this really high so as to finely
|
|
* distinguish all the points on the circle, I'm going to set
|
|
* it at a fixed size to prevent integer overflow problems.
|
|
*/
|
|
d = PREFERRED_TILESIZE;
|
|
|
|
/*
|
|
* Leave a little space outside the circle.
|
|
*/
|
|
c = d * w / 2;
|
|
r = d * w * 3 / 7;
|
|
|
|
/*
|
|
* Place the points.
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
double angle = i * 2 * PI / n;
|
|
double x = r * sin(angle), y = - r * cos(angle);
|
|
pts[i].x = (long)(c + x + 0.5);
|
|
pts[i].y = (long)(c + y + 0.5);
|
|
pts[i].d = d;
|
|
}
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int n = params->n, i;
|
|
long w, h, j, k, m;
|
|
point *pts, *pts2;
|
|
long *tmp;
|
|
tree234 *edges, *vertices;
|
|
edge *e, *e2;
|
|
vertex *v, *vs, *vlist;
|
|
char *ret;
|
|
|
|
w = h = COORDLIMIT(n);
|
|
|
|
/*
|
|
* Choose n points from this grid.
|
|
*/
|
|
pts = snewn(n, point);
|
|
tmp = snewn(w*h, long);
|
|
for (i = 0; i < w*h; i++)
|
|
tmp[i] = i;
|
|
shuffle(tmp, w*h, sizeof(*tmp), rs);
|
|
for (i = 0; i < n; i++) {
|
|
pts[i].x = tmp[i] % w;
|
|
pts[i].y = tmp[i] / w;
|
|
pts[i].d = 1;
|
|
}
|
|
sfree(tmp);
|
|
|
|
/*
|
|
* Now start adding edges between the points.
|
|
*
|
|
* At all times, we attempt to add an edge to the lowest-degree
|
|
* vertex we currently have, and we try the other vertices as
|
|
* candidate second endpoints in order of distance from this
|
|
* one. We stop as soon as we find an edge which
|
|
*
|
|
* (a) does not increase any vertex's degree beyond MAXDEGREE
|
|
* (b) does not cross any existing edges
|
|
* (c) does not intersect any actual point.
|
|
*/
|
|
vs = snewn(n, vertex);
|
|
vertices = newtree234(vertcmp);
|
|
for (i = 0; i < n; i++) {
|
|
v = vs + i;
|
|
v->param = 0; /* in this tree, param is the degree */
|
|
v->vindex = i;
|
|
add234(vertices, v);
|
|
}
|
|
edges = newtree234(edgecmp);
|
|
vlist = snewn(n, vertex);
|
|
while (1) {
|
|
int added = FALSE;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
v = index234(vertices, i);
|
|
j = v->vindex;
|
|
|
|
if (v->param >= MAXDEGREE)
|
|
break; /* nothing left to add! */
|
|
|
|
/*
|
|
* Sort the other vertices into order of their distance
|
|
* from this one. Don't bother looking below i, because
|
|
* we've already tried those edges the other way round.
|
|
* Also here we rule out target vertices with too high
|
|
* a degree, and (of course) ones to which we already
|
|
* have an edge.
|
|
*/
|
|
m = 0;
|
|
for (k = i+1; k < n; k++) {
|
|
vertex *kv = index234(vertices, k);
|
|
int ki = kv->vindex;
|
|
int dx, dy;
|
|
|
|
if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
|
|
continue;
|
|
|
|
vlist[m].vindex = ki;
|
|
dx = pts[ki].x - pts[j].x;
|
|
dy = pts[ki].y - pts[j].y;
|
|
vlist[m].param = dx*dx + dy*dy;
|
|
m++;
|
|
}
|
|
|
|
qsort(vlist, m, sizeof(*vlist), vertcmpC);
|
|
|
|
for (k = 0; k < m; k++) {
|
|
int p;
|
|
int ki = vlist[k].vindex;
|
|
|
|
/*
|
|
* Check to see whether this edge intersects any
|
|
* existing edge or point.
