mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files
2195 lines
63 KiB
C
2195 lines
63 KiB
C
/*
|
|
* tree234.c: reasonably generic counted 2-3-4 tree routines.
|
|
*
|
|
* This file is copyright 1999-2001 Simon Tatham.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation
|
|
* files (the "Software"), to deal in the Software without
|
|
* restriction, including without limitation the rights to use,
|
|
* copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following
|
|
* conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
|
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#include "tree234.h"
|
|
|
|
#define smalloc malloc
|
|
#define sfree free
|
|
|
|
#define mknew(typ) ( (typ *) smalloc (sizeof (typ)) )
|
|
|
|
#ifdef TEST
|
|
#define LOG(x) (printf x)
|
|
#else
|
|
#define LOG(x)
|
|
#endif
|
|
|
|
typedef struct node234_Tag node234;
|
|
|
|
struct tree234_Tag {
|
|
node234 *root;
|
|
cmpfn234 cmp;
|
|
};
|
|
|
|
struct node234_Tag {
|
|
node234 *parent;
|
|
node234 *kids[4];
|
|
int counts[4];
|
|
void *elems[3];
|
|
};
|
|
|
|
/*
|
|
* Create a 2-3-4 tree.
|
|
*/
|
|
tree234 *newtree234(cmpfn234 cmp) {
|
|
tree234 *ret = mknew(tree234);
|
|
LOG(("created tree %p\n", ret));
|
|
ret->root = NULL;
|
|
ret->cmp = cmp;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free a 2-3-4 tree (not including freeing the elements).
|
|
*/
|
|
static void freenode234(node234 *n) {
|
|
if (!n)
|
|
return;
|
|
freenode234(n->kids[0]);
|
|
freenode234(n->kids[1]);
|
|
freenode234(n->kids[2]);
|
|
freenode234(n->kids[3]);
|
|
sfree(n);
|
|
}
|
|
void freetree234(tree234 *t) {
|
|
freenode234(t->root);
|
|
sfree(t);
|
|
}
|
|
|
|
/*
|
|
* Internal function to count a node.
|
|
*/
|
|
static int countnode234(node234 *n) {
|
|
int count = 0;
|
|
int i;
|
|
if (!n)
|
|
return 0;
|
|
for (i = 0; i < 4; i++)
|
|
count += n->counts[i];
|
|
for (i = 0; i < 3; i++)
|
|
if (n->elems[i])
|
|
count++;
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Count the elements in a tree.
|
|
*/
|
|
int count234(tree234 *t) {
|
|
if (t->root)
|
|
return countnode234(t->root);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Propagate a node overflow up a tree until it stops. Returns 0 or
|
|
* 1, depending on whether the root had to be split or not.
|
|
*/
|
|
static int add234_insert(node234 *left, void *e, node234 *right,
|
|
node234 **root, node234 *n, int ki) {
|
|
int lcount, rcount;
|
|
/*
|
|
* We need to insert the new left/element/right set in n at
|
|
* child position ki.
|
|
*/
|
|
lcount = countnode234(left);
|
|
rcount = countnode234(right);
|
|
while (n) {
|
|
LOG((" at %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" need to insert %p/%d \"%s\" %p/%d at position %d\n",
|
|
left, lcount, e, right, rcount, ki));
|
|
if (n->elems[1] == NULL) {
|
|
/*
|
|
* Insert in a 2-node; simple.
|
|
*/
|
|
if (ki == 0) {
|
|
LOG((" inserting on left of 2-node\n"));
|
|
n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
|
|
n->elems[1] = n->elems[0];
|
|
n->kids[1] = right; n->counts[1] = rcount;
|
|
n->elems[0] = e;
|
|
n->kids[0] = left; n->counts[0] = lcount;
|
|
} else { /* ki == 1 */
|
|
LOG((" inserting on right of 2-node\n"));
|
|
n->kids[2] = right; n->counts[2] = rcount;
|
|
n->elems[1] = e;
|
|
n->kids[1] = left; n->counts[1] = lcount;
|
|
}
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
if (n->kids[2]) n->kids[2]->parent = n;
|
|
LOG((" done\n"));
|
|
break;
|
|
} else if (n->elems[2] == NULL) {
|
|
/*
|
|
* Insert in a 3-node; simple.
|
|
*/
|
|
if (ki == 0) {
|
|
LOG((" inserting on left of 3-node\n"));
|
|
n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
|
|
n->elems[2] = n->elems[1];
|
|
n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
|
|
n->elems[1] = n->elems[0];
|
|
n->kids[1] = right; n->counts[1] = rcount;
|
|
n->elems[0] = e;
|
|
n->kids[0] = left; n->counts[0] = lcount;
|
|
} else if (ki == 1) {
|
|
LOG((" inserting in middle of 3-node\n"));
|
|
n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
|
|
n->elems[2] = n->elems[1];
|
|
n->kids[2] = right; n->counts[2] = rcount;
|
|
n->elems[1] = e;
|
|
n->kids[1] = left; n->counts[1] = lcount;
|
|
} else { /* ki == 2 */
|
|
LOG((" inserting on right of 3-node\n"));
|
|
n->kids[3] = right; n->counts[3] = rcount;
|
|
n->elems[2] = e;
|
|
n->kids[2] = left; n->counts[2] = lcount;
|
|
}
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
if (n->kids[2]) n->kids[2]->parent = n;
|
|
if (n->kids[3]) n->kids[3]->parent = n;
|
|
LOG((" done\n"));
|
|
break;
|
|
} else {
|
|
node234 *m = mknew(node234);
|
|
m->parent = n->parent;
|
|
LOG((" splitting a 4-node; created new node %p\n", m));
|
|
/*
|
|
* Insert in a 4-node; split into a 2-node and a
|
|
* 3-node, and move focus up a level.
|
|
*
|
|
* I don't think it matters which way round we put the
|
|
* 2 and the 3. For simplicity, we'll put the 3 first
|
|
* always.
