mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

than an approximating octagon, to improve the look when zoomed to high resolution. [originally from svn r8646]
2191 lines
54 KiB
C
2191 lines
54 KiB
C
/*
|
|
* inertia.c: Game involving navigating round a grid picking up
|
|
* gems.
|
|
*
|
|
* Game rules and basic generator design by Ben Olmstead.
|
|
* This re-implementation was written by Simon Tatham.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/* Used in the game_state */
|
|
#define BLANK 'b'
|
|
#define GEM 'g'
|
|
#define MINE 'm'
|
|
#define STOP 's'
|
|
#define WALL 'w'
|
|
|
|
/* Used in the game IDs */
|
|
#define START 'S'
|
|
|
|
/* Used in the game generation */
|
|
#define POSSGEM 'G'
|
|
|
|
/* Used only in the game_drawstate*/
|
|
#define UNDRAWN '?'
|
|
|
|
#define DIRECTIONS 8
|
|
#define DP1 (DIRECTIONS+1)
|
|
#define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
|
|
#define DY(dir) ( DX((dir)+6) )
|
|
|
|
/*
|
|
* Lvalue macro which expects x and y to be in range.
|
|
*/
|
|
#define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
|
|
|
|
/*
|
|
* Rvalue macro which can cope with x and y being out of range.
|
|
*/
|
|
#define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
|
|
WALL : LV_AT(w, h, grid, x, y) )
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_OUTLINE,
|
|
COL_HIGHLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_PLAYER,
|
|
COL_DEAD_PLAYER,
|
|
COL_MINE,
|
|
COL_GEM,
|
|
COL_WALL,
|
|
COL_HINT,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
};
|
|
|
|
typedef struct soln {
|
|
int refcount;
|
|
int len;
|
|
unsigned char *list;
|
|
} soln;
|
|
|
|
struct game_state {
|
|
game_params p;
|
|
int px, py;
|
|
int gems;
|
|
char *grid;
|
|
int distance_moved;
|
|
int dead;
|
|
int cheated;
|
|
int solnpos;
|
|
soln *soln;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = 10;
|
|
#ifdef PORTRAIT_SCREEN
|
|
ret->h = 10;
|
|
#else
|
|
ret->h = 8;
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params inertia_presets[] = {
|
|
#ifdef PORTRAIT_SCREEN
|
|
{ 10, 10 },
|
|
{ 12, 12 },
|
|
{ 16, 16 },
|
|
#else
|
|
{ 10, 8 },
|
|
{ 15, 12 },
|
|
{ 20, 16 },
|
|
#endif
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params p, *ret;
|
|
char *retname;
|
|
char namebuf[80];
|
|
|
|
if (i < 0 || i >= lenof(inertia_presets))
|
|
return FALSE;
|
|
|
|
p = inertia_presets[i];
|
|
ret = dup_params(&p);
|
|
sprintf(namebuf, "%dx%d", ret->w, ret->h);
|
|
retname = dupstr(namebuf);
|
|
|
|
*params = ret;
|
|
*name = retname;
|
|
return TRUE;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->w = params->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
params->h = atoi(string);
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char data[256];
|
|
|
|
sprintf(data, "%dx%d", params->w, params->h);
|
|
|
|
return dupstr(data);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = NULL;
|
|
ret[2].type = C_END;
|
|
ret[2].sval = NULL;
|
|
ret[2].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
/*
|
|
* Avoid completely degenerate cases which only have one
|
|
* row/column. We probably could generate completable puzzles
|
|
* of that shape, but they'd be forced to be extremely boring
|
|
* and at large sizes would take a while to happen upon at
|
|
* random as well.
|
|
*/
|
|
if (params->w < 2 || params->h < 2)
|
|
return "Width and height must both be at least two";
|
|
|
|
/*
|
|
* The grid construction algorithm creates 1/5 as many gems as
|
|
* grid squares, and must create at least one gem to have an
|
|
* actual puzzle. However, an area-five grid is ruled out by
|
|
* the above constraint, so the practical minimum is six.
|
|
*/
|
|
if (params->w * params->h < 6)
|
|
return "Grid area must be at least six squares";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Solver used by grid generator.
|
|
*/
|
|
|
|
struct solver_scratch {
|
|
unsigned char *reachable_from, *reachable_to;
|
|
int *positions;
|
|
};
|
|
|
|
static struct solver_scratch *new_scratch(int w, int h)
|
|
{
|
|
struct solver_scratch *sc = snew(struct solver_scratch);
|
|
|
|
sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
|
|
sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
|
|
sc->positions = snewn(w * h * DIRECTIONS, int);
|
|
|
|
return sc;
|
|
}
|
|
|
|
static void free_scratch(struct solver_scratch *sc)
|
|
{
|
|
sfree(sc->reachable_from);
|
|
sfree(sc->reachable_to);
|
|
sfree(sc->positions);
|
|
sfree(sc);
|
|
}
|
|
|
|
static int can_go(int w, int h, char *grid,
|
|
int x1, int y1, int dir1, int x2, int y2, int dir2)
|
|
{
|
|
/*
|
|
* Returns TRUE if we can transition directly from (x1,y1)
|
|
* going in direction dir1, to (x2,y2) going in direction dir2.
|
|
*/
|
|
|
|
/*
|
|
* If we're actually in the middle of an unoccupyable square,
|
|
* we cannot make any move.
|
|
*/
|
|
if (AT(w, h, grid, x1, y1) == WALL ||
|
|
AT(w, h, grid, x1, y1) == MINE)
|
|
return FALSE;
|
|
|
|
/*
|
|
* If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
|
|
* the same coordinate as x1,y1, then we can make the
|
|
* transition (by stopping and changing direction).
|
|
*
|
|
* For this to be the case, we have to either have a wall
|
|
* beyond x1,y1,dir1, or have a stop on x1,y1.
|
|
*/
|
|
if (x2 == x1 && y2 == y1 &&
|
|
(AT(w, h, grid, x1, y1) == STOP ||
|
|
AT(w, h, grid, x1, y1) == START ||
|
|
AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
|
|
return TRUE;
|
|
|
|
/*
|
|
* If a move is capable of continuing here, then x1,y1,dir1 can
|
|
* move one space further on.
|
|
*/
|
|
if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
|
|
(AT(w, h, grid, x2, y2) == BLANK ||
|
|
AT(w, h, grid, x2, y2) == GEM ||
|
|
AT(w, h, grid, x2, y2) == STOP ||
|
|
AT(w, h, grid, x2, y2) == START))
|
|
return TRUE;
|
|
|
|
/*
|
|
* That's it.
|
|
*/
|
|
return FALSE;
|
|
}
|
|
|
|
static int find_gem_candidates(int w, int h, char *grid,
|
|
struct solver_scratch *sc)
|
|
{
|
|
int wh = w*h;
|
|
int head, tail;
|
|
int sx, sy, gx, gy, gd, pass, possgems;
|
|
|
|
/*
|
|
* This function finds all the candidate gem squares, which are
|
|
* precisely those squares which can be picked up on a loop
|
|
* from the starting point back to the starting point. Doing
|
|
* this may involve passing through such a square in the middle
|
|
* of a move; so simple breadth-first search over the _squares_
|
|
* of the grid isn't quite adequate, because it might be that
|
|
* we can only reach a gem from the start by moving over it in
|
|
* one direction, but can only return to the start if we were
|
|
* moving over it in another direction.
|
|
*
|
|
* Instead, we BFS over a space which mentions each grid square
|
|
* eight times - once for each direction. We also BFS twice:
|
|
* once to find out what square+direction pairs we can reach
|
|
* _from_ the start point, and once to find out what pairs we
|
|
* can reach the start point from. Then a square is reachable
|
|
* if any of the eight directions for that square has both
|
|
* flags set.
|
|
*/
|
|
|
|
memset(sc->reachable_from, 0, wh * DIRECTIONS);
|
|
memset(sc->reachable_to, 0, wh * DIRECTIONS);
|
|
|
|
/*
|
|
* Find the starting square.
