mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

unpleasant and requiring lots of special cases to be taken care of by every single game. The new interface exposes an integer `tile size' or `scale' parameter to the midend and provides two much simpler routines: one which computes the pixel window size given a game_params and a tile size, and one which is given a tile size and must set up a drawstate appropriately. All the rest of the complexity is handled in the midend, mostly by binary search, so grubby special cases only have to be dealt with once. [originally from svn r6059]
1072 lines
25 KiB
C
1072 lines
25 KiB
C
/*
|
|
* sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs
|
|
* from the 15-puzzle in that you toroidally rotate a row or column
|
|
* at a time.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define PREFERRED_TILE_SIZE 48
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER TILE_SIZE
|
|
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 )
|
|
|
|
#define ANIM_TIME 0.13F
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
#define X(state, i) ( (i) % (state)->w )
|
|
#define Y(state, i) ( (i) / (state)->w )
|
|
#define C(state, x, y) ( (y) * (state)->w + (x) )
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_TEXT,
|
|
COL_HIGHLIGHT,
|
|
COL_LOWLIGHT,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
int movetarget;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h, n;
|
|
int *tiles;
|
|
int completed;
|
|
int just_used_solve; /* used to suppress undo animation */
|
|
int used_solve; /* used to suppress completion flash */
|
|
int movecount, movetarget;
|
|
int last_movement_sense;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 4;
|
|
ret->movetarget = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
int w, h;
|
|
char buf[80];
|
|
|
|
switch (i) {
|
|
case 0: w = 3, h = 3; break;
|
|
case 1: w = 4, h = 3; break;
|
|
case 2: w = 4, h = 4; break;
|
|
case 3: w = 5, h = 4; break;
|
|
case 4: w = 5, h = 5; break;
|
|
default: return FALSE;
|
|
}
|
|
|
|
sprintf(buf, "%dx%d", w, h);
|
|
*name = dupstr(buf);
|
|
*params = ret = snew(game_params);
|
|
ret->w = w;
|
|
ret->h = h;
|
|
ret->movetarget = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
ret->movetarget = 0;
|
|
while (*string && isdigit(*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string))
|
|
string++;
|
|
}
|
|
if (*string == 'm') {
|
|
string++;
|
|
ret->movetarget = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string))
|
|
string++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char data[256];
|
|
|
|
sprintf(data, "%dx%d", params->w, params->h);
|
|
/* Shuffle limit is part of the limited parameters, because we have to
|
|
* supply the target move count. */
|
|
if (params->movetarget)
|
|
sprintf(data + strlen(data), "m%d", params->movetarget);
|
|
|
|
return dupstr(data);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(4, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Number of shuffling moves";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->movetarget);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->movetarget = atoi(cfg[2].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params)
|
|
{
|
|
if (params->w < 2 || params->h < 2)
|
|
return "Width and height must both be at least two";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int perm_parity(int *perm, int n)
|
|
{
|
|
int i, j, ret;
|
|
|
|
ret = 0;
|
|
|
|
for (i = 0; i < n-1; i++)
|
|
for (j = i+1; j < n; j++)
|
|
if (perm[i] > perm[j])
|
|
ret = !ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int stop, n, i, x;
|
|
int x1, x2, p1, p2;
|
|
int *tiles, *used;
|
|
char *ret;
|
|
int retlen;
|
|
|
|
n = params->w * params->h;
|
|
|
|
tiles = snewn(n, int);
|
|
|
|
if (params->movetarget) {
|
|
int prevoffset = -1;
|
|
int max = (params->w > params->h ? params->w : params->h);
|
|
int *prevmoves = snewn(max, int);
|
|
|
|
/*
|
|
* Shuffle the old-fashioned way, by making a series of
|
|
* single moves on the grid.
|
|
*/
|
|
|
|
for (i = 0; i < n; i++)
|
|
tiles[i] = i;
|
|
|
|
for (i = 0; i < params->movetarget; i++) {
|
|
int start, offset, len, direction, index;
|
|
int j, tmp;
|
|
|
|
/*
|
|
* Choose a move to make. We can choose from any row
|
|
* or any column.