|
|
*/
|
|
for (p = 0; p < n; p++)
|
|
if (p != ki && p != j && cross(pts[ki], pts[j],
|
|
pts[p], pts[p]))
|
|
break;
|
|
if (p < n)
|
|
continue;
|
|
for (p = 0; (e = index234(edges, p)) != NULL; p++)
|
|
if (e->a != ki && e->a != j &&
|
|
e->b != ki && e->b != j &&
|
|
cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
|
|
break;
|
|
if (e)
|
|
continue;
|
|
|
|
/*
|
|
* We're done! Add this edge, modify the degrees of
|
|
* the two vertices involved, and break.
|
|
*/
|
|
addedge(edges, j, ki);
|
|
added = TRUE;
|
|
del234(vertices, vs+j);
|
|
vs[j].param++;
|
|
add234(vertices, vs+j);
|
|
del234(vertices, vs+ki);
|
|
vs[ki].param++;
|
|
add234(vertices, vs+ki);
|
|
break;
|
|
}
|
|
|
|
if (k < m)
|
|
break;
|
|
}
|
|
|
|
if (!added)
|
|
break; /* we're done. */
|
|
}
|
|
|
|
/*
|
|
* That's our graph. Now shuffle the points, making sure that
|
|
* they come out with at least one crossed line when arranged
|
|
* in a circle (so that the puzzle isn't immediately solved!).
|
|
*/
|
|
tmp = snewn(n, long);
|
|
for (i = 0; i < n; i++)
|
|
tmp[i] = i;
|
|
pts2 = snewn(n, point);
|
|
make_circle(pts2, n, w);
|
|
while (1) {
|
|
shuffle(tmp, n, sizeof(*tmp), rs);
|
|
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
|
|
for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
|
|
if (e2->a == e->a || e2->a == e->b ||
|
|
e2->b == e->a || e2->b == e->b)
|
|
continue;
|
|
if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
|
|
pts2[tmp[e->a]], pts2[tmp[e->b]]))
|
|
break;
|
|
}
|
|
if (e2)
|
|
break;
|
|
}
|
|
if (e)
|
|
break; /* we've found a crossing */
|
|
}
|
|
|
|
/*
|
|
* We're done. Now encode the graph in a string format. Let's
|
|
* use a comma-separated list of dash-separated vertex number
|
|
* pairs, numbered from zero. We'll sort the list to prevent
|
|
* side channels.
|
|
*/
|
|
ret = NULL;
|
|
{
|
|
char *sep;
|
|
char buf[80];
|
|
int retlen;
|
|
edge *ea;
|
|
|
|
retlen = 0;
|
|
m = count234(edges);
|
|
ea = snewn(m, edge);
|
|
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
|
|
assert(i < m);
|
|
ea[i].a = min(tmp[e->a], tmp[e->b]);
|
|
ea[i].b = max(tmp[e->a], tmp[e->b]);
|
|
retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
|
|
}
|
|
assert(i == m);
|
|
qsort(ea, m, sizeof(*ea), edgecmpC);
|
|
|
|
ret = snewn(retlen, char);
|
|
sep = "";
|
|
k = 0;
|
|
|
|
for (i = 0; i < m; i++) {
|
|
k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
|
|
sep = ",";
|
|
}
|
|
assert(k < retlen);
|
|
|
|
sfree(ea);
|
|
}
|
|
|
|
/*
|
|
* Encode the solution we started with as an aux_info string.