|
|
*/
|
|
sx = -1; /* placate optimiser */
|
|
for (sy = 0; sy < h; sy++) {
|
|
for (sx = 0; sx < w; sx++)
|
|
if (AT(w, h, grid, sx, sy) == START)
|
|
break;
|
|
if (sx < w)
|
|
break;
|
|
}
|
|
assert(sy < h);
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
unsigned char *reachable = (pass == 0 ? sc->reachable_from :
|
|
sc->reachable_to);
|
|
int sign = (pass == 0 ? +1 : -1);
|
|
int dir;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("starting pass %d\n", pass);
|
|
#endif
|
|
|
|
/*
|
|
* `head' and `tail' are indices within sc->positions which
|
|
* track the list of board positions left to process.
|
|
*/
|
|
head = tail = 0;
|
|
for (dir = 0; dir < DIRECTIONS; dir++) {
|
|
int index = (sy*w+sx)*DIRECTIONS+dir;
|
|
sc->positions[tail++] = index;
|
|
reachable[index] = TRUE;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("starting point %d,%d,%d\n", sx, sy, dir);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Now repeatedly pick an element off the list and process
|
|
* it.
|
|
*/
|
|
while (head < tail) {
|
|
int index = sc->positions[head++];
|
|
int dir = index % DIRECTIONS;
|
|
int x = (index / DIRECTIONS) % w;
|
|
int y = index / (w * DIRECTIONS);
|
|
int n, x2, y2, d2, i2;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("processing point %d,%d,%d\n", x, y, dir);
|
|
#endif
|
|
/*
|
|
* The places we attempt to switch to here are:
|
|
* - each possible direction change (all the other
|
|
* directions in this square)
|
|
* - one step further in the direction we're going (or
|
|
* one step back, if we're in the reachable_to pass).
|
|
*/
|
|
for (n = -1; n < DIRECTIONS; n++) {
|
|
if (n < 0) {
|
|
x2 = x + sign * DX(dir);
|
|
y2 = y + sign * DY(dir);
|
|
d2 = dir;
|
|
} else {
|
|
x2 = x;
|
|
y2 = y;
|
|
d2 = n;
|
|
}
|
|
i2 = (y2*w+x2)*DIRECTIONS+d2;
|
|
if (x2 >= 0 && x2 < w &&
|
|
y2 >= 0 && y2 < h &&
|
|
!reachable[i2]) {
|
|
int ok;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf(" trying point %d,%d,%d", x2, y2, d2);
|
|
#endif
|
|
if (pass == 0)
|
|
ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
|
|
else
|
|
ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf(" - %sok\n", ok ? "" : "not ");
|
|
#endif
|
|
if (ok) {
|
|
sc->positions[tail++] = i2;
|
|
reachable[i2] = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* And that should be it. Now all we have to do is find the
|
|
* squares for which there exists _some_ direction such that
|
|
* the square plus that direction form a tuple which is both
|
|
* reachable from the start and reachable to the start.
|
|
*/
|
|
possgems = 0;
|
|
for (gy = 0; gy < h; gy++)
|
|
for (gx = 0; gx < w; gx++)
|
|
if (AT(w, h, grid, gx, gy) == BLANK) {
|
|
for (gd = 0; gd < DIRECTIONS; gd++) {
|
|
int index = (gy*w+gx)*DIRECTIONS+gd;
|
|
if (sc->reachable_from[index] && sc->reachable_to[index]) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("space at %d,%d is reachable via"
|
|
" direction %d\n", gx, gy, gd);
|
|
#endif
|
|
LV_AT(w, h, grid, gx, gy) = POSSGEM;
|
|
possgems++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return possgems;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Grid generation code.
|
|
*/
|
|
|
|
static char *gengrid(int w, int h, random_state *rs)
|
|
{
|
|
int wh = w*h;
|
|
char *grid = snewn(wh+1, char);
|
|
struct solver_scratch *sc = new_scratch(w, h);
|
|
int maxdist_threshold, tries;
|
|
|
|
maxdist_threshold = 2;
|
|
tries = 0;
|
|
|
|
while (1) {
|
|
int i, j;
|
|
int possgems;
|
|
int *dist, *list, head, tail, maxdist;
|
|
|
|
/*
|
|
* We're going to fill the grid with the five basic piece
|
|
* types in about 1/5 proportion. For the moment, though,
|
|
* we leave out the gems, because we'll put those in
|
|
* _after_ we run the solver to tell us where the viable
|
|
* locations are.
|
|
*/
|
|
i = 0;
|
|
for (j = 0; j < wh/5; j++)
|
|
grid[i++] = WALL;
|
|
for (j = 0; j < wh/5; j++)
|
|
grid[i++] = STOP;
|
|
for (j = 0; j < wh/5; j++)
|
|
grid[i++] = MINE;
|
|
assert(i < wh);
|
|
grid[i++] = START;
|
|
while (i < wh)
|
|
grid[i++] = BLANK;
|
|
shuffle(grid, wh, sizeof(*grid), rs);
|
|
|
|
/*
|
|
* Find the viable gem locations, and immediately give up
|
|
* and try again if there aren't enough of them.
|
|
*/
|
|
possgems = find_gem_candidates(w, h, grid, sc);
|
|
if (possgems < wh/5)
|
|
continue;
|
|
|
|
/*
|
|
* We _could_ now select wh/5 of the POSSGEMs and set them
|
|
* to GEM, and have a viable level. However, there's a
|
|
* chance that a large chunk of the level will turn out to
|
|
* be unreachable, so first we test for that.
|
|
*
|
|
* We do this by finding the largest distance from any
|
|
* square to the nearest POSSGEM, by breadth-first search.
|
|
* If this is above a critical threshold, we abort and try
|
|
* again.
|
|
*
|
|
* (This search is purely geometric, without regard to
|
|
* walls and long ways round.)
|
|
*/
|
|
dist = sc->positions;
|
|
list = sc->positions + wh;
|
|
for (i = 0; i < wh; i++)
|
|
dist[i] = -1;
|
|
head = tail = 0;
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] == POSSGEM) {
|
|
dist[i] = 0;
|
|
list[tail++] = i;
|
|
}
|
|
maxdist = 0;
|
|
while (head < tail) {
|
|
int pos, x, y, d;
|
|
|
|
pos = list[head++];
|
|
if (maxdist < dist[pos])
|
|
maxdist = dist[pos];
|
|
|
|
x = pos % w;
|
|
y = pos / w;
|
|
|
|
for (d = 0; d < DIRECTIONS; d++) {
|
|
int x2, y2, p2;
|
|
|
|
x2 = x + DX(d);
|
|
y2 = y + DY(d);
|
|
|
|
if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
|
|
p2 = y2*w+x2;
|
|
if (dist[p2] < 0) {
|
|
dist[p2] = dist[pos] + 1;
|
|
list[tail++] = p2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(head == wh && tail == wh);
|
|
|
|
/*
|
|
* Now abandon this grid and go round again if maxdist is
|
|
* above the required threshold.
|
|
*
|
|
* We can safely start the threshold as low as 2. As we
|
|
* accumulate failed generation attempts, we gradually
|
|
* raise it as we get more desperate.