|
|
*/
|
|
while (1) {
|
|
j = random_upto(rs, params->w + params->h);
|
|
|
|
if (j < params->w) {
|
|
/* Column. */
|
|
index = j;
|
|
start = j;
|
|
offset = params->w;
|
|
len = params->h;
|
|
} else {
|
|
/* Row. */
|
|
index = j - params->w;
|
|
start = index * params->w;
|
|
offset = 1;
|
|
len = params->w;
|
|
}
|
|
|
|
direction = -1 + 2 * random_upto(rs, 2);
|
|
|
|
/*
|
|
* To at least _try_ to avoid boring cases, check
|
|
* that this move doesn't directly undo a previous
|
|
* one, or repeat it so many times as to turn it
|
|
* into fewer moves in the opposite direction. (For
|
|
* example, in a row of length 4, we're allowed to
|
|
* move it the same way twice, but not three
|
|
* times.)
|
|
*
|
|
* We track this for each individual row/column,
|
|
* and clear all the counters as soon as a
|
|
* perpendicular move is made. This isn't perfect
|
|
* (it _can't_ guaranteeably be perfect - there
|
|
* will always come a move count beyond which a
|
|
* shorter solution will be possible than the one
|
|
* which constructed the position) but it should
|
|
* sort out all the obvious cases.
|
|
*/
|
|
if (offset == prevoffset) {
|
|
tmp = prevmoves[index] + direction;
|
|
if (abs(2*tmp) > len || abs(tmp) < abs(prevmoves[index]))
|
|
continue;
|
|
}
|
|
|
|
/* If we didn't `continue', we've found an OK move to make. */
|
|
if (offset != prevoffset) {
|
|
int i;
|
|
for (i = 0; i < max; i++)
|
|
prevmoves[i] = 0;
|
|
prevoffset = offset;
|
|
}
|
|
prevmoves[index] += direction;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make the move.
|
|
*/
|
|
if (direction < 0) {
|
|
start += (len-1) * offset;
|
|
offset = -offset;
|
|
}
|
|
tmp = tiles[start];
|
|
for (j = 0; j+1 < len; j++)
|
|
tiles[start + j*offset] = tiles[start + (j+1)*offset];
|
|
tiles[start + (len-1) * offset] = tmp;
|
|
}
|
|
|
|
sfree(prevmoves);
|
|
|
|
} else {
|
|
|
|
used = snewn(n, int);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
tiles[i] = -1;
|
|
used[i] = FALSE;
|
|
}
|
|
|
|
/*
|
|
* If both dimensions are odd, there is a parity
|
|
* constraint.
|
|
*/
|
|
if (params->w & params->h & 1)
|
|
stop = 2;
|
|
else
|
|
stop = 0;
|
|
|
|
/*
|
|
* Place everything except (possibly) the last two tiles.
|
|
*/
|
|
for (x = 0, i = n; i > stop; i--) {
|
|
int k = i > 1 ? random_upto(rs, i) : 0;
|
|
int j;
|
|
|
|
for (j = 0; j < n; j++)
|
|
if (!used[j] && (k-- == 0))
|
|
break;
|
|
|
|
assert(j < n && !used[j]);
|
|
used[j] = TRUE;
|
|
|
|
while (tiles[x] >= 0)
|
|
x++;
|
|
assert(x < n);
|
|
tiles[x] = j;
|
|
}
|
|
|
|
if (stop) {
|
|
/*
|
|
* Find the last two locations, and the last two
|
|
* pieces.
|
|
*/
|
|
while (tiles[x] >= 0)
|
|
x++;
|
|
assert(x < n);
|
|
x1 = x;
|
|
x++;
|
|
while (tiles[x] >= 0)
|
|
x++;
|
|
assert(x < n);
|
|
x2 = x;
|
|
|
|
for (i = 0; i < n; i++)
|
|
if (!used[i])
|
|
break;
|
|
p1 = i;
|
|
for (i = p1+1; i < n; i++)
|
|
if (!used[i])
|
|
break;
|
|
p2 = i;
|
|
|
|
/*
|
|
* Try the last two tiles one way round. If that fails,
|
|
* swap them.