|
|
*/
|
|
{
|
|
char buf[80];
|
|
char *auxstr;
|
|
int auxlen;
|
|
|
|
auxlen = 2; /* leading 'S' and trailing '\0' */
|
|
for (i = 0; i < n; i++) {
|
|
j = tmp[i];
|
|
pts2[j] = pts[i];
|
|
if (pts2[j].d & 1) {
|
|
pts2[j].x *= 2;
|
|
pts2[j].y *= 2;
|
|
pts2[j].d *= 2;
|
|
}
|
|
pts2[j].x += pts2[j].d / 2;
|
|
pts2[j].y += pts2[j].d / 2;
|
|
auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
|
|
pts2[j].x, pts2[j].y, pts2[j].d);
|
|
}
|
|
k = 0;
|
|
auxstr = snewn(auxlen, char);
|
|
auxstr[k++] = 'S';
|
|
for (i = 0; i < n; i++)
|
|
k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
|
|
pts2[i].x, pts2[i].y, pts2[i].d);
|
|
assert(k < auxlen);
|
|
*aux = auxstr;
|
|
}
|
|
sfree(pts2);
|
|
|
|
sfree(tmp);
|
|
sfree(vlist);
|
|
freetree234(vertices);
|
|
sfree(vs);
|
|
while ((e = delpos234(edges, 0)) != NULL)
|
|
sfree(e);
|
|
freetree234(edges);
|
|
sfree(pts);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int a, b;
|
|
|
|
while (*desc) {
|
|
a = atoi(desc);
|
|
if (a < 0 || a >= params->n)
|
|
return "Number out of range in game description";
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc != '-')
|
|
return "Expected '-' after number in game description";
|
|
desc++; /* eat dash */
|
|
b = atoi(desc);
|
|
if (b < 0 || b >= params->n)
|
|
return "Number out of range in game description";
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc) {
|
|
if (*desc != ',')
|
|
return "Expected ',' after number in game description";
|
|
desc++; /* eat comma */
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void mark_crossings(game_state *state)
|
|
{
|
|
int ok = TRUE;
|
|
int i, j;
|
|
edge *e, *e2;
|
|
|
|
#ifdef SHOW_CROSSINGS
|
|
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++)
|
|
state->crosses[i] = FALSE;
|
|
#endif
|
|
|
|
/*
|
|
* Check correctness: for every pair of edges, see whether they
|
|
* cross.
|
|
*/
|
|
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
|
|
for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) {
|
|
if (e2->a == e->a || e2->a == e->b ||
|
|
e2->b == e->a || e2->b == e->b)
|
|
continue;
|
|
if (cross(state->pts[e2->a], state->pts[e2->b],
|
|
state->pts[e->a], state->pts[e->b])) {
|
|
ok = FALSE;
|
|
#ifdef SHOW_CROSSINGS
|
|
state->crosses[i] = state->crosses[j] = TRUE;
|
|
#else
|
|
goto done; /* multi-level break - sorry */
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* e == NULL if we've gone through all the edge pairs
|
|
* without finding a crossing.
|
|
*/
|
|
#ifndef SHOW_CROSSINGS
|
|
done:
|
|
#endif
|
|
if (ok)
|
|
state->completed = TRUE;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
int n = params->n;
|
|
game_state *state = snew(game_state);
|
|
int a, b;
|
|
|
|
state->params = *params;
|
|
state->w = state->h = COORDLIMIT(n);
|
|
state->pts = snewn(n, point);
|
|
make_circle(state->pts, n, state->w);
|
|
state->graph = snew(struct graph);
|
|
state->graph->refcount = 1;
|
|
state->graph->edges = newtree234(edgecmp);
|
|
state->completed = state->cheated = state->just_solved = FALSE;
|
|
|
|
while (*desc) {
|
|
a = atoi(desc);
|
|
assert(a >= 0 && a < params->n);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
assert(*desc == '-');
|
|
desc++; /* eat dash */
|
|
b = atoi(desc);
|
|
assert(b >= 0 && b < params->n);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc) {
|
|
assert(*desc == ',');
|
|
desc++; /* eat comma */