|
|
*/
|
|
if (ki == 0) {
|
|
m->kids[0] = left; m->counts[0] = lcount;
|
|
m->elems[0] = e;
|
|
m->kids[1] = right; m->counts[1] = rcount;
|
|
m->elems[1] = n->elems[0];
|
|
m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1];
|
|
e = n->elems[1];
|
|
n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
|
|
} else if (ki == 1) {
|
|
m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = left; m->counts[1] = lcount;
|
|
m->elems[1] = e;
|
|
m->kids[2] = right; m->counts[2] = rcount;
|
|
e = n->elems[1];
|
|
n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
|
|
} else if (ki == 2) {
|
|
m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
|
|
m->elems[1] = n->elems[1];
|
|
m->kids[2] = left; m->counts[2] = lcount;
|
|
/* e = e; */
|
|
n->kids[0] = right; n->counts[0] = rcount;
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
|
|
} else { /* ki == 3 */
|
|
m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
|
|
m->elems[1] = n->elems[1];
|
|
m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2];
|
|
n->kids[0] = left; n->counts[0] = lcount;
|
|
n->elems[0] = e;
|
|
n->kids[1] = right; n->counts[1] = rcount;
|
|
e = n->elems[2];
|
|
}
|
|
m->kids[3] = n->kids[3] = n->kids[2] = NULL;
|
|
m->counts[3] = n->counts[3] = n->counts[2] = 0;
|
|
m->elems[2] = n->elems[2] = n->elems[1] = NULL;
|
|
if (m->kids[0]) m->kids[0]->parent = m;
|
|
if (m->kids[1]) m->kids[1]->parent = m;
|
|
if (m->kids[2]) m->kids[2]->parent = m;
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
LOG((" left (%p): %p/%d \"%s\" %p/%d \"%s\" %p/%d\n", m,
|
|
m->kids[0], m->counts[0], m->elems[0],
|
|
m->kids[1], m->counts[1], m->elems[1],
|
|
m->kids[2], m->counts[2]));
|
|
LOG((" right (%p): %p/%d \"%s\" %p/%d\n", n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1]));
|
|
left = m; lcount = countnode234(left);
|
|
right = n; rcount = countnode234(right);
|
|
}
|
|
if (n->parent)
|
|
ki = (n->parent->kids[0] == n ? 0 :
|
|
n->parent->kids[1] == n ? 1 :
|
|
n->parent->kids[2] == n ? 2 : 3);
|
|
n = n->parent;
|
|
}
|
|
|
|
/*
|
|
* If we've come out of here by `break', n will still be
|
|
* non-NULL and all we need to do is go back up the tree
|
|
* updating counts. If we've come here because n is NULL, we
|
|
* need to create a new root for the tree because the old one
|
|
* has just split into two. */
|
|
if (n) {
|
|
while (n->parent) {
|
|
int count = countnode234(n);
|
|
int childnum;
|
|
childnum = (n->parent->kids[0] == n ? 0 :
|
|
n->parent->kids[1] == n ? 1 :
|
|
n->parent->kids[2] == n ? 2 : 3);
|
|
n->parent->counts[childnum] = count;
|
|
n = n->parent;
|
|
}
|
|
return 0; /* root unchanged */
|
|
} else {
|
|
LOG((" root is overloaded, split into two\n"));
|
|
(*root) = mknew(node234);
|
|
(*root)->kids[0] = left; (*root)->counts[0] = lcount;
|
|
(*root)->elems[0] = e;
|
|
(*root)->kids[1] = right; (*root)->counts[1] = rcount;
|
|
(*root)->elems[1] = NULL;
|
|
(*root)->kids[2] = NULL; (*root)->counts[2] = 0;
|
|
(*root)->elems[2] = NULL;
|
|
(*root)->kids[3] = NULL; (*root)->counts[3] = 0;
|
|
(*root)->parent = NULL;
|
|
if ((*root)->kids[0]) (*root)->kids[0]->parent = (*root);
|
|
if ((*root)->kids[1]) (*root)->kids[1]->parent = (*root);
|
|
LOG((" new root is %p/%d \"%s\" %p/%d\n",
|
|
(*root)->kids[0], (*root)->counts[0],
|
|
(*root)->elems[0],
|
|
(*root)->kids[1], (*root)->counts[1]));
|
|
return 1; /* root moved */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add an element e to a 2-3-4 tree t. Returns e on success, or if
|
|
* an existing element compares equal, returns that.
|
|
*/
|
|
static void *add234_internal(tree234 *t, void *e, int index) {
|
|
node234 *n;
|
|
int ki;
|
|
void *orig_e = e;
|
|
int c;
|
|
|
|
LOG(("adding element \"%s\" to tree %p\n", e, t));
|
|
if (t->root == NULL) {
|
|
t->root = mknew(node234);
|
|
t->root->elems[1] = t->root->elems[2] = NULL;
|
|
t->root->kids[0] = t->root->kids[1] = NULL;
|
|
t->root->kids[2] = t->root->kids[3] = NULL;
|
|
t->root->counts[0] = t->root->counts[1] = 0;
|
|
t->root->counts[2] = t->root->counts[3] = 0;
|
|
t->root->parent = NULL;
|
|
t->root->elems[0] = e;
|
|
LOG((" created root %p\n", t->root));
|
|
return orig_e;
|
|
}
|
|
|
|
n = t->root;
|
|
while (n) {
|
|
LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
if (index >= 0) {
|
|
if (!n->kids[0]) {
|
|
/*
|
|
* Leaf node. We want to insert at kid position
|
|
* equal to the index:
|
|
*
|
|
* 0 A 1 B 2 C 3
|
|
*/
|
|
ki = index;
|
|
} else {
|
|
/*
|
|
* Internal node. We always descend through it (add
|
|
* always starts at the bottom, never in the
|
|
* middle).