|
|
*/
|
|
if (maxdist > maxdist_threshold) {
|
|
tries++;
|
|
if (tries == 50) {
|
|
maxdist_threshold++;
|
|
tries = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now our reachable squares are plausibly evenly
|
|
* distributed over the grid. I'm not actually going to
|
|
* _enforce_ that I place the gems in such a way as not to
|
|
* increase that maxdist value; I'm now just going to trust
|
|
* to the RNG to pick a sensible subset of the POSSGEMs.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] == POSSGEM)
|
|
list[j++] = i;
|
|
shuffle(list, j, sizeof(*list), rs);
|
|
for (i = 0; i < j; i++)
|
|
grid[list[i]] = (i < wh/5 ? GEM : BLANK);
|
|
break;
|
|
}
|
|
|
|
free_scratch(sc);
|
|
|
|
grid[wh] = '\0';
|
|
|
|
return grid;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
return gengrid(params->w, params->h, rs);
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
int starts = 0, gems = 0, i;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (!desc[i])
|
|
return "Not enough data to fill grid";
|
|
if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
|
|
desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
|
|
return "Unrecognised character in game description";
|
|
if (desc[i] == START)
|
|
starts++;
|
|
if (desc[i] == GEM)
|
|
gems++;
|
|
}
|
|
if (desc[i])
|
|
return "Too much data to fill grid";
|
|
if (starts < 1)
|
|
return "No starting square specified";
|
|
if (starts > 1)
|
|
return "More than one starting square specified";
|
|
if (gems < 1)
|
|
return "No gems specified";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
int i;
|
|
game_state *state = snew(game_state);
|
|
|
|
state->p = *params; /* structure copy */
|
|
|
|
state->grid = snewn(wh, char);
|
|
assert(strlen(desc) == wh);
|
|
memcpy(state->grid, desc, wh);
|
|
|
|
state->px = state->py = -1;
|
|
state->gems = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
if (state->grid[i] == START) {
|
|
state->grid[i] = STOP;
|
|
state->px = i % w;
|
|
state->py = i / w;
|
|
} else if (state->grid[i] == GEM) {
|
|
state->gems++;
|
|
}
|
|
}
|
|
|
|
assert(state->gems > 0);
|
|
assert(state->px >= 0 && state->py >= 0);
|
|
|
|
state->distance_moved = 0;
|
|
state->dead = FALSE;
|
|
|
|
state->cheated = FALSE;
|
|
state->solnpos = 0;
|
|
state->soln = NULL;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->p = state->p;
|
|
ret->px = state->px;
|
|
ret->py = state->py;
|
|
ret->gems = state->gems;
|
|
ret->grid = snewn(wh, char);
|
|
ret->distance_moved = state->distance_moved;
|
|
ret->dead = FALSE;
|
|
memcpy(ret->grid, state->grid, wh);
|
|
ret->cheated = state->cheated;
|
|
ret->soln = state->soln;
|
|
if (ret->soln)
|
|
ret->soln->refcount++;
|
|
ret->solnpos = state->solnpos;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (state->soln && --state->soln->refcount == 0) {
|
|
sfree(state->soln->list);
|
|
sfree(state->soln);
|
|
}
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
/*
|
|
* Internal function used by solver.
|
|
*/
|
|
static int move_goes_to(int w, int h, char *grid, int x, int y, int d)
|
|
{
|
|
int dr;
|
|
|
|
/*
|
|
* See where we'd get to if we made this move.
|
|
*/
|
|
dr = -1; /* placate optimiser */
|
|
while (1) {
|
|
if (AT(w, h, grid, x+DX(d), y+DY(d)) == WALL) {
|
|
dr = DIRECTIONS; /* hit a wall, so end up stationary */
|
|
break;
|
|
}
|
|
x += DX(d);
|
|
y += DY(d);
|
|
if (AT(w, h, grid, x, y) == STOP) {
|
|
dr = DIRECTIONS; /* hit a stop, so end up stationary */
|
|
break;
|
|
}
|
|
if (AT(w, h, grid, x, y) == GEM) {
|
|
dr = d; /* hit a gem, so we're still moving */
|
|
break;
|
|
}
|
|
if (AT(w, h, grid, x, y) == MINE)
|
|
return -1; /* hit a mine, so move is invalid */
|
|
}
|
|
assert(dr >= 0);
|
|
return (y*w+x)*DP1+dr;
|
|
}
|
|
|
|
static int compare_integers(const void *av, const void *bv)
|
|
{
|
|
const int *a = (const int *)av;
|
|
const int *b = (const int *)bv;
|
|
if (*a < *b)
|
|
return -1;
|
|
else if (*a > *b)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h;
|
|
int *nodes, *nodeindex, *edges, *backedges, *edgei, *backedgei, *circuit;
|
|
int nedges;
|
|
int *dist, *dist2, *list;
|
|
int *unvisited;
|
|
int circuitlen, circuitsize;
|
|
int head, tail, pass, i, j, n, x, y, d, dd;
|
|
char *err, *soln, *p;
|
|
|
|
/*
|
|
* Before anything else, deal with the special case in which
|
|
* all the gems are already collected.
|
|
*/
|
|
for (i = 0; i < wh; i++)
|
|
if (currstate->grid[i] == GEM)
|
|
break;
|
|
if (i == wh) {
|
|
*error = "Game is already solved";
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Solving Inertia is a question of first building up the graph
|
|
* of where you can get to from where, and secondly finding a
|
|
* tour of the graph which takes in every gem.
|
|
*
|
|
* This is of course a close cousin of the travelling salesman
|
|
* problem, which is NP-complete; so I rather doubt that any
|
|
* _optimal_ tour can be found in plausible time. Hence I'll
|
|
* restrict myself to merely finding a not-too-bad one.
|
|
*
|
|
* First construct the graph, by bfsing out move by move from
|
|
* the current player position. Graph vertices will be
|
|
* - every endpoint of a move (place the ball can be
|
|
* stationary)
|
|
* - every gem (place the ball can go through in motion).
|
|
* Vertices of this type have an associated direction, since
|
|
* if a gem can be collected by sliding through it in two
|
|
* different directions it doesn't follow that you can
|
|
* change direction at it.
|
|
*
|
|
* I'm going to refer to a non-directional vertex as
|
|
* (y*w+x)*DP1+DIRECTIONS, and a directional one as
|
|
* (y*w+x)*DP1+d.
|
|
*/
|
|
|
|
/*
|
|
* nodeindex[] maps node codes as shown above to numeric
|
|
* indices in the nodes[] array.
|
|
*/
|
|
nodeindex = snewn(DP1*wh, int);
|
|
for (i = 0; i < DP1*wh; i++)
|
|
nodeindex[i] = -1;
|
|
|
|
/*
|
|
* Do the bfs to find all the interesting graph nodes.
|
|
*/
|
|
nodes = snewn(DP1*wh, int);
|
|
head = tail = 0;
|
|
|
|
nodes[tail] = (currstate->py * w + currstate->px) * DP1 + DIRECTIONS;
|
|
nodeindex[nodes[0]] = tail;
|
|
tail++;
|
|
|
|
while (head < tail) {
|
|
int nc = nodes[head++], nnc;
|
|
|
|
d = nc % DP1;
|
|
|
|
/*
|
|
* Plot all possible moves from this node. If the node is
|
|
* directed, there's only one.
|
|
*/
|
|
for (dd = 0; dd < DIRECTIONS; dd++) {
|
|
x = nc / DP1;
|
|
y = x / w;
|
|
x %= w;
|
|
|
|
if (d < DIRECTIONS && d != dd)
|
|
continue;
|
|
|
|
nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
|
|
if (nnc >= 0 && nnc != nc) {
|
|
if (nodeindex[nnc] < 0) {
|
|
nodes[tail] = nnc;
|
|
nodeindex[nnc] = tail;
|
|
tail++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
n = head;
|
|
|
|
/*
|
|
* Now we know how many nodes we have, allocate the edge array
|
|
* and go through setting up the edges.
|
|
*/
|
|
edges = snewn(DIRECTIONS*n, int);
|
|
edgei = snewn(n+1, int);
|
|
nedges = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
int nc = nodes[i];
|
|
|
|
edgei[i] = nedges;
|
|
|
|
d = nc % DP1;
|
|
x = nc / DP1;
|
|
y = x / w;
|
|
x %= w;
|
|
|
|
for (dd = 0; dd < DIRECTIONS; dd++) {
|
|
int nnc;
|
|
|
|
if (d >= DIRECTIONS || d == dd) {
|
|
nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
|
|
|
|
if (nnc >= 0 && nnc != nc)
|
|
edges[nedges++] = nodeindex[nnc];
|
|
}
|
|
}
|
|
}
|
|
edgei[n] = nedges;
|
|
|
|
/*
|
|
* Now set up the backedges array.