|
|
}
|
|
addedge(state->graph->edges, a, b);
|
|
}
|
|
|
|
#ifdef SHOW_CROSSINGS
|
|
state->crosses = snewn(count234(state->graph->edges), int);
|
|
mark_crossings(state); /* sets up `crosses' and `completed' */
|
|
#endif
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
int n = state->params.n;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->params = state->params;
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->pts = snewn(n, point);
|
|
memcpy(ret->pts, state->pts, n * sizeof(point));
|
|
ret->graph = state->graph;
|
|
ret->graph->refcount++;
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
ret->just_solved = state->just_solved;
|
|
#ifdef SHOW_CROSSINGS
|
|
ret->crosses = snewn(count234(ret->graph->edges), int);
|
|
memcpy(ret->crosses, state->crosses,
|
|
count234(ret->graph->edges) * sizeof(int));
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->graph->refcount <= 0) {
|
|
edge *e;
|
|
while ((e = delpos234(state->graph->edges, 0)) != NULL)
|
|
sfree(e);
|
|
freetree234(state->graph->edges);
|
|
sfree(state->graph);
|
|
}
|
|
sfree(state->pts);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
int n = state->params.n;
|
|
int matrix[4];
|
|
point *pts;
|
|
int i, j, besti;
|
|
float bestd;
|
|
char buf[80], *ret;
|
|
int retlen, retsize;
|
|
|
|
if (!aux) {
|
|
*error = "Solution not known for this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Decode the aux_info to get the original point positions.
|
|
*/
|
|
pts = snewn(n, point);
|
|
aux++; /* eat 'S' */
|
|
for (i = 0; i < n; i++) {
|
|
int p, k;
|
|
long x, y, d;
|
|
int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
|
|
if (ret != 4 || p != i) {
|
|
*error = "Internal error: aux_info badly formatted";
|
|
sfree(pts);
|
|
return NULL;
|
|
}
|
|
pts[i].x = x;
|
|
pts[i].y = y;
|
|
pts[i].d = d;
|
|
aux += k;
|
|
}
|
|
|
|
/*
|
|
* Now go through eight possible symmetries of the point set.
|
|
* For each one, work out the sum of the Euclidean distances
|
|
* between the points' current positions and their new ones.
|
|
*
|
|
* We're squaring distances here, which means we're at risk of
|
|
* integer overflow. Fortunately, there's no real need to be
|
|
* massively careful about rounding errors, since this is a
|
|
* non-essential bit of the code; so I'll just work in floats
|
|
* internally.
|
|
*/
|
|
besti = -1;
|
|
bestd = 0.0F;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
float d;
|
|
|
|
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
|
|
matrix[i & 1] = (i & 2) ? +1 : -1;
|
|
matrix[3-(i&1)] = (i & 4) ? +1 : -1;
|
|
|
|
d = 0.0F;
|
|
for (j = 0; j < n; j++) {
|
|
float px = (float)pts[j].x / pts[j].d;
|
|
float py = (float)pts[j].y / pts[j].d;
|
|
float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
|
|
float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
|
|
float cx = (float)currstate->w / 2;
|
|
float cy = (float)currstate->h / 2;
|
|
float ox, oy, dx, dy;
|
|
|
|
px -= cx;
|
|
py -= cy;
|
|
|
|
ox = matrix[0] * px + matrix[1] * py;
|
|
oy = matrix[2] * px + matrix[3] * py;
|
|
|
|
ox += cx;
|
|
oy += cy;
|
|
|
|
dx = ox - sx;
|
|
dy = oy - sy;
|
|
|
|
d += dx*dx + dy*dy;
|
|
}
|
|
|
|
if (besti < 0 || bestd > d) {
|
|
besti = i;
|
|
bestd = d;
|
|
}
|
|
}
|
|
|
|
assert(besti >= 0);
|
|
|
|
/*
|
|
* Now we know which symmetry is closest to the points' current
|
|
* positions. Use it.