|
|
*/
|
|
if (index <= n->counts[0]) {
|
|
ki = 0;
|
|
} else if (index -= n->counts[0] + 1, index <= n->counts[1]) {
|
|
ki = 1;
|
|
} else if (index -= n->counts[1] + 1, index <= n->counts[2]) {
|
|
ki = 2;
|
|
} else if (index -= n->counts[2] + 1, index <= n->counts[3]) {
|
|
ki = 3;
|
|
} else
|
|
return NULL; /* error: index out of range */
|
|
}
|
|
} else {
|
|
if ((c = t->cmp(e, n->elems[0])) < 0)
|
|
ki = 0;
|
|
else if (c == 0)
|
|
return n->elems[0]; /* already exists */
|
|
else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
|
|
ki = 1;
|
|
else if (c == 0)
|
|
return n->elems[1]; /* already exists */
|
|
else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
|
|
ki = 2;
|
|
else if (c == 0)
|
|
return n->elems[2]; /* already exists */
|
|
else
|
|
ki = 3;
|
|
}
|
|
LOG((" moving to child %d (%p)\n", ki, n->kids[ki]));
|
|
if (!n->kids[ki])
|
|
break;
|
|
n = n->kids[ki];
|
|
}
|
|
|
|
add234_insert(NULL, e, NULL, &t->root, n, ki);
|
|
|
|
return orig_e;
|
|
}
|
|
|
|
void *add234(tree234 *t, void *e) {
|
|
if (!t->cmp) /* tree is unsorted */
|
|
return NULL;
|
|
|
|
return add234_internal(t, e, -1);
|
|
}
|
|
void *addpos234(tree234 *t, void *e, int index) {
|
|
if (index < 0 || /* index out of range */
|
|
t->cmp) /* tree is sorted */
|
|
return NULL; /* return failure */
|
|
|
|
return add234_internal(t, e, index); /* this checks the upper bound */
|
|
}
|
|
|
|
/*
|
|
* Look up the element at a given numeric index in a 2-3-4 tree.
|
|
* Returns NULL if the index is out of range.
|
|
*/
|
|
void *index234(tree234 *t, int index) {
|
|
node234 *n;
|
|
|
|
if (!t->root)
|
|
return NULL; /* tree is empty */
|
|
|
|
if (index < 0 || index >= countnode234(t->root))
|
|
return NULL; /* out of range */
|
|
|
|
n = t->root;
|
|
|
|
while (n) {
|
|
if (index < n->counts[0])
|
|
n = n->kids[0];
|
|
else if (index -= n->counts[0] + 1, index < 0)
|
|
return n->elems[0];
|
|
else if (index < n->counts[1])
|
|
n = n->kids[1];
|
|
else if (index -= n->counts[1] + 1, index < 0)
|
|
return n->elems[1];
|
|
else if (index < n->counts[2])
|
|
n = n->kids[2];
|
|
else if (index -= n->counts[2] + 1, index < 0)
|
|
return n->elems[2];
|
|
else
|
|
n = n->kids[3];
|
|
}
|
|
|
|
/* We shouldn't ever get here. I wonder how we did. */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
|
|
* found. e is always passed as the first argument to cmp, so cmp
|
|
* can be an asymmetric function if desired. cmp can also be passed
|
|
* as NULL, in which case the compare function from the tree proper
|
|
* will be used.
|
|
*/
|
|
void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,
|
|
int relation, int *index) {
|
|
node234 *n;
|
|
void *ret;
|
|
int c;
|
|
int idx, ecount, kcount, cmpret;
|
|
|
|
if (t->root == NULL)
|
|
return NULL;
|
|
|
|
if (cmp == NULL)
|
|
cmp = t->cmp;
|
|
|
|
n = t->root;
|
|
/*
|
|
* Attempt to find the element itself.
|
|
*/
|
|
idx = 0;
|
|
ecount = -1;
|
|
/*
|
|
* Prepare a fake `cmp' result if e is NULL.
|
|
*/
|
|
cmpret = 0;
|
|
if (e == NULL) {
|
|
assert(relation == REL234_LT || relation == REL234_GT);
|
|
if (relation == REL234_LT)
|
|
cmpret = +1; /* e is a max: always greater */
|
|
else if (relation == REL234_GT)
|
|
cmpret = -1; /* e is a min: always smaller */
|
|
}
|
|
while (1) {
|
|
for (kcount = 0; kcount < 4; kcount++) {
|
|
if (kcount >= 3 || n->elems[kcount] == NULL ||
|
|
(c = cmpret ? cmpret : cmp(e, n->elems[kcount])) < 0) {
|
|
break;
|
|
}
|
|
if (n->kids[kcount]) idx += n->counts[kcount];
|
|
if (c == 0) {
|
|
ecount = kcount;
|
|
break;
|
|
}
|
|
idx++;
|
|
}
|
|
if (ecount >= 0)
|
|
break;
|
|
if (n->kids[kcount])
|
|
n = n->kids[kcount];
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (ecount >= 0) {
|
|
/*
|
|
* We have found the element we're looking for. It's
|
|
* n->elems[ecount], at tree index idx. If our search
|
|
* relation is EQ, LE or GE we can now go home.
|
|
*/
|
|
if (relation != REL234_LT && relation != REL234_GT) {
|
|
if (index) *index = idx;
|
|
return n->elems[ecount];
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we'll do an indexed lookup for the previous
|
|
* or next element. (It would be perfectly possible to
|
|
* implement these search types in a non-counted tree by
|
|
* going back up from where we are, but far more fiddly.)
|
|
*/
|
|
if (relation == REL234_LT)
|
|
idx--;
|
|
else
|
|
idx++;
|
|
} else {
|
|
/*
|
|
* We've found our way to the bottom of the tree and we
|
|
* know where we would insert this node if we wanted to:
|
|
* we'd put it in in place of the (empty) subtree
|
|
* n->kids[kcount], and it would have index idx
|
|
*
|
|
* But the actual element isn't there. So if our search
|
|
* relation is EQ, we're doomed.