|
|
*/
|
|
tiles[x1] = p1;
|
|
tiles[x2] = p2;
|
|
if (perm_parity(tiles, n) != 0) {
|
|
tiles[x1] = p2;
|
|
tiles[x2] = p1;
|
|
assert(perm_parity(tiles, n) == 0);
|
|
}
|
|
}
|
|
|
|
sfree(used);
|
|
}
|
|
|
|
/*
|
|
* Now construct the game description, by describing the tile
|
|
* array as a simple sequence of comma-separated integers.
|
|
*/
|
|
ret = NULL;
|
|
retlen = 0;
|
|
for (i = 0; i < n; i++) {
|
|
char buf[80];
|
|
int k;
|
|
|
|
k = sprintf(buf, "%d,", tiles[i]+1);
|
|
|
|
ret = sresize(ret, retlen + k + 1, char);
|
|
strcpy(ret + retlen, buf);
|
|
retlen += k;
|
|
}
|
|
ret[retlen-1] = '\0'; /* delete last comma */
|
|
|
|
sfree(tiles);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
char *p, *err;
|
|
int i, area;
|
|
int *used;
|
|
|
|
area = params->w * params->h;
|
|
p = desc;
|
|
err = NULL;
|
|
|
|
used = snewn(area, int);
|
|
for (i = 0; i < area; i++)
|
|
used[i] = FALSE;
|
|
|
|
for (i = 0; i < area; i++) {
|
|
char *q = p;
|
|
int n;
|
|
|
|
if (*p < '0' || *p > '9') {
|
|
err = "Not enough numbers in string";
|
|
goto leave;
|
|
}
|
|
while (*p >= '0' && *p <= '9')
|
|
p++;
|
|
if (i < area-1 && *p != ',') {
|
|
err = "Expected comma after number";
|
|
goto leave;
|
|
}
|
|
else if (i == area-1 && *p) {
|
|
err = "Excess junk at end of string";
|
|
goto leave;
|
|
}
|
|
n = atoi(q);
|
|
if (n < 1 || n > area) {
|
|
err = "Number out of range";
|
|
goto leave;
|
|
}
|
|
if (used[n-1]) {
|
|
err = "Number used twice";
|
|
goto leave;
|
|
}
|
|
used[n-1] = TRUE;
|
|
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
|
|
leave:
|
|
sfree(used);
|
|
return err;
|
|
}
|
|
|
|
static game_state *new_game(midend_data *me, game_params *params, char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int i;
|
|
char *p;
|
|
|
|
state->w = params->w;
|
|
state->h = params->h;
|
|
state->n = params->w * params->h;
|
|
state->tiles = snewn(state->n, int);
|
|
|
|
p = desc;
|
|
i = 0;
|
|
for (i = 0; i < state->n; i++) {
|
|
assert(*p);
|
|
state->tiles[i] = atoi(p);
|
|
while (*p && *p != ',')
|
|
p++;
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
assert(!*p);
|
|
|
|
state->completed = state->movecount = 0;
|
|
state->movetarget = params->movetarget;
|
|
state->used_solve = state->just_used_solve = FALSE;
|
|
state->last_movement_sense = 0;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->n = state->n;
|
|
ret->tiles = snewn(state->w * state->h, int);
|
|
memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int));
|
|
ret->completed = state->completed;
|
|
ret->movecount = state->movecount;
|
|
ret->movetarget = state->movetarget;
|
|
ret->used_solve = state->used_solve;
|
|
ret->just_used_solve = state->just_used_solve;
|
|
ret->last_movement_sense = state->last_movement_sense;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->tiles);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
return dupstr("S");
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
char *ret, *p, buf[80];
|
|
int x, y, col, maxlen;
|
|
|
|
/*
|
|
* First work out how many characters we need to display each
|
|
* number.
|
|
*/
|
|
col = sprintf(buf, "%d", state->n);
|
|
|
|
/*
|
|
* Now we know the exact total size of the grid we're going to
|
|
* produce: it's got h rows, each containing w lots of col, w-1
|
|
* spaces and a trailing newline.