|
|
*/
|
|
backedges = snewn(nedges, int);
|
|
backedgei = snewn(n+1, int);
|
|
for (i = j = 0; i < nedges; i++) {
|
|
while (j+1 < n && i >= edgei[j+1])
|
|
j++;
|
|
backedges[i] = edges[i] * n + j;
|
|
}
|
|
qsort(backedges, nedges, sizeof(int), compare_integers);
|
|
backedgei[0] = 0;
|
|
for (i = j = 0; i < nedges; i++) {
|
|
int k = backedges[i] / n;
|
|
backedges[i] %= n;
|
|
while (j < k)
|
|
backedgei[++j] = i;
|
|
}
|
|
backedgei[n] = nedges;
|
|
|
|
/*
|
|
* Set up the initial tour. At all times, our tour is a circuit
|
|
* of graph vertices (which may, and probably will often,
|
|
* repeat vertices). To begin with, it's got exactly one vertex
|
|
* in it, which is the player's current starting point.
|
|
*/
|
|
circuitsize = 256;
|
|
circuit = snewn(circuitsize, int);
|
|
circuitlen = 0;
|
|
circuit[circuitlen++] = 0; /* node index 0 is the starting posn */
|
|
|
|
/*
|
|
* Track which gems are as yet unvisited.
|
|
*/
|
|
unvisited = snewn(wh, int);
|
|
for (i = 0; i < wh; i++)
|
|
unvisited[i] = FALSE;
|
|
for (i = 0; i < wh; i++)
|
|
if (currstate->grid[i] == GEM)
|
|
unvisited[i] = TRUE;
|
|
|
|
/*
|
|
* Allocate space for doing bfses inside the main loop.
|
|
*/
|
|
dist = snewn(n, int);
|
|
dist2 = snewn(n, int);
|
|
list = snewn(n, int);
|
|
|
|
err = NULL;
|
|
soln = NULL;
|
|
|
|
/*
|
|
* Now enter the main loop, in each iteration of which we
|
|
* extend the tour to take in an as yet uncollected gem.
|
|
*/
|
|
while (1) {
|
|
int target, n1, n2, bestdist, extralen, targetpos;
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("circuit is");
|
|
for (i = 0; i < circuitlen; i++) {
|
|
int nc = nodes[circuit[i]];
|
|
printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
|
|
}
|
|
printf("\n");
|
|
printf("moves are ");
|
|
x = nodes[circuit[0]] / DP1 % w;
|
|
y = nodes[circuit[0]] / DP1 / w;
|
|
for (i = 1; i < circuitlen; i++) {
|
|
int x2, y2, dx, dy;
|
|
if (nodes[circuit[i]] % DP1 != DIRECTIONS)
|
|
continue;
|
|
x2 = nodes[circuit[i]] / DP1 % w;
|
|
y2 = nodes[circuit[i]] / DP1 / w;
|
|
dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
|
|
dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
|
|
for (d = 0; d < DIRECTIONS; d++)
|
|
if (DX(d) == dx && DY(d) == dy)
|
|
printf("%c", "89632147"[d]);
|
|
x = x2;
|
|
y = y2;
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* First, start a pair of bfses at _every_ vertex currently
|
|
* in the tour, and extend them outwards to find the
|
|
* nearest as yet unreached gem vertex.
|
|
*
|
|
* This is largely a heuristic: we could pick _any_ doubly
|
|
* reachable node here and still get a valid tour as
|
|
* output. I hope that picking a nearby one will result in
|
|
* generally good tours.
|
|
*/
|
|
for (pass = 0; pass < 2; pass++) {
|
|
int *ep = (pass == 0 ? edges : backedges);
|
|
int *ei = (pass == 0 ? edgei : backedgei);
|
|
int *dp = (pass == 0 ? dist : dist2);
|
|
head = tail = 0;
|
|
for (i = 0; i < n; i++)
|
|
dp[i] = -1;
|
|
for (i = 0; i < circuitlen; i++) {
|
|
int ni = circuit[i];
|
|
if (dp[ni] < 0) {
|
|
dp[ni] = 0;
|
|
list[tail++] = ni;
|
|
}
|
|
}
|
|
while (head < tail) {
|
|
int ni = list[head++];
|
|
for (i = ei[ni]; i < ei[ni+1]; i++) {
|
|
int ti = ep[i];
|
|
if (ti >= 0 && dp[ti] < 0) {
|
|
dp[ti] = dp[ni] + 1;
|
|
list[tail++] = ti;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Now find the nearest unvisited gem. */
|
|
bestdist = -1;
|
|
target = -1;
|
|
for (i = 0; i < n; i++) {
|
|
if (unvisited[nodes[i] / DP1] &&
|
|
dist[i] >= 0 && dist2[i] >= 0) {
|
|
int thisdist = dist[i] + dist2[i];
|
|
if (bestdist < 0 || bestdist > thisdist) {
|
|
bestdist = thisdist;
|
|
target = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (target < 0) {
|
|
/*
|
|
* If we get to here, we haven't found a gem we can get
|
|
* at all, which means we terminate this loop.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now we have a graph vertex at list[tail-1] which is an
|
|
* unvisited gem. We want to add that vertex to our tour.
|
|
* So we run two more breadth-first searches: one starting
|
|
* from that vertex and following forward edges, and
|
|
* another starting from the same vertex and following
|
|
* backward edges. This allows us to determine, for each
|
|
* node on the current tour, how quickly we can get both to
|
|
* and from the target vertex from that node.
|
|
*/
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("target node is %d (%d,%d,%d)\n", target, nodes[target]/DP1%w,
|
|
nodes[target]/DP1/w, nodes[target]%DP1);
|
|
#endif
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
int *ep = (pass == 0 ? edges : backedges);
|
|
int *ei = (pass == 0 ? edgei : backedgei);
|
|
int *dp = (pass == 0 ? dist : dist2);
|
|
|
|
for (i = 0; i < n; i++)
|
|
dp[i] = -1;
|
|
head = tail = 0;
|
|
|
|
dp[target] = 0;
|
|
list[tail++] = target;
|
|
|
|
while (head < tail) {
|
|
int ni = list[head++];
|
|
for (i = ei[ni]; i < ei[ni+1]; i++) {
|
|
int ti = ep[i];
|
|
if (ti >= 0 && dp[ti] < 0) {
|
|
dp[ti] = dp[ni] + 1;
|
|
/*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
|
|
list[tail++] = ti;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now for every node n, dist[n] gives the length of the
|
|
* shortest path from the target vertex to n, and dist2[n]
|
|
* gives the length of the shortest path from n to the
|
|
* target vertex.
|
|
*
|
|
* Our next step is to search linearly along the tour to
|
|
* find the optimum place to insert a trip to the target
|
|
* vertex and back. Our two options are either
|
|
* (a) to find two adjacent vertices A,B in the tour and
|
|
* replace the edge A->B with the path A->target->B
|
|
* (b) to find a single vertex X in the tour and replace
|
|
* it with the complete round trip X->target->X.
|
|
* We do whichever takes the fewest moves.
|
|
*/
|
|
n1 = n2 = -1;
|
|
bestdist = -1;
|
|
for (i = 0; i < circuitlen; i++) {
|
|
int thisdist;
|
|
|
|
/*
|
|
* Try a round trip from vertex i.
|
|
*/
|
|
if (dist[circuit[i]] >= 0 &&
|
|
dist2[circuit[i]] >= 0) {
|
|
thisdist = dist[circuit[i]] + dist2[circuit[i]];
|
|
if (bestdist < 0 || thisdist < bestdist) {
|
|
bestdist = thisdist;
|
|
n1 = n2 = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try a trip from vertex i via target to vertex i+1.
|
|
*/
|
|
if (i+1 < circuitlen &&
|
|
dist2[circuit[i]] >= 0 &&
|
|
dist[circuit[i+1]] >= 0) {
|
|
thisdist = dist2[circuit[i]] + dist[circuit[i+1]];
|
|
if (bestdist < 0 || thisdist < bestdist) {
|
|
bestdist = thisdist;
|
|
n1 = i;
|
|
n2 = i+1;
|
|
}
|
|
}
|
|
}
|
|
if (bestdist < 0) {
|
|
/*
|
|
* We couldn't find a round trip taking in this gem _at
|
|
* all_. Give up.