|
|
*/
|
|
if (relation == REL234_EQ)
|
|
return NULL;
|
|
|
|
/*
|
|
* Otherwise, we must do an index lookup for index idx-1
|
|
* (if we're going left - LE or LT) or index idx (if we're
|
|
* going right - GE or GT).
|
|
*/
|
|
if (relation == REL234_LT || relation == REL234_LE) {
|
|
idx--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We know the index of the element we want; just call index234
|
|
* to do the rest. This will return NULL if the index is out of
|
|
* bounds, which is exactly what we want.
|
|
*/
|
|
ret = index234(t, idx);
|
|
if (ret && index) *index = idx;
|
|
return ret;
|
|
}
|
|
void *find234(tree234 *t, void *e, cmpfn234 cmp) {
|
|
return findrelpos234(t, e, cmp, REL234_EQ, NULL);
|
|
}
|
|
void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation) {
|
|
return findrelpos234(t, e, cmp, relation, NULL);
|
|
}
|
|
void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index) {
|
|
return findrelpos234(t, e, cmp, REL234_EQ, index);
|
|
}
|
|
|
|
/*
|
|
* Tree transformation used in delete and split: move a subtree
|
|
* right, from child ki of a node to the next child. Update k and
|
|
* index so that they still point to the same place in the
|
|
* transformed tree. Assumes the destination child is not full, and
|
|
* that the source child does have a subtree to spare. Can cope if
|
|
* the destination child is undersized.
|
|
*
|
|
* . C . . B .
|
|
* / \ -> / \
|
|
* [more] a A b B c d D e [more] a A b c C d D e
|
|
*
|
|
* . C . . B .
|
|
* / \ -> / \
|
|
* [more] a A b B c d [more] a A b c C d
|
|
*/
|
|
static void trans234_subtree_right(node234 *n, int ki, int *k, int *index) {
|
|
node234 *src, *dest;
|
|
int i, srclen, adjust;
|
|
|
|
src = n->kids[ki];
|
|
dest = n->kids[ki+1];
|
|
|
|
LOG((" trans234_subtree_right(%p, %d):\n", n, ki));
|
|
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
src,
|
|
src->kids[0], src->counts[0], src->elems[0],
|
|
src->kids[1], src->counts[1], src->elems[1],
|
|
src->kids[2], src->counts[2], src->elems[2],
|
|
src->kids[3], src->counts[3]));
|
|
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
dest,
|
|
dest->kids[0], dest->counts[0], dest->elems[0],
|
|
dest->kids[1], dest->counts[1], dest->elems[1],
|
|
dest->kids[2], dest->counts[2], dest->elems[2],
|
|
dest->kids[3], dest->counts[3]));
|
|
/*
|
|
* Move over the rest of the destination node to make space.
|
|
*/
|
|
dest->kids[3] = dest->kids[2]; dest->counts[3] = dest->counts[2];
|
|
dest->elems[2] = dest->elems[1];
|
|
dest->kids[2] = dest->kids[1]; dest->counts[2] = dest->counts[1];
|
|
dest->elems[1] = dest->elems[0];
|
|
dest->kids[1] = dest->kids[0]; dest->counts[1] = dest->counts[0];
|
|
|
|
/* which element to move over */
|
|
i = (src->elems[2] ? 2 : src->elems[1] ? 1 : 0);
|
|
|
|
dest->elems[0] = n->elems[ki];
|
|
n->elems[ki] = src->elems[i];
|
|
src->elems[i] = NULL;
|
|
|
|
dest->kids[0] = src->kids[i+1]; dest->counts[0] = src->counts[i+1];
|
|
src->kids[i+1] = NULL; src->counts[i+1] = 0;
|
|
|
|
if (dest->kids[0]) dest->kids[0]->parent = dest;
|
|
|
|
adjust = dest->counts[0] + 1;
|
|
|
|
n->counts[ki] -= adjust;
|
|
n->counts[ki+1] += adjust;
|
|
|
|
srclen = n->counts[ki];
|
|
|
|
if (k) {
|
|
LOG((" before: k,index = %d,%d\n", (*k), (*index)));
|
|
if ((*k) == ki && (*index) > srclen) {
|
|
(*index) -= srclen + 1;
|
|
(*k)++;
|
|
} else if ((*k) == ki+1) {
|
|
(*index) += adjust;
|
|
}
|
|
LOG((" after: k,index = %d,%d\n", (*k), (*index)));
|
|
}
|
|
|
|
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
src,
|
|
src->kids[0], src->counts[0], src->elems[0],
|
|
src->kids[1], src->counts[1], src->elems[1],
|
|
src->kids[2], src->counts[2], src->elems[2],
|
|
src->kids[3], src->counts[3]));
|
|
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
dest,
|
|
dest->kids[0], dest->counts[0], dest->elems[0],
|
|
dest->kids[1], dest->counts[1], dest->elems[1],
|
|
dest->kids[2], dest->counts[2], dest->elems[2],
|
|
dest->kids[3], dest->counts[3]));
|
|
}
|
|
|
|
/*
|
|
* Tree transformation used in delete and split: move a subtree
|
|
* left, from child ki of a node to the previous child. Update k
|
|
* and index so that they still point to the same place in the
|
|
* transformed tree. Assumes the destination child is not full, and
|
|
* that the source child does have a subtree to spare. Can cope if
|
|
* the destination child is undersized.
|
|
*
|
|
* . B . . C .
|
|
* / \ -> / \
|
|
* a A b c C d D e [more] a A b B c d D e [more]
|
|
*
|
|
* . A . . B .