|
|
*/
|
|
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
|
|
matrix[besti & 1] = (besti & 2) ? +1 : -1;
|
|
matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
|
|
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = 0;
|
|
ret[retlen++] = 'S';
|
|
ret[retlen] = '\0';
|
|
|
|
for (i = 0; i < n; i++) {
|
|
float px = (float)pts[i].x / pts[i].d;
|
|
float py = (float)pts[i].y / pts[i].d;
|
|
float cx = (float)currstate->w / 2;
|
|
float cy = (float)currstate->h / 2;
|
|
float ox, oy;
|
|
int extra;
|
|
|
|
px -= cx;
|
|
py -= cy;
|
|
|
|
ox = matrix[0] * px + matrix[1] * py;
|
|
oy = matrix[2] * px + matrix[3] * py;
|
|
|
|
ox += cx;
|
|
oy += cy;
|
|
|
|
/*
|
|
* Use a fixed denominator of 2, because we know the
|
|
* original points were on an integer grid offset by 1/2.
|
|
*/
|
|
pts[i].d = 2;
|
|
ox *= pts[i].d;
|
|
oy *= pts[i].d;
|
|
pts[i].x = (long)(ox + 0.5F);
|
|
pts[i].y = (long)(oy + 0.5F);
|
|
|
|
extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
|
|
pts[i].x, pts[i].y, pts[i].d);
|
|
if (retlen + extra >= retsize) {
|
|
retsize = retlen + extra + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += extra;
|
|
}
|
|
|
|
sfree(pts);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct game_ui {
|
|
int dragpoint; /* point being dragged; -1 if none */
|
|
point newpoint; /* where it's been dragged to so far */
|
|
int just_dragged; /* reset in game_changed_state */
|
|
int just_moved; /* _set_ in game_changed_state */
|
|
float anim_length;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->dragpoint = -1;
|
|
ui->just_moved = ui->just_dragged = FALSE;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
ui->dragpoint = -1;
|
|
ui->just_moved = ui->just_dragged;
|
|
ui->just_dragged = FALSE;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
long tilesize;
|
|
int bg, dragpoint;
|
|
long *x, *y;
|
|
};
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int n = state->params.n;
|
|
|
|
if (IS_MOUSE_DOWN(button)) {
|
|
int i, best;
|
|
long bestd;
|
|
|
|
/*
|
|
* Begin drag. We drag the vertex _nearest_ to the pointer,
|
|
* just in case one is nearly on top of another and we want
|
|
* to drag the latter. However, we drag nothing at all if
|
|
* the nearest vertex is outside DRAG_THRESHOLD.
|
|
*/
|
|
best = -1;
|
|
bestd = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
|
|
long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
|
|
long dx = px - x;
|
|
long dy = py - y;
|
|
long d = dx*dx + dy*dy;
|
|
|
|
if (best == -1 || bestd > d) {
|
|
best = i;
|
|
bestd = d;
|
|
}
|
|
}
|
|
|
|
if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
|
|
ui->dragpoint = best;
|
|
ui->newpoint.x = x;
|
|
ui->newpoint.y = y;
|
|
ui->newpoint.d = ds->tilesize;
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
} else if (IS_MOUSE_DRAG(button) && ui->dragpoint >= 0) {
|
|
ui->newpoint.x = x;
|
|
ui->newpoint.y = y;
|
|
ui->newpoint.d = ds->tilesize;
|
|
return UI_UPDATE;
|
|
} else if (IS_MOUSE_RELEASE(button) && ui->dragpoint >= 0) {
|
|
int p = ui->dragpoint;
|
|
char buf[80];
|
|
|
|
ui->dragpoint = -1; /* terminate drag, no matter what */
|
|
|
|
/*
|
|
* First, see if we're within range. The user can cancel a
|
|
* drag by dragging the point right off the window.
|
|
*/
|
|
if (ui->newpoint.x < 0 ||
|
|
ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
|
|
ui->newpoint.y < 0 ||
|
|
ui->newpoint.y >= (long)state->h*ui->newpoint.d)
|
|
return UI_UPDATE;
|
|
|
|
/*
|
|
* We aren't cancelling the drag. Construct a move string
|
|
* indicating where this point is going to.