|
|
*/
|
|
maxlen = state->h * state->w * (col+1);
|
|
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
int v = state->tiles[state->w*y+x];
|
|
sprintf(buf, "%*d", col, v);
|
|
memcpy(p, buf, col);
|
|
p += col;
|
|
if (x+1 == state->w)
|
|
*p++ = '\n';
|
|
else
|
|
*p++ = ' ';
|
|
}
|
|
}
|
|
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h, bgcolour;
|
|
int *tiles;
|
|
int tilesize;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int cx, cy, dx, dy;
|
|
char buf[80];
|
|
|
|
button &= ~MOD_MASK;
|
|
if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
|
|
return NULL;
|
|
|
|
cx = FROMCOORD(x);
|
|
cy = FROMCOORD(y);
|
|
if (cx == -1 && cy >= 0 && cy < state->h)
|
|
dx = -1, dy = 0;
|
|
else if (cx == state->w && cy >= 0 && cy < state->h)
|
|
dx = +1, dy = 0;
|
|
else if (cy == -1 && cx >= 0 && cx < state->w)
|
|
dy = -1, dx = 0;
|
|
else if (cy == state->h && cx >= 0 && cx < state->w)
|
|
dy = +1, dx = 0;
|
|
else
|
|
return NULL; /* invalid click location */
|
|
|
|
/* reverse direction if right hand button is pressed */
|
|
if (button == RIGHT_BUTTON) {
|
|
dx = -dx;
|
|
dy = -dy;
|
|
}
|
|
|
|
if (dx)
|
|
sprintf(buf, "R%d,%d", cy, dx);
|
|
else
|
|
sprintf(buf, "C%d,%d", cx, dy);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
int cx, cy, dx, dy;
|
|
int tx, ty, n;
|
|
game_state *ret;
|
|
|
|
if (!strcmp(move, "S")) {
|
|
int i;
|
|
|
|
ret = dup_game(from);
|
|
|
|
/*
|
|
* Simply replace the grid with a solved one. For this game,
|
|
* this isn't a useful operation for actually telling the user
|
|
* what they should have done, but it is useful for
|
|
* conveniently being able to get hold of a clean state from
|
|
* which to practise manoeuvres.
|
|
*/
|
|
for (i = 0; i < ret->n; i++)
|
|
ret->tiles[i] = i+1;
|
|
ret->used_solve = ret->just_used_solve = TRUE;
|
|
ret->completed = ret->movecount = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (move[0] == 'R' && sscanf(move+1, "%d,%d", &cy, &dx) == 2 &&
|
|
cy >= 0 && cy < from->h) {
|
|
cx = dy = 0;
|
|
n = from->w;
|
|
} else if (move[0] == 'C' && sscanf(move+1, "%d,%d", &cx, &dy) == 2 &&
|
|
cx >= 0 && cx < from->w) {
|
|
cy = dx = 0;
|
|
n = from->h;
|
|
} else
|
|
return NULL;
|
|
|
|
ret = dup_game(from);
|
|
ret->just_used_solve = FALSE; /* zero this in a hurry */
|
|
|
|
do {
|
|
tx = (cx - dx + from->w) % from->w;
|
|
ty = (cy - dy + from->h) % from->h;
|
|
ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)];
|
|
cx = tx;
|
|
cy = ty;
|
|
} while (--n > 0);
|
|
|
|
ret->movecount++;
|
|
|
|
ret->last_movement_sense = dx+dy;
|
|
|
|
/*
|
|
* See if the game has been completed.
|
|
*/
|
|
if (!ret->completed) {
|
|
ret->completed = ret->movecount;
|
|
for (n = 0; n < ret->n; n++)
|
|
if (ret->tiles[n] != n+1)
|
|
ret->completed = FALSE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(game_drawstate *ds, game_params *params,
|
|
int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
float max;
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
/*
|
|
* Drop the background colour so that the highlight is
|
|
* noticeably brighter than it while still being under 1.