|
|
* / \ -> / \
|
|
* a b B c C d [more] a A b c C d [more]
|
|
*/
|
|
static void trans234_subtree_left(node234 *n, int ki, int *k, int *index) {
|
|
node234 *src, *dest;
|
|
int i, adjust;
|
|
|
|
src = n->kids[ki];
|
|
dest = n->kids[ki-1];
|
|
|
|
LOG((" trans234_subtree_left(%p, %d):\n", n, ki));
|
|
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
dest,
|
|
dest->kids[0], dest->counts[0], dest->elems[0],
|
|
dest->kids[1], dest->counts[1], dest->elems[1],
|
|
dest->kids[2], dest->counts[2], dest->elems[2],
|
|
dest->kids[3], dest->counts[3]));
|
|
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
src,
|
|
src->kids[0], src->counts[0], src->elems[0],
|
|
src->kids[1], src->counts[1], src->elems[1],
|
|
src->kids[2], src->counts[2], src->elems[2],
|
|
src->kids[3], src->counts[3]));
|
|
|
|
/* where in dest to put it */
|
|
i = (dest->elems[1] ? 2 : dest->elems[0] ? 1 : 0);
|
|
dest->elems[i] = n->elems[ki-1];
|
|
n->elems[ki-1] = src->elems[0];
|
|
|
|
dest->kids[i+1] = src->kids[0]; dest->counts[i+1] = src->counts[0];
|
|
|
|
if (dest->kids[i+1]) dest->kids[i+1]->parent = dest;
|
|
|
|
/*
|
|
* Move over the rest of the source node.
|
|
*/
|
|
src->kids[0] = src->kids[1]; src->counts[0] = src->counts[1];
|
|
src->elems[0] = src->elems[1];
|
|
src->kids[1] = src->kids[2]; src->counts[1] = src->counts[2];
|
|
src->elems[1] = src->elems[2];
|
|
src->kids[2] = src->kids[3]; src->counts[2] = src->counts[3];
|
|
src->elems[2] = NULL;
|
|
src->kids[3] = NULL; src->counts[3] = 0;
|
|
|
|
adjust = dest->counts[i+1] + 1;
|
|
|
|
n->counts[ki] -= adjust;
|
|
n->counts[ki-1] += adjust;
|
|
|
|
if (k) {
|
|
LOG((" before: k,index = %d,%d\n", (*k), (*index)));
|
|
if ((*k) == ki) {
|
|
(*index) -= adjust;
|
|
if ((*index) < 0) {
|
|
(*index) += n->counts[ki-1] + 1;
|
|
(*k)--;
|
|
}
|
|
}
|
|
LOG((" after: k,index = %d,%d\n", (*k), (*index)));
|
|
}
|
|
|
|
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
dest,
|
|
dest->kids[0], dest->counts[0], dest->elems[0],
|
|
dest->kids[1], dest->counts[1], dest->elems[1],
|
|
dest->kids[2], dest->counts[2], dest->elems[2],
|
|
dest->kids[3], dest->counts[3]));
|
|
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
src,
|
|
src->kids[0], src->counts[0], src->elems[0],
|
|
src->kids[1], src->counts[1], src->elems[1],
|
|
src->kids[2], src->counts[2], src->elems[2],
|
|
src->kids[3], src->counts[3]));
|
|
}
|
|
|
|
/*
|
|
* Tree transformation used in delete and split: merge child nodes
|
|
* ki and ki+1 of a node. Update k and index so that they still
|
|
* point to the same place in the transformed tree. Assumes both
|
|
* children _are_ sufficiently small.
|
|
*
|
|
* . B . .
|
|
* / \ -> |
|
|
* a A b c C d a A b B c C d
|
|
*
|
|
* This routine can also cope with either child being undersized:
|
|
*
|
|
* . A . .
|
|
* / \ -> |
|
|
* a b B c a A b B c
|
|
*
|
|
* . A . .
|
|
* / \ -> |
|
|
* a b B c C d a A b B c C d
|
|
*/
|
|
static void trans234_subtree_merge(node234 *n, int ki, int *k, int *index) {
|
|
node234 *left, *right;
|
|
int i, leftlen, rightlen, lsize, rsize;
|
|
|
|
left = n->kids[ki]; leftlen = n->counts[ki];
|
|
right = n->kids[ki+1]; rightlen = n->counts[ki+1];
|
|
|
|
LOG((" trans234_subtree_merge(%p, %d):\n", n, ki));
|
|
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" left %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
left,
|
|
left->kids[0], left->counts[0], left->elems[0],
|
|
left->kids[1], left->counts[1], left->elems[1],
|
|
left->kids[2], left->counts[2], left->elems[2],
|
|
left->kids[3], left->counts[3]));
|
|
LOG((" right %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
right,
|
|
right->kids[0], right->counts[0], right->elems[0],
|
|
right->kids[1], right->counts[1], right->elems[1],
|
|
right->kids[2], right->counts[2], right->elems[2],
|
|
right->kids[3], right->counts[3]));
|
|
|
|
assert(!left->elems[2] && !right->elems[2]); /* neither is large! */
|
|
lsize = (left->elems[1] ? 2 : left->elems[0] ? 1 : 0);
|
|
rsize = (right->elems[1] ? 2 : right->elems[0] ? 1 : 0);
|
|
|
|
left->elems[lsize] = n->elems[ki];
|
|
|
|
for (i = 0; i < rsize+1; i++) {
|
|
left->kids[lsize+1+i] = right->kids[i];
|
|
left->counts[lsize+1+i] = right->counts[i];
|
|
if (left->kids[lsize+1+i])
|
|
left->kids[lsize+1+i]->parent = left;
|
|
if (i < rsize)
|
|
left->elems[lsize+1+i] = right->elems[i];
|
|
}
|
|
|
|
n->counts[ki] += rightlen + 1;
|
|
|
|
sfree(right);
|
|
|
|
/*
|
|
* Move the rest of n up by one.