|
|
*/
|
|
err = "Unable to find a solution from this starting point";
|
|
break;
|
|
}
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1, n2, bestdist);
|
|
#endif
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("circuit before lengthening is");
|
|
for (i = 0; i < circuitlen; i++) {
|
|
printf(" %d", circuit[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Now actually lengthen the tour to take in this round
|
|
* trip.
|
|
*/
|
|
extralen = dist2[circuit[n1]] + dist[circuit[n2]];
|
|
if (n1 != n2)
|
|
extralen--;
|
|
circuitlen += extralen;
|
|
if (circuitlen >= circuitsize) {
|
|
circuitsize = circuitlen + 256;
|
|
circuit = sresize(circuit, circuitsize, int);
|
|
}
|
|
memmove(circuit + n2 + extralen, circuit + n2,
|
|
(circuitlen - n2 - extralen) * sizeof(int));
|
|
n2 += extralen;
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("circuit in middle of lengthening is");
|
|
for (i = 0; i < circuitlen; i++) {
|
|
printf(" %d", circuit[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Find the shortest-path routes to and from the target,
|
|
* and write them into the circuit.
|
|
*/
|
|
targetpos = n1 + dist2[circuit[n1]];
|
|
assert(targetpos - dist2[circuit[n1]] == n1);
|
|
assert(targetpos + dist[circuit[n2]] == n2);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
int dir = (pass == 0 ? -1 : +1);
|
|
int *ep = (pass == 0 ? backedges : edges);
|
|
int *ei = (pass == 0 ? backedgei : edgei);
|
|
int *dp = (pass == 0 ? dist : dist2);
|
|
int nn = (pass == 0 ? n2 : n1);
|
|
int ni = circuit[nn], ti, dest = nn;
|
|
|
|
while (1) {
|
|
circuit[dest] = ni;
|
|
if (dp[ni] == 0)
|
|
break;
|
|
dest += dir;
|
|
ti = -1;
|
|
/*printf("pass %d: looking at vertex %d\n", pass, ni);*/
|
|
for (i = ei[ni]; i < ei[ni+1]; i++) {
|
|
ti = ep[i];
|
|
if (ti >= 0 && dp[ti] == dp[ni] - 1)
|
|
break;
|
|
}
|
|
assert(i < ei[ni+1] && ti >= 0);
|
|
ni = ti;
|
|
}
|
|
}
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("circuit after lengthening is");
|
|
for (i = 0; i < circuitlen; i++) {
|
|
printf(" %d", circuit[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Finally, mark all gems that the new piece of circuit
|
|
* passes through as visited.
|
|
*/
|
|
for (i = n1; i <= n2; i++) {
|
|
int pos = nodes[circuit[i]] / DP1;
|
|
assert(pos >= 0 && pos < wh);
|
|
unvisited[pos] = FALSE;
|
|
}
|
|
}
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("before reduction, moves are ");
|
|
x = nodes[circuit[0]] / DP1 % w;
|
|
y = nodes[circuit[0]] / DP1 / w;
|
|
for (i = 1; i < circuitlen; i++) {
|
|
int x2, y2, dx, dy;
|
|
if (nodes[circuit[i]] % DP1 != DIRECTIONS)
|
|
continue;
|
|
x2 = nodes[circuit[i]] / DP1 % w;
|
|
y2 = nodes[circuit[i]] / DP1 / w;
|
|
dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
|
|
dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
|
|
for (d = 0; d < DIRECTIONS; d++)
|
|
if (DX(d) == dx && DY(d) == dy)
|
|
printf("%c", "89632147"[d]);
|
|
x = x2;
|
|
y = y2;
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* That's got a basic solution. Now optimise it by removing
|
|
* redundant sections of the circuit: it's entirely possible
|
|
* that a piece of circuit we carefully inserted at one stage
|
|
* to collect a gem has become pointless because the steps
|
|
* required to collect some _later_ gem necessarily passed
|
|
* through the same one.
|
|
*
|
|
* So first we go through and work out how many times each gem
|
|
* is collected. Then we look for maximal sections of circuit
|
|
* which are redundant in the sense that their removal would
|
|
* not reduce any gem's collection count to zero, and replace
|
|
* each one with a bfs-derived fastest path between their
|
|
* endpoints.
|
|
*/
|
|
while (1) {
|
|
int oldlen = circuitlen;
|
|
int dir;
|
|
|
|
for (dir = +1; dir >= -1; dir -= 2) {
|
|
|
|
for (i = 0; i < wh; i++)
|
|
unvisited[i] = 0;
|
|
for (i = 0; i < circuitlen; i++) {
|
|
int xy = nodes[circuit[i]] / DP1;
|
|
if (currstate->grid[xy] == GEM)
|
|
unvisited[xy]++;
|
|
}
|
|
|
|
/*
|
|
* If there's any gem we didn't end up visiting at all,
|
|
* give up.
|
|
*/
|
|
for (i = 0; i < wh; i++) {
|
|
if (currstate->grid[i] == GEM && unvisited[i] == 0) {
|
|
err = "Unable to find a solution from this starting point";
|
|
break;
|
|
}
|
|
}
|
|
if (i < wh)
|
|
break;
|
|
|
|
for (i = j = (dir > 0 ? 0 : circuitlen-1);
|
|
i < circuitlen && i >= 0;
|
|
i += dir) {
|
|
int xy = nodes[circuit[i]] / DP1;
|
|
if (currstate->grid[xy] == GEM && unvisited[xy] > 1) {
|
|
unvisited[xy]--;
|
|
} else if (currstate->grid[xy] == GEM || i == circuitlen-1) {
|
|
/*
|
|
* circuit[i] collects a gem for the only time,
|
|
* or is the last node in the circuit.
|
|
* Therefore it cannot be removed; so we now
|
|
* want to replace the path from circuit[j] to
|
|
* circuit[i] with a bfs-shortest path.
|
|
*/
|
|
int p, q, k, dest, ni, ti, thisdist;
|
|
|
|
/*
|
|
* Set up the upper and lower bounds of the
|
|
* reduced section.
|
|
*/
|
|
p = min(i, j);
|
|
q = max(i, j);
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("optimising section from %d - %d\n", p, q);
|
|
#endif
|
|
|
|
for (k = 0; k < n; k++)
|
|
dist[k] = -1;
|
|
head = tail = 0;
|
|
|
|
dist[circuit[p]] = 0;
|
|
list[tail++] = circuit[p];
|
|
|
|
while (head < tail && dist[circuit[q]] < 0) {
|
|
int ni = list[head++];
|
|
for (k = edgei[ni]; k < edgei[ni+1]; k++) {
|
|
int ti = edges[k];
|
|
if (ti >= 0 && dist[ti] < 0) {
|
|
dist[ti] = dist[ni] + 1;
|
|
list[tail++] = ti;
|
|
}
|
|
}
|
|
}
|
|
|
|
thisdist = dist[circuit[q]];
|
|
assert(thisdist >= 0 && thisdist <= q-p);
|
|
|
|
memmove(circuit+p+thisdist, circuit+q,
|
|
(circuitlen - q) * sizeof(int));
|
|
circuitlen -= q-p;
|
|
q = p + thisdist;
|
|
circuitlen += q-p;
|
|
|
|
if (dir > 0)
|
|
i = q; /* resume loop from the right place */
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("new section runs from %d - %d\n", p, q);
|
|
#endif
|
|
|
|
dest = q;
|
|
assert(dest >= 0);
|
|
ni = circuit[q];
|
|
|
|
while (1) {
|
|
/* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
|
|
circuit[dest] = ni;
|
|
if (dist[ni] == 0)
|
|
break;
|
|
dest--;
|
|
ti = -1;
|
|
for (k = backedgei[ni]; k < backedgei[ni+1]; k++) {
|
|
ti = backedges[k];
|
|
if (ti >= 0 && dist[ti] == dist[ni] - 1)
|
|
break;
|
|
}
|
|
assert(k < backedgei[ni+1] && ti >= 0);
|
|
ni = ti;
|
|
}
|
|
|
|
/*
|
|
* Now re-increment the visit counts for the
|
|
* new path.