|
|
*/
|
|
max = ret[COL_BACKGROUND*3];
|
|
for (i = 1; i < 3; i++)
|
|
if (ret[COL_BACKGROUND*3+i] > max)
|
|
max = ret[COL_BACKGROUND*3+i];
|
|
if (max * 1.2F > 1.0F) {
|
|
for (i = 0; i < 3; i++)
|
|
ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
|
|
ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
|
|
ret[COL_TEXT * 3 + i] = 0.0;
|
|
}
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->bgcolour = COL_BACKGROUND;
|
|
ds->tiles = snewn(ds->w*ds->h, int);
|
|
ds->tilesize = 0; /* haven't decided yet */
|
|
for (i = 0; i < ds->w*ds->h; i++)
|
|
ds->tiles[i] = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(game_drawstate *ds)
|
|
{
|
|
sfree(ds->tiles);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_tile(frontend *fe, game_drawstate *ds,
|
|
game_state *state, int x, int y,
|
|
int tile, int flash_colour)
|
|
{
|
|
if (tile == 0) {
|
|
draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
|
|
flash_colour);
|
|
} else {
|
|
int coords[6];
|
|
char str[40];
|
|
|
|
coords[0] = x + TILE_SIZE - 1;
|
|
coords[1] = y + TILE_SIZE - 1;
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
coords[4] = x;
|
|
coords[5] = y + TILE_SIZE - 1;
|
|
draw_polygon(fe, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
coords[0] = x;
|
|
coords[1] = y;
|
|
draw_polygon(fe, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
|
|
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
|
|
flash_colour);
|
|
|
|
sprintf(str, "%d", tile);
|
|
draw_text(fe, x + TILE_SIZE/2, y + TILE_SIZE/2,
|
|
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_TEXT, str);
|
|
}
|
|
draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void draw_arrow(frontend *fe, game_drawstate *ds,
|
|
int x, int y, int xdx, int xdy)
|
|
{
|
|
int coords[14];
|
|
int ydy = -xdx, ydx = xdy;
|
|
|
|
#define POINT(n, xx, yy) ( \
|
|
coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
|
|
coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
|
|
|
|
POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
|
|
POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
|
|
POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
|
|
POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
|
|
POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
|
|
POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
|
|
POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
|
|
|
|
draw_polygon(fe, coords, 7, COL_LOWLIGHT, COL_TEXT);
|
|
}
|
|
|
|
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, bgcolour;
|
|
|
|
if (flashtime > 0) {
|
|
int frame = (int)(flashtime / FLASH_FRAME);
|
|
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
|
|
} else
|
|
bgcolour = COL_BACKGROUND;
|
|
|
|
if (!ds->started) {
|
|
int coords[10];
|
|
|
|
draw_rect(fe, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
|
|
draw_update(fe, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER);
|
|
|
|
/*
|
|
* Recessed area containing the whole puzzle.
|
|
*/
|
|
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[4] = coords[2] - TILE_SIZE;
|
|
coords[5] = coords[3] + TILE_SIZE;
|
|
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[6] = coords[8] + TILE_SIZE;
|
|
coords[7] = coords[9] - TILE_SIZE;
|
|
draw_polygon(fe, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
draw_polygon(fe, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
/*
|
|
* Arrows for making moves.
|
|
*/
|
|
for (i = 0; i < state->w; i++) {
|
|
draw_arrow(fe, ds, COORD(i), COORD(0), +1, 0);
|
|
draw_arrow(fe, ds, COORD(i+1), COORD(state->h), -1, 0);
|
|
}
|
|
for (i = 0; i < state->h; i++) {
|
|
draw_arrow(fe, ds, COORD(state->w), COORD(i), 0, +1);
|
|
draw_arrow(fe, ds, COORD(0), COORD(i+1), 0, -1);
|
|
}
|
|
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Now draw each tile.
|
|
*/
|
|
|
|
clip(fe, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h);
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
int t, t0;
|
|
/*
|
|
* Figure out what should be displayed at this
|
|
* location. It's either a simple tile, or it's a
|
|
* transition between two tiles (in which case we say
|
|
* -1 because it must always be drawn).
|
|
*/
|
|
|
|
if (oldstate && oldstate->tiles[i] != state->tiles[i])
|
|
t = -1;
|
|
else
|
|
t = state->tiles[i];
|
|
|
|
t0 = t;
|
|
|
|
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
|
|
ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) {
|
|
int x, y, x2, y2;
|
|
|
|
/*
|
|
* Figure out what to _actually_ draw, and where to
|
|
* draw it.