|
|
*/
|
|
for (i = ki+1; i < 3; i++) {
|
|
n->kids[i] = n->kids[i+1];
|
|
n->counts[i] = n->counts[i+1];
|
|
}
|
|
for (i = ki; i < 2; i++) {
|
|
n->elems[i] = n->elems[i+1];
|
|
}
|
|
n->kids[3] = NULL;
|
|
n->counts[3] = 0;
|
|
n->elems[2] = NULL;
|
|
|
|
if (k) {
|
|
LOG((" before: k,index = %d,%d\n", (*k), (*index)));
|
|
if ((*k) == ki+1) {
|
|
(*k)--;
|
|
(*index) += leftlen + 1;
|
|
} else if ((*k) > ki+1) {
|
|
(*k)--;
|
|
}
|
|
LOG((" after: k,index = %d,%d\n", (*k), (*index)));
|
|
}
|
|
|
|
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" merged %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
left,
|
|
left->kids[0], left->counts[0], left->elems[0],
|
|
left->kids[1], left->counts[1], left->elems[1],
|
|
left->kids[2], left->counts[2], left->elems[2],
|
|
left->kids[3], left->counts[3]));
|
|
|
|
}
|
|
|
|
/*
|
|
* Delete an element e in a 2-3-4 tree. Does not free the element,
|
|
* merely removes all links to it from the tree nodes.
|
|
*/
|
|
static void *delpos234_internal(tree234 *t, int index) {
|
|
node234 *n;
|
|
void *retval;
|
|
int ki, i;
|
|
|
|
retval = NULL;
|
|
|
|
n = t->root; /* by assumption this is non-NULL */
|
|
LOG(("deleting item %d from tree %p\n", index, t));
|
|
while (1) {
|
|
node234 *sub;
|
|
|
|
LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3],
|
|
index));
|
|
if (index <= n->counts[0]) {
|
|
ki = 0;
|
|
} else if (index -= n->counts[0]+1, index <= n->counts[1]) {
|
|
ki = 1;
|
|
} else if (index -= n->counts[1]+1, index <= n->counts[2]) {
|
|
ki = 2;
|
|
} else if (index -= n->counts[2]+1, index <= n->counts[3]) {
|
|
ki = 3;
|
|
} else {
|
|
assert(0); /* can't happen */
|
|
}
|
|
|
|
if (!n->kids[0])
|
|
break; /* n is a leaf node; we're here! */
|
|
|
|
/*
|
|
* Check to see if we've found our target element. If so,
|
|
* we must choose a new target (we'll use the old target's
|
|
* successor, which will be in a leaf), move it into the
|
|
* place of the old one, continue down to the leaf and
|
|
* delete the old copy of the new target.
|
|
*/
|
|
if (index == n->counts[ki]) {
|
|
node234 *m;
|
|
LOG((" found element in internal node, index %d\n", ki));
|
|
assert(n->elems[ki]); /* must be a kid _before_ an element */
|
|
ki++; index = 0;
|
|
for (m = n->kids[ki]; m->kids[0]; m = m->kids[0])
|
|
continue;
|
|
LOG((" replacing with element \"%s\" from leaf node %p\n",
|
|
m->elems[0], m));
|
|
retval = n->elems[ki-1];
|
|
n->elems[ki-1] = m->elems[0];
|
|
}
|
|
|
|
/*
|
|
* Recurse down to subtree ki. If it has only one element,
|
|
* we have to do some transformation to start with.
|
|
*/
|
|
LOG((" moving to subtree %d\n", ki));
|
|
sub = n->kids[ki];
|
|
if (!sub->elems[1]) {
|
|
LOG((" subtree has only one element!\n"));
|
|
if (ki > 0 && n->kids[ki-1]->elems[1]) {
|
|
/*
|
|
* Child ki has only one element, but child
|
|
* ki-1 has two or more. So we need to move a
|
|
* subtree from ki-1 to ki.
|
|
*/
|
|
trans234_subtree_right(n, ki-1, &ki, &index);
|
|
} else if (ki < 3 && n->kids[ki+1] &&
|
|
n->kids[ki+1]->elems[1]) {
|
|
/*
|
|
* Child ki has only one element, but ki+1 has
|
|
* two or more. Move a subtree from ki+1 to ki.
|
|
*/
|
|
trans234_subtree_left(n, ki+1, &ki, &index);
|
|
} else {
|
|
/*
|
|
* ki is small with only small neighbours. Pick a
|
|
* neighbour and merge with it.
|
|
*/
|
|
trans234_subtree_merge(n, ki>0 ? ki-1 : ki, &ki, &index);
|
|
sub = n->kids[ki];
|
|
|
|
if (!n->elems[0]) {
|
|
/*
|
|
* The root is empty and needs to be
|
|
* removed.
|
|
*/
|
|
LOG((" shifting root!\n"));
|
|
t->root = sub;
|
|
sub->parent = NULL;
|
|
sfree(n);
|
|
n = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (n)
|
|
n->counts[ki]--;
|
|
n = sub;
|
|
}
|
|
|
|
/*
|
|
* Now n is a leaf node, and ki marks the element number we
|
|
* want to delete. We've already arranged for the leaf to be
|
|
* bigger than minimum size, so let's just go to it.
|
|
*/
|
|
assert(!n->kids[0]);
|
|
if (!retval)
|
|
retval = n->elems[ki];
|
|
|
|
for (i = ki; i < 2 && n->elems[i+1]; i++)
|
|
n->elems[i] = n->elems[i+1];
|
|
n->elems[i] = NULL;
|
|
|
|
/*
|
|
* It's just possible that we have reduced the leaf to zero
|
|
* size. This can only happen if it was the root - so destroy
|
|
* it and make the tree empty.