|
|
*/
|
|
while (++p < q) {
|
|
int xy = nodes[circuit[p]] / DP1;
|
|
if (currstate->grid[xy] == GEM)
|
|
unvisited[xy]++;
|
|
}
|
|
|
|
j = i;
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("during reduction, circuit is");
|
|
for (k = 0; k < circuitlen; k++) {
|
|
int nc = nodes[circuit[k]];
|
|
printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
|
|
}
|
|
printf("\n");
|
|
printf("moves are ");
|
|
x = nodes[circuit[0]] / DP1 % w;
|
|
y = nodes[circuit[0]] / DP1 / w;
|
|
for (k = 1; k < circuitlen; k++) {
|
|
int x2, y2, dx, dy;
|
|
if (nodes[circuit[k]] % DP1 != DIRECTIONS)
|
|
continue;
|
|
x2 = nodes[circuit[k]] / DP1 % w;
|
|
y2 = nodes[circuit[k]] / DP1 / w;
|
|
dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
|
|
dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
|
|
for (d = 0; d < DIRECTIONS; d++)
|
|
if (DX(d) == dx && DY(d) == dy)
|
|
printf("%c", "89632147"[d]);
|
|
x = x2;
|
|
y = y2;
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef TSP_DIAGNOSTICS
|
|
printf("after reduction, moves are ");
|
|
x = nodes[circuit[0]] / DP1 % w;
|
|
y = nodes[circuit[0]] / DP1 / w;
|
|
for (i = 1; i < circuitlen; i++) {
|
|
int x2, y2, dx, dy;
|
|
if (nodes[circuit[i]] % DP1 != DIRECTIONS)
|
|
continue;
|
|
x2 = nodes[circuit[i]] / DP1 % w;
|
|
y2 = nodes[circuit[i]] / DP1 / w;
|
|
dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
|
|
dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
|
|
for (d = 0; d < DIRECTIONS; d++)
|
|
if (DX(d) == dx && DY(d) == dy)
|
|
printf("%c", "89632147"[d]);
|
|
x = x2;
|
|
y = y2;
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If we've managed an entire reduction pass in each
|
|
* direction and not made the solution any shorter, we're
|
|
* _really_ done.
|
|
*/
|
|
if (circuitlen == oldlen)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Encode the solution as a move string.
|
|
*/
|
|
if (!err) {
|
|
soln = snewn(circuitlen+2, char);
|
|
p = soln;
|
|
*p++ = 'S';
|
|
x = nodes[circuit[0]] / DP1 % w;
|
|
y = nodes[circuit[0]] / DP1 / w;
|
|
for (i = 1; i < circuitlen; i++) {
|
|
int x2, y2, dx, dy;
|
|
if (nodes[circuit[i]] % DP1 != DIRECTIONS)
|
|
continue;
|
|
x2 = nodes[circuit[i]] / DP1 % w;
|
|
y2 = nodes[circuit[i]] / DP1 / w;
|
|
dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
|
|
dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
|
|
for (d = 0; d < DIRECTIONS; d++)
|
|
if (DX(d) == dx && DY(d) == dy) {
|
|
*p++ = '0' + d;
|
|
break;
|
|
}
|
|
assert(d < DIRECTIONS);
|
|
x = x2;
|
|
y = y2;
|
|
}
|
|
*p++ = '\0';
|
|
assert(p - soln < circuitlen+2);
|
|
}
|
|
|
|
sfree(list);
|
|
sfree(dist);
|
|
sfree(dist2);
|
|
sfree(unvisited);
|
|
sfree(circuit);
|
|
sfree(backedgei);
|
|
sfree(backedges);
|
|
sfree(edgei);
|
|
sfree(edges);
|
|
sfree(nodeindex);
|
|
sfree(nodes);
|
|
|
|
if (err)
|
|
*error = err;
|
|
|
|
return soln;
|
|
}
|
|
|
|
static int game_can_format_as_text_now(game_params *params)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct game_ui {
|
|
float anim_length;
|
|
int flashtype;
|
|
int deaths;
|
|
int just_made_move;
|
|
int just_died;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->anim_length = 0.0F;
|
|
ui->flashtype = 0;
|
|
ui->deaths = 0;
|
|
ui->just_made_move = FALSE;
|
|
ui->just_died = FALSE;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
char buf[80];
|
|
/*
|
|
* The deaths counter needs preserving across a serialisation.
|
|
*/
|
|
sprintf(buf, "D%d", ui->deaths);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
int p = 0;
|
|
sscanf(encoding, "D%d%n", &ui->deaths, &p);
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
/*
|
|
* Increment the deaths counter. We only do this if
|
|
* ui->just_made_move is set (redoing a suicide move doesn't
|
|
* kill you _again_), and also we only do it if the game wasn't
|
|
* already completed (once you're finished, you can play).
|
|
*/
|
|
if (!oldstate->dead && newstate->dead && ui->just_made_move &&
|
|
oldstate->gems) {
|
|
ui->deaths++;
|
|
ui->just_died = TRUE;
|
|
} else {
|
|
ui->just_died = FALSE;
|
|
}
|
|
ui->just_made_move = FALSE;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
game_params p;
|
|
int tilesize;
|
|
int started;
|
|
unsigned short *grid;
|
|
blitter *player_background;
|
|
int player_bg_saved, pbgx, pbgy;
|
|
};
|
|
|
|
#define PREFERRED_TILESIZE 32
|
|
#define TILESIZE (ds->tilesize)
|
|
#ifdef SMALL_SCREEN
|
|
#define BORDER (TILESIZE / 4)
|
|
#else
|
|
#define BORDER (TILESIZE)
|
|
#endif
|
|
#define HIGHLIGHT_WIDTH (TILESIZE / 10)
|
|
#define COORD(x) ( (x) * TILESIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->p.w, h = state->p.h /*, wh = w*h */;
|
|
int dir;
|
|
char buf[80];
|
|
|
|
dir = -1;
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
/*
|
|
* Mouse-clicking near the target point (or, more
|
|
* accurately, in the appropriate octant) is an alternative
|
|
* way to input moves.
|
|
*/
|
|
|
|
if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
|
|
int dx, dy;
|
|
float angle;
|
|
|
|
dx = FROMCOORD(x) - state->px;
|
|
dy = FROMCOORD(y) - state->py;
|
|
/* I pass dx,dy rather than dy,dx so that the octants
|
|
* end up the right way round. */
|
|
angle = atan2(dx, -dy);
|
|
|
|
angle = (angle + (PI/8)) / (PI/4);
|
|
assert(angle > -16.0F);
|
|
dir = (int)(angle + 16.0F) & 7;
|
|
}
|
|
} else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
|
|
dir = 0;
|
|
else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
|
|
dir = 4;
|
|
else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
|
|
dir = 6;
|
|
else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
|
|
dir = 2;
|
|
else if (button == (MOD_NUM_KEYPAD | '7'))
|
|
dir = 7;
|
|
else if (button == (MOD_NUM_KEYPAD | '1'))
|
|
dir = 5;
|
|
else if (button == (MOD_NUM_KEYPAD | '9'))
|
|
dir = 1;
|
|
else if (button == (MOD_NUM_KEYPAD | '3'))
|
|
dir = 3;
|
|
else if (IS_CURSOR_SELECT(button) &&
|
|
state->soln && state->solnpos < state->soln->len)
|
|
dir = state->soln->list[state->solnpos];
|
|
|
|
if (dir < 0)
|
|
return NULL;
|
|
|
|
/*
|
|
* Reject the move if we can't make it at all due to a wall
|
|
* being in the way.
|
|
*/
|
|
if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
|
|
return NULL;
|
|
|
|
/*
|
|
* Reject the move if we're dead!
|
|
*/
|
|
if (state->dead)
|
|
return NULL;
|
|
|
|
/*
|
|
* Otherwise, we can make the move. All we need to specify is
|
|
* the direction.