|
|
*/
|
|
if (t == -1) {
|
|
int x0, y0, x1, y1, dx, dy;
|
|
int j;
|
|
float c;
|
|
int sense;
|
|
|
|
if (dir < 0) {
|
|
assert(oldstate);
|
|
sense = -oldstate->last_movement_sense;
|
|
} else {
|
|
sense = state->last_movement_sense;
|
|
}
|
|
|
|
t = state->tiles[i];
|
|
|
|
/*
|
|
* FIXME: must be prepared to draw a double
|
|
* tile in some situations.
|
|
*/
|
|
|
|
/*
|
|
* Find the coordinates of this tile in the old and
|
|
* new states.
|
|
*/
|
|
x1 = COORD(X(state, i));
|
|
y1 = COORD(Y(state, i));
|
|
for (j = 0; j < oldstate->n; j++)
|
|
if (oldstate->tiles[j] == state->tiles[i])
|
|
break;
|
|
assert(j < oldstate->n);
|
|
x0 = COORD(X(state, j));
|
|
y0 = COORD(Y(state, j));
|
|
|
|
dx = (x1 - x0);
|
|
if (dx != 0 &&
|
|
dx != TILE_SIZE * sense) {
|
|
dx = (dx < 0 ? dx + TILE_SIZE * state->w :
|
|
dx - TILE_SIZE * state->w);
|
|
assert(abs(dx) == TILE_SIZE);
|
|
}
|
|
dy = (y1 - y0);
|
|
if (dy != 0 &&
|
|
dy != TILE_SIZE * sense) {
|
|
dy = (dy < 0 ? dy + TILE_SIZE * state->h :
|
|
dy - TILE_SIZE * state->h);
|
|
assert(abs(dy) == TILE_SIZE);
|
|
}
|
|
|
|
c = (animtime / ANIM_TIME);
|
|
if (c < 0.0F) c = 0.0F;
|
|
if (c > 1.0F) c = 1.0F;
|
|
|
|
x = x0 + (int)(c * dx);
|
|
y = y0 + (int)(c * dy);
|
|
x2 = x1 - dx + (int)(c * dx);
|
|
y2 = y1 - dy + (int)(c * dy);
|
|
} else {
|
|
x = COORD(X(state, i));
|
|
y = COORD(Y(state, i));
|
|
x2 = y2 = -1;
|
|
}
|
|
|
|
draw_tile(fe, ds, state, x, y, t, bgcolour);
|
|
if (x2 != -1 || y2 != -1)
|
|
draw_tile(fe, ds, state, x2, y2, t, bgcolour);
|
|
}
|
|
ds->tiles[i] = t0;
|
|
}
|
|
|
|
unclip(fe);
|
|
|
|
ds->bgcolour = bgcolour;
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbuf[256];
|
|
|
|
/*
|
|
* Don't show the new status until we're also showing the
|
|
* new _state_ - after the game animation is complete.
|
|
*/
|
|
if (oldstate)
|
|
state = oldstate;
|
|
|
|
if (state->used_solve)
|
|
sprintf(statusbuf, "Moves since auto-solve: %d",
|
|
state->movecount - state->completed);
|
|
else {
|
|
sprintf(statusbuf, "%sMoves: %d",
|
|
(state->completed ? "COMPLETED! " : ""),
|
|
(state->completed ? state->completed : state->movecount));
|
|
if (state->movetarget)
|
|
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
|
|
state->movetarget);
|
|
}
|
|
|
|
status_bar(fe, statusbuf);
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if ((dir > 0 && newstate->just_used_solve) ||
|
|
(dir < 0 && oldstate->just_used_solve))
|
|
return 0.0F;
|
|
else
|
|
return ANIM_TIME;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve)
|
|
return 2 * FLASH_FRAME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame sixteen
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Sixteen", "games.sixteen",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_wants_statusbar,
|
|
FALSE, game_timing_state,
|
|
0, /* mouse_priorities */
|
|
};
|