|
|
*/
|
|
if (!n->elems[0]) {
|
|
LOG((" removed last element in tree, destroying empty root\n"));
|
|
assert(n == t->root);
|
|
sfree(n);
|
|
t->root = NULL;
|
|
}
|
|
|
|
return retval; /* finished! */
|
|
}
|
|
void *delpos234(tree234 *t, int index) {
|
|
if (index < 0 || index >= countnode234(t->root))
|
|
return NULL;
|
|
return delpos234_internal(t, index);
|
|
}
|
|
void *del234(tree234 *t, void *e) {
|
|
int index;
|
|
if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
|
|
return NULL; /* it wasn't in there anyway */
|
|
return delpos234_internal(t, index); /* it's there; delete it. */
|
|
}
|
|
|
|
/*
|
|
* Join two subtrees together with a separator element between
|
|
* them, given their relative height.
|
|
*
|
|
* (Height<0 means the left tree is shorter, >0 means the right
|
|
* tree is shorter, =0 means (duh) they're equal.)
|
|
*
|
|
* It is assumed that any checks needed on the ordering criterion
|
|
* have _already_ been done.
|
|
*
|
|
* The value returned in `height' is 0 or 1 depending on whether the
|
|
* resulting tree is the same height as the original larger one, or
|
|
* one higher.
|
|
*/
|
|
static node234 *join234_internal(node234 *left, void *sep,
|
|
node234 *right, int *height) {
|
|
node234 *root, *node;
|
|
int relht = *height;
|
|
int ki;
|
|
|
|
LOG((" join: joining %p \"%s\" %p, relative height is %d\n",
|
|
left, sep, right, relht));
|
|
if (relht == 0) {
|
|
/*
|
|
* The trees are the same height. Create a new one-element
|
|
* root containing the separator and pointers to the two
|
|
* nodes.
|
|
*/
|
|
node234 *newroot;
|
|
newroot = mknew(node234);
|
|
newroot->kids[0] = left; newroot->counts[0] = countnode234(left);
|
|
newroot->elems[0] = sep;
|
|
newroot->kids[1] = right; newroot->counts[1] = countnode234(right);
|
|
newroot->elems[1] = NULL;
|
|
newroot->kids[2] = NULL; newroot->counts[2] = 0;
|
|
newroot->elems[2] = NULL;
|
|
newroot->kids[3] = NULL; newroot->counts[3] = 0;
|
|
newroot->parent = NULL;
|
|
if (left) left->parent = newroot;
|
|
if (right) right->parent = newroot;
|
|
*height = 1;
|
|
LOG((" join: same height, brand new root\n"));
|
|
return newroot;
|
|
}
|
|
|
|
/*
|
|
* This now works like the addition algorithm on the larger
|
|
* tree. We're replacing a single kid pointer with two kid
|
|
* pointers separated by an element; if that causes the node to
|
|
* overload, we split it in two, move a separator element up to
|
|
* the next node, and repeat.
|
|
*/
|
|
if (relht < 0) {
|
|
/*
|
|
* Left tree is shorter. Search down the right tree to find
|
|
* the pointer we're inserting at.
|
|
*/
|
|
node = root = right;
|
|
while (++relht < 0) {
|
|
node = node->kids[0];
|
|
}
|
|
ki = 0;
|
|
right = node->kids[ki];
|
|
} else {
|
|
/*
|
|
* Right tree is shorter; search down the left to find the
|
|
* pointer we're inserting at.
|
|
*/
|
|
node = root = left;
|
|
while (--relht > 0) {
|
|
if (node->elems[2])
|
|
node = node->kids[3];
|
|
else if (node->elems[1])
|
|
node = node->kids[2];
|
|
else
|
|
node = node->kids[1];
|
|
}
|
|
if (node->elems[2])
|
|
ki = 3;
|
|
else if (node->elems[1])
|
|
ki = 2;
|
|
else
|
|
ki = 1;
|
|
left = node->kids[ki];
|
|
}
|
|
|
|
/*
|
|
* Now proceed as for addition.
|
|
*/
|
|
*height = add234_insert(left, sep, right, &root, node, ki);
|
|
|
|
return root;
|
|
}
|
|
static int height234(tree234 *t) {
|
|
int level = 0;
|
|
node234 *n = t->root;
|
|
while (n) {
|
|
level++;
|
|
n = n->kids[0];
|
|
}
|
|
return level;
|
|
}
|
|
tree234 *join234(tree234 *t1, tree234 *t2) {
|
|
int size2 = countnode234(t2->root);
|
|
if (size2 > 0) {
|
|
void *element;
|
|
int relht;
|
|
|
|
if (t1->cmp) {
|
|
element = index234(t2, 0);
|
|
element = findrelpos234(t1, element, NULL, REL234_GE, NULL);
|
|
if (element)
|
|
return NULL;
|
|
}
|
|
|
|
element = delpos234(t2, 0);
|
|
relht = height234(t1) - height234(t2);
|
|
t1->root = join234_internal(t1->root, element, t2->root, &relht);
|
|
t2->root = NULL;
|
|
}
|
|
return t1;
|
|
}
|
|
tree234 *join234r(tree234 *t1, tree234 *t2) {
|
|
int size1 = countnode234(t1->root);
|
|
if (size1 > 0) {
|
|
void *element;
|
|
int relht;
|
|
|
|
if (t2->cmp) {
|
|
element = index234(t1, size1-1);
|
|
element = findrelpos234(t2, element, NULL, REL234_LE, NULL);
|
|
if (element)
|
|
return NULL;
|
|
}
|
|
|
|
element = delpos234(t1, size1-1);
|
|
relht = height234(t1) - height234(t2);
|
|
t2->root = join234_internal(t1->root, element, t2->root, &relht);
|
|
t1->root = NULL;
|
|
}
|
|
return t2;
|
|
}
|
|
|
|
/*
|
|
* Split out the first <index> elements in a tree and return a
|
|
* pointer to the root node. Leave the root node of the remainder
|
|
* in t.
|
|
*/
|
|
static node234 *split234_internal(tree234 *t, int index) {
|
|
node234 *halves[2], *n, *sib, *sub;
|
|
node234 *lparent, *rparent;
|
|
int ki, pki, i, half, lcount, rcount;
|
|
|
|
n = t->root;
|
|
LOG(("splitting tree %p at point %d\n", t, index));
|
|
|
|
/*
|
|
* Easy special cases. After this we have also dealt completely
|
|
* with the empty-tree case and we can assume the root exists.