|
|
*/
|
|
sprintf(buf, "P%d:%ld,%ld/%ld", p,
|
|
ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
|
|
ui->just_dragged = TRUE;
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int n = state->params.n;
|
|
int p, k;
|
|
long x, y, d;
|
|
game_state *ret = dup_game(state);
|
|
|
|
ret->just_solved = FALSE;
|
|
|
|
while (*move) {
|
|
if (*move == 'S') {
|
|
move++;
|
|
if (*move == ';') move++;
|
|
ret->cheated = ret->just_solved = TRUE;
|
|
}
|
|
if (*move == 'P' &&
|
|
sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
|
|
p >= 0 && p < n && d > 0) {
|
|
ret->pts[p].x = x;
|
|
ret->pts[p].y = y;
|
|
ret->pts[p].d = d;
|
|
|
|
move += k+1;
|
|
if (*move == ';') move++;
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
mark_crossings(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
*x = *y = COORDLIMIT(params->n) * tilesize;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
/*
|
|
* COL_BACKGROUND is what we use as the normal background colour.
|
|
* Unusually, though, it isn't colour #0: COL_SYSBACKGROUND, a bit
|
|
* darker, takes that place. This means that if the user resizes
|
|
* an Untangle window so as to change its aspect ratio, the
|
|
* still-square playable area will be distinguished from the dead
|
|
* space around it.
|
|
*/
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_SYSBACKGROUND);
|
|
|
|
ret[COL_LINE * 3 + 0] = 0.0F;
|
|
ret[COL_LINE * 3 + 1] = 0.0F;
|
|
ret[COL_LINE * 3 + 2] = 0.0F;
|
|
|
|
#ifdef SHOW_CROSSINGS
|
|
ret[COL_CROSSEDLINE * 3 + 0] = 1.0F;
|
|
ret[COL_CROSSEDLINE * 3 + 1] = 0.0F;
|
|
ret[COL_CROSSEDLINE * 3 + 2] = 0.0F;
|
|
#endif
|
|
|
|
ret[COL_OUTLINE * 3 + 0] = 0.0F;
|
|
ret[COL_OUTLINE * 3 + 1] = 0.0F;
|
|
ret[COL_OUTLINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_POINT * 3 + 0] = 0.0F;
|
|
ret[COL_POINT * 3 + 1] = 0.0F;
|
|
ret[COL_POINT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
|
|
ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
|
|
ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
|
|
ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
|
|
ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_FLASH1 * 3 + 0] = 0.5F;
|
|
ret[COL_FLASH1 * 3 + 1] = 0.5F;
|
|
ret[COL_FLASH1 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_FLASH2 * 3 + 0] = 1.0F;
|
|
ret[COL_FLASH2 * 3 + 1] = 1.0F;
|
|
ret[COL_FLASH2 * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->tilesize = 0;
|
|
ds->x = snewn(state->params.n, long);
|
|
ds->y = snewn(state->params.n, long);
|
|
for (i = 0; i < state->params.n; i++)
|
|
ds->x[i] = ds->y[i] = -1;
|
|
ds->bg = -1;
|
|
ds->dragpoint = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->y);
|
|
sfree(ds->x);
|
|
sfree(ds);
|
|
}
|
|
|
|
static point mix(point a, point b, float distance)
|
|
{
|
|
point ret;
|
|
|
|
ret.d = a.d * b.d;
|
|
ret.x = (long)(a.x * b.d + distance * (b.x * a.d - a.x * b.d));
|
|
ret.y = (long)(a.y * b.d + distance * (b.y * a.d - a.y * b.d));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w, h;
|
|
edge *e;
|
|
int i, j;
|
|
int bg, points_moved;
|
|
|
|
/*
|
|
* There's no terribly sensible way to do partial redraws of
|
|
* this game, so I'm going to have to resort to redrawing the
|
|
* whole thing every time.