|
|
*/
|
|
ui->just_made_move = TRUE;
|
|
sprintf(buf, "%d", dir);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
int w = state->p.w, h = state->p.h /*, wh = w*h */;
|
|
int dir;
|
|
game_state *ret;
|
|
|
|
if (*move == 'S') {
|
|
int len, i;
|
|
soln *sol;
|
|
|
|
/*
|
|
* This is a solve move, so we don't actually _change_ the
|
|
* grid but merely set up a stored solution path.
|
|
*/
|
|
move++;
|
|
len = strlen(move);
|
|
sol = snew(soln);
|
|
sol->len = len;
|
|
sol->list = snewn(len, unsigned char);
|
|
for (i = 0; i < len; i++)
|
|
sol->list[i] = move[i] - '0';
|
|
ret = dup_game(state);
|
|
ret->cheated = TRUE;
|
|
if (ret->soln && --ret->soln->refcount == 0) {
|
|
sfree(ret->soln->list);
|
|
sfree(ret->soln);
|
|
}
|
|
ret->soln = sol;
|
|
ret->solnpos = 0;
|
|
sol->refcount = 1;
|
|
return ret;
|
|
}
|
|
|
|
dir = atoi(move);
|
|
if (dir < 0 || dir >= DIRECTIONS)
|
|
return NULL; /* huh? */
|
|
|
|
if (state->dead)
|
|
return NULL;
|
|
|
|
if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
|
|
return NULL; /* wall in the way! */
|
|
|
|
/*
|
|
* Now make the move.
|
|
*/
|
|
ret = dup_game(state);
|
|
ret->distance_moved = 0;
|
|
while (1) {
|
|
ret->px += DX(dir);
|
|
ret->py += DY(dir);
|
|
ret->distance_moved++;
|
|
|
|
if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
|
|
LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
|
|
ret->gems--;
|
|
}
|
|
|
|
if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
|
|
ret->dead = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
|
|
AT(w, h, ret->grid, ret->px+DX(dir),
|
|
ret->py+DY(dir)) == WALL)
|
|
break;
|
|
}
|
|
|
|
if (ret->soln) {
|
|
/*
|
|
* If this move is the correct next one in the stored
|
|
* solution path, advance solnpos.
|
|
*/
|
|
if (ret->soln->list[ret->solnpos] == dir &&
|
|
ret->solnpos+1 < ret->soln->len) {
|
|
ret->solnpos++;
|
|
} else {
|
|
/*
|
|
* Otherwise, the user has strayed from the path, so
|
|
* the path is no longer valid.
|
|
*/
|
|
ret->soln->refcount--;
|
|
assert(ret->soln->refcount > 0);/* `state' at least still exists */
|
|
ret->soln = NULL;
|
|
ret->solnpos = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = 2 * BORDER + 1 + params->w * TILESIZE;
|
|
*y = 2 * BORDER + 1 + params->h * TILESIZE;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
|
|
assert(!ds->player_background); /* set_size is never called twice */
|
|
assert(!ds->player_bg_saved);
|
|
|
|
ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
ret[COL_OUTLINE * 3 + 0] = 0.0F;
|
|
ret[COL_OUTLINE * 3 + 1] = 0.0F;
|
|
ret[COL_OUTLINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_PLAYER * 3 + 0] = 0.0F;
|
|
ret[COL_PLAYER * 3 + 1] = 1.0F;
|
|
ret[COL_PLAYER * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
|
|
ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
|
|
ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_MINE * 3 + 0] = 0.0F;
|
|
ret[COL_MINE * 3 + 1] = 0.0F;
|
|
ret[COL_MINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_GEM * 3 + 0] = 0.6F;
|
|
ret[COL_GEM * 3 + 1] = 1.0F;
|
|
ret[COL_GEM * 3 + 2] = 1.0F;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
|
|
1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
|
|
}
|
|
|
|
ret[COL_HINT * 3 + 0] = 1.0F;
|
|
ret[COL_HINT * 3 + 1] = 1.0F;
|
|
ret[COL_HINT * 3 + 2] = 0.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h;
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->tilesize = 0;
|
|
|
|
/* We can't allocate the blitter rectangle for the player background
|
|
* until we know what size to make it. */
|
|
ds->player_background = NULL;
|
|
ds->player_bg_saved = FALSE;
|
|
ds->pbgx = ds->pbgy = -1;
|
|
|
|
ds->p = state->p; /* structure copy */
|
|
ds->started = FALSE;
|
|
ds->grid = snewn(wh, unsigned short);
|
|
for (i = 0; i < wh; i++)
|
|
ds->grid[i] = UNDRAWN;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
if (ds->player_background)
|
|
blitter_free(dr, ds->player_background);
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
|
|
int dead, int hintdir)
|
|
{
|
|
if (dead) {
|
|
int coords[DIRECTIONS*4];
|
|
int d;
|
|
|
|
for (d = 0; d < DIRECTIONS; d++) {
|
|
float x1, y1, x2, y2, x3, y3, len;
|
|
|
|
x1 = DX(d);
|
|
y1 = DY(d);
|
|
len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
|
|
|
|
x3 = DX(d+1);
|
|
y3 = DY(d+1);
|
|
len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
|
|
|
|
x2 = (x1+x3) / 4;
|
|
y2 = (y1+y3) / 4;
|
|
|
|
coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
|
|
coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
|
|
coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
|
|
coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
|
|
}
|
|
draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
|
|
} else {
|
|
draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
|
|
TILESIZE/3, COL_PLAYER, COL_OUTLINE);
|
|
}
|
|
|
|
if (!dead && hintdir >= 0) {
|
|
float scale = (DX(hintdir) && DY(hintdir) ? 0.8F : 1.0F);
|
|
int ax = (TILESIZE*2/5) * scale * DX(hintdir);
|
|
int ay = (TILESIZE*2/5) * scale * DY(hintdir);
|
|
int px = -ay, py = ax;
|
|
int ox = x + TILESIZE/2, oy = y + TILESIZE/2;
|
|
int coords[14], *c;
|
|
|
|
c = coords;
|
|
*c++ = ox + px/9;
|
|
*c++ = oy + py/9;
|
|
*c++ = ox + px/9 + ax*2/3;
|
|
*c++ = oy + py/9 + ay*2/3;
|
|
*c++ = ox + px/3 + ax*2/3;
|
|
*c++ = oy + py/3 + ay*2/3;
|
|
*c++ = ox + ax;
|
|
*c++ = oy + ay;
|
|
*c++ = ox - px/3 + ax*2/3;
|
|
*c++ = oy - py/3 + ay*2/3;
|
|
*c++ = ox - px/9 + ax*2/3;
|
|
*c++ = oy - py/9 + ay*2/3;
|
|
*c++ = ox - px/9;
|
|
*c++ = oy - py/9;
|
|
draw_polygon(dr, coords, 7, COL_HINT, COL_OUTLINE);
|
|
}
|
|
|
|
draw_update(dr, x, y, TILESIZE, TILESIZE);
|
|
}
|
|
|
|
#define FLASH_DEAD 0x100
|
|
#define FLASH_WIN 0x200
|
|
#define FLASH_MASK 0x300
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
|
|
{
|
|
int tx = COORD(x), ty = COORD(y);
|
|
int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
|
|
v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
|
|
|
|
v &= ~FLASH_MASK;
|
|
|
|
clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
|
|
draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
|
|
|
|
if (v == WALL) {
|
|
int coords[6];
|
|
|
|
coords[0] = tx + TILESIZE;
|
|
coords[1] = ty + TILESIZE;
|
|
coords[2] = tx + TILESIZE;
|
|
coords[3] = ty + 1;
|
|
coords[4] = tx + 1;
|
|
coords[5] = ty + TILESIZE;
|
|
draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
coords[0] = tx + 1;
|
|
coords[1] = ty + 1;
|
|
draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
|
|
TILESIZE - 2*HIGHLIGHT_WIDTH,
|
|
TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
|
|
} else if (v == MINE) {
|
|
int cx = tx + TILESIZE / 2;
|
|
int cy = ty + TILESIZE / 2;
|
|
int r = TILESIZE / 2 - 3;
|
|
|
|
draw_circle(dr, cx, cy, 5*r/6, COL_MINE, COL_MINE);
|
|
draw_rect(dr, cx - r/6, cy - r, 2*(r/6)+1, 2*r+1, COL_MINE);
|
|
draw_rect(dr, cx - r, cy - r/6, 2*r+1, 2*(r/6)+1, COL_MINE);
|
|
draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
|
|
} else if (v == STOP) {
|
|
draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
|
|
TILESIZE*3/7, -1, COL_OUTLINE);
|
|
draw_rect(dr, tx + TILESIZE*3/7, ty+1,
|
|
TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
|
|
draw_rect(dr, tx+1, ty + TILESIZE*3/7,
|
|
TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
|
|
} else if (v == GEM) {
|
|
int coords[8];
|
|
|
|
coords[0] = tx+TILESIZE/2;
|
|
coords[1] = ty+TILESIZE/2-TILESIZE*5/14;
|
|
coords[2] = tx+TILESIZE/2-TILESIZE*5/14;
|
|
coords[3] = ty+TILESIZE/2;
|
|
coords[4] = tx+TILESIZE/2;
|
|
coords[5] = ty+TILESIZE/2+TILESIZE*5/14;
|
|
coords[6] = tx+TILESIZE/2+TILESIZE*5/14;
|
|
coords[7] = ty+TILESIZE/2;
|
|
|
|
draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
|
|
}
|
|
|
|
unclip(dr);
|
|
draw_update(dr, tx, ty, TILESIZE, TILESIZE);
|
|
}
|
|
|
|
#define BASE_ANIM_LENGTH 0.1F
|
|
#define FLASH_LENGTH 0.3F
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->p.w, h = state->p.h /*, wh = w*h */;
|
|
int x, y;
|
|
float ap;
|
|
int player_dist;
|
|
int flashtype;
|
|
int gems, deaths;
|
|
char status[256];
|
|
|
|
if (flashtime &&
|
|
!((int)(flashtime * 3 / FLASH_LENGTH) % 2))
|
|
flashtype = ui->flashtype;
|
|
else
|
|
flashtype = 0;
|
|
|
|
/*
|
|
* Erase the player sprite.
|
|
*/
|
|
if (ds->player_bg_saved) {
|
|
assert(ds->player_background);
|
|
blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
|
|
draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
|
|
ds->player_bg_saved = FALSE;
|
|
}
|
|
|
|
/*
|
|
* Initialise a fresh drawstate.
|
|
*/
|
|
if (!ds->started) {
|
|
int wid, ht;
|
|
|
|
/*
|
|
* Blank out the window initially.
|
|
*/
|
|
game_compute_size(&ds->p, TILESIZE, &wid, &ht);
|
|
draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
|
|
draw_update(dr, 0, 0, wid, ht);
|
|
|
|
/*
|
|
* Draw the grid lines.
|
|
*/
|
|
for (y = 0; y <= h; y++)
|
|
draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
|
|
COL_LOWLIGHT);
|
|
for (x = 0; x <= w; x++)
|
|
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
|
|
COL_LOWLIGHT);
|
|
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
/*
|
|
* If we're in the process of animating a move, let's start by
|
|
* working out how far the player has moved from their _older_
|
|
* state.
|
|
*/
|
|
if (oldstate) {
|
|
ap = animtime / ui->anim_length;
|
|
player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
|
|
} else {
|
|
player_dist = 0;
|
|
ap = 0.0F;
|
|
}
|
|
|
|
/*
|
|
* Draw the grid contents.
|
|
*
|
|
* We count the gems as we go round this loop, for the purposes
|
|
* of the status bar. Of course we have a gems counter in the
|
|
* game_state already, but if we do the counting in this loop
|
|
* then it tracks gems being picked up in a sliding move, and
|
|
* updates one by one.
|
|
*/
|
|
gems = 0;
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
unsigned short v = (unsigned char)state->grid[y*w+x];
|
|
|
|
/*
|
|
* Special case: if the player is in the process of
|
|
* moving over a gem, we draw the gem iff they haven't
|
|
* gone past it yet.
|
|
*/
|
|
if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
|
|
/*
|
|
* Compute the distance from this square to the
|
|
* original player position.
|
|
*/
|
|
int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
|
|
|
|
/*
|
|
* If the player has reached here, use the new grid
|
|
* element. Otherwise use the old one.
|
|
*/
|
|
if (player_dist < dist)
|
|
v = oldstate->grid[y*w+x];
|
|
else
|
|
v = state->grid[y*w+x];
|
|
}
|
|
|
|
/*
|
|
* Special case: erase the mine the dead player is
|
|
* sitting on. Only at the end of the move.
|
|
*/
|
|
if (v == MINE && !oldstate && state->dead &&
|
|
x == state->px && y == state->py)
|
|
v = BLANK;
|
|
|
|
if (v == GEM)
|
|
gems++;
|
|
|
|
v |= flashtype;
|
|
|
|
if (ds->grid[y*w+x] != v) {
|
|
draw_tile(dr, ds, x, y, v);
|
|
ds->grid[y*w+x] = v;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Gem counter in the status bar. We replace it with
|
|
* `COMPLETED!' when it reaches zero ... or rather, when the
|
|
* _current state_'s gem counter is zero. (Thus, `Gems: 0' is
|
|
* shown between the collection of the last gem and the
|
|
* completion of the move animation that did it.)
|
|
*/
|
|
if (state->dead && (!oldstate || oldstate->dead)) {
|
|
sprintf(status, "DEAD!");
|
|
} else if (state->gems || (oldstate && oldstate->gems)) {
|
|
if (state->cheated)
|
|
sprintf(status, "Auto-solver used. ");
|
|
else
|
|
*status = '\0';
|
|
sprintf(status + strlen(status), "Gems: %d", gems);
|
|
} else if (state->cheated) {
|
|
sprintf(status, "Auto-solved.");
|
|
} else {
|
|
sprintf(status, "COMPLETED!");
|
|
}
|
|
/* We subtract one from the visible death counter if we're still
|
|
* animating the move at the end of which the death took place. */
|
|
deaths = ui->deaths;
|
|
if (oldstate && ui->just_died) {
|
|
assert(deaths > 0);
|
|
deaths--;
|
|
}
|
|
if (deaths)
|
|
sprintf(status + strlen(status), " Deaths: %d", deaths);
|
|
status_bar(dr, status);
|
|
|
|
/*
|
|
* Draw the player sprite.
|
|
*/
|
|
assert(!ds->player_bg_saved);
|
|
assert(ds->player_background);
|
|
{
|
|
int ox, oy, nx, ny;
|
|
nx = COORD(state->px);
|
|
ny = COORD(state->py);
|
|
if (oldstate) {
|
|
ox = COORD(oldstate->px);
|
|
oy = COORD(oldstate->py);
|
|
} else {
|
|
ox = nx;
|
|
oy = ny;
|
|
}
|
|
ds->pbgx = ox + ap * (nx - ox);
|
|
ds->pbgy = oy + ap * (ny - oy);
|
|
}
|
|
blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
|
|
draw_player(dr, ds, ds->pbgx, ds->pbgy,
|
|
(state->dead && !oldstate),
|
|
(!oldstate && state->soln ?
|
|
state->soln->list[state->solnpos] : -1));
|
|
ds->player_bg_saved = TRUE;
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
int dist;
|
|
if (dir > 0)
|
|
dist = newstate->distance_moved;
|
|
else
|
|
dist = oldstate->distance_moved;
|
|
ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
|
|
return ui->anim_length;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->dead && newstate->dead) {
|
|
ui->flashtype = FLASH_DEAD;
|
|
return FLASH_LENGTH;
|
|
} else if (oldstate->gems && !newstate->gems) {
|
|
ui->flashtype = FLASH_WIN;
|
|
return FLASH_LENGTH;
|
|
}
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame inertia
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Inertia", "games.inertia", "inertia",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILESIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
FALSE, FALSE, game_print_size, game_print,
|
|
TRUE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
0, /* flags */
|
|
};
|