|
|
*/
|
|
|
|
if (flashtime == 0)
|
|
bg = COL_BACKGROUND;
|
|
else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0)
|
|
bg = COL_FLASH1;
|
|
else
|
|
bg = COL_FLASH2;
|
|
|
|
/*
|
|
* To prevent excessive spinning on redraw during a completion
|
|
* flash, we first check to see if _either_ the flash
|
|
* background colour has changed _or_ at least one point has
|
|
* moved _or_ a drag has begun or ended, and abandon the redraw
|
|
* if neither is the case.
|
|
*
|
|
* Also in this loop we work out the coordinates of all the
|
|
* points for this redraw.
|
|
*/
|
|
points_moved = FALSE;
|
|
for (i = 0; i < state->params.n; i++) {
|
|
point p = state->pts[i];
|
|
long x, y;
|
|
|
|
if (ui->dragpoint == i)
|
|
p = ui->newpoint;
|
|
|
|
if (oldstate)
|
|
p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
|
|
|
|
x = p.x * ds->tilesize / p.d;
|
|
y = p.y * ds->tilesize / p.d;
|
|
|
|
if (ds->x[i] != x || ds->y[i] != y)
|
|
points_moved = TRUE;
|
|
|
|
ds->x[i] = x;
|
|
ds->y[i] = y;
|
|
}
|
|
|
|
if (ds->bg == bg && ds->dragpoint == ui->dragpoint && !points_moved)
|
|
return; /* nothing to do */
|
|
|
|
ds->dragpoint = ui->dragpoint;
|
|
ds->bg = bg;
|
|
|
|
game_compute_size(&state->params, ds->tilesize, &w, &h);
|
|
draw_rect(dr, 0, 0, w, h, bg);
|
|
|
|
/*
|
|
* Draw the edges.
|
|
*/
|
|
|
|
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
|
|
draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b],
|
|
#ifdef SHOW_CROSSINGS
|
|
(oldstate?oldstate:state)->crosses[i] ?
|
|
COL_CROSSEDLINE :
|
|
#endif
|
|
COL_LINE);
|
|
}
|
|
|
|
/*
|
|
* Draw the points.
|
|
*
|
|
* When dragging, we should not only vary the colours, but
|
|
* leave the point being dragged until last.
|
|
*/
|
|
for (j = 0; j < 3; j++) {
|
|
int thisc = (j == 0 ? COL_POINT :
|
|
j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
|
|
for (i = 0; i < state->params.n; i++) {
|
|
int c;
|
|
|
|
if (ui->dragpoint == i) {
|
|
c = COL_DRAGPOINT;
|
|
} else if (ui->dragpoint >= 0 &&
|
|
isedge(state->graph->edges, ui->dragpoint, i)) {
|
|
c = COL_NEIGHBOUR;
|
|
} else {
|
|
c = COL_POINT;
|
|
}
|
|
|
|
if (c == thisc) {
|
|
#ifdef VERTEX_NUMBERS
|
|
draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg);
|
|
{
|
|
char buf[80];
|
|
sprintf(buf, "%d", i);
|
|
draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE,
|
|
DRAG_THRESHOLD*3/2,
|
|
ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
|
|
}
|
|
#else
|
|
draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS,
|
|
c, COL_OUTLINE);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
draw_update(dr, 0, 0, w, h);
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (ui->just_moved)
|
|
return 0.0F;
|
|
if ((dir < 0 ? oldstate : newstate)->just_solved)
|
|
ui->anim_length = SOLVEANIM_TIME;
|
|
else
|
|
ui->anim_length = ANIM_TIME;
|
|
return ui->anim_length;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static int game_timing_state(const game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame untangle
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Untangle", "games.untangle", "untangle",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILESIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_status,
|
|
FALSE, FALSE, game_print_size, game_print,
|
|
FALSE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
SOLVE_ANIMATES, /* flags */
|
|
};
|