|
|
*/
|
|
if (index == 0) /* return nothing */
|
|
return NULL;
|
|
if (index == countnode234(t->root)) { /* return the whole tree */
|
|
node234 *ret = t->root;
|
|
t->root = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Search down the tree to find the split point.
|
|
*/
|
|
lparent = rparent = NULL;
|
|
pki = -1;
|
|
while (n) {
|
|
LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3],
|
|
index));
|
|
lcount = index;
|
|
rcount = countnode234(n) - lcount;
|
|
if (index <= n->counts[0]) {
|
|
ki = 0;
|
|
} else if (index -= n->counts[0]+1, index <= n->counts[1]) {
|
|
ki = 1;
|
|
} else if (index -= n->counts[1]+1, index <= n->counts[2]) {
|
|
ki = 2;
|
|
} else {
|
|
index -= n->counts[2]+1;
|
|
ki = 3;
|
|
}
|
|
|
|
LOG((" splitting at subtree %d\n", ki));
|
|
sub = n->kids[ki];
|
|
|
|
LOG((" splitting at child index %d\n", ki));
|
|
|
|
/*
|
|
* Split the node, put halves[0] on the right of the left
|
|
* one and halves[1] on the left of the right one, put the
|
|
* new node pointers in halves[0] and halves[1], and go up
|
|
* a level.
|
|
*/
|
|
sib = mknew(node234);
|
|
for (i = 0; i < 3; i++) {
|
|
if (i+ki < 3 && n->elems[i+ki]) {
|
|
sib->elems[i] = n->elems[i+ki];
|
|
sib->kids[i+1] = n->kids[i+ki+1];
|
|
if (sib->kids[i+1]) sib->kids[i+1]->parent = sib;
|
|
sib->counts[i+1] = n->counts[i+ki+1];
|
|
n->elems[i+ki] = NULL;
|
|
n->kids[i+ki+1] = NULL;
|
|
n->counts[i+ki+1] = 0;
|
|
} else {
|
|
sib->elems[i] = NULL;
|
|
sib->kids[i+1] = NULL;
|
|
sib->counts[i+1] = 0;
|
|
}
|
|
}
|
|
if (lparent) {
|
|
lparent->kids[pki] = n;
|
|
lparent->counts[pki] = lcount;
|
|
n->parent = lparent;
|
|
rparent->kids[0] = sib;
|
|
rparent->counts[0] = rcount;
|
|
sib->parent = rparent;
|
|
} else {
|
|
halves[0] = n;
|
|
n->parent = NULL;
|
|
halves[1] = sib;
|
|
sib->parent = NULL;
|
|
}
|
|
lparent = n;
|
|
rparent = sib;
|
|
pki = ki;
|
|
LOG((" left node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
LOG((" right node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
sib,
|
|
sib->kids[0], sib->counts[0], sib->elems[0],
|
|
sib->kids[1], sib->counts[1], sib->elems[1],
|
|
sib->kids[2], sib->counts[2], sib->elems[2],
|
|
sib->kids[3], sib->counts[3]));
|
|
|
|
n = sub;
|
|
}
|
|
|
|
/*
|
|
* We've come off the bottom here, so we've successfully split
|
|
* the tree into two equally high subtrees. The only problem is
|
|
* that some of the nodes down the fault line will be smaller
|
|
* than the minimum permitted size. (Since this is a 2-3-4
|
|
* tree, that means they'll be zero-element one-child nodes.)
|
|
*/
|
|
LOG((" fell off bottom, lroot is %p, rroot is %p\n",
|
|
halves[0], halves[1]));
|
|
lparent->counts[pki] = rparent->counts[0] = 0;
|
|
lparent->kids[pki] = rparent->kids[0] = NULL;
|
|
|
|
/*
|
|
* So now we go back down the tree from each of the two roots,
|
|
* fixing up undersize nodes.
|
|
*/
|
|
for (half = 0; half < 2; half++) {
|
|
/*
|
|
* Remove the root if it's undersize (it will contain only
|
|
* one child pointer, so just throw it away and replace it
|
|
* with its child). This might happen several times.
|
|
*/
|
|
while (halves[half] && !halves[half]->elems[0]) {
|
|
LOG((" root %p is undersize, throwing away\n", halves[half]));
|
|
halves[half] = halves[half]->kids[0];
|
|
sfree(halves[half]->parent);
|
|
halves[half]->parent = NULL;
|
|
LOG((" new root is %p\n", halves[half]));
|
|
}
|
|
|
|
n = halves[half];
|
|
while (n) {
|
|
void (*toward)(node234 *n, int ki, int *k, int *index);
|
|
int ni, merge;
|
|
|
|
/*
|
|
* Now we have a potentially undersize node on the
|
|
* right (if half==0) or left (if half==1). Sort it
|
|
* out, by merging with a neighbour or by transferring
|
|
* subtrees over. At this time we must also ensure that
|
|
* nodes are bigger than minimum, in case we need an
|
|
* element to merge two nodes below.
|
|
*/
|
|
LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
|
|
n,
|
|
n->kids[0], n->counts[0], n->elems[0],
|
|
n->kids[1], n->counts[1], n->elems[1],
|
|
n->kids[2], n->counts[2], n->elems[2],
|
|
n->kids[3], n->counts[3]));
|
|
if (half == 1) {
|
|
ki = 0; /* the kid we're interested in */
|
|
ni = 1; /* the neighbour */
|
|
merge = 0; /* for merge: leftmost of the two */
|
|
toward = trans234_subtree_left;
|
|
} else {
|
|
ki = (n->kids[3] ? 3 : n->kids[2] ? 2 : 1);
|
|
ni = ki-1;
|
|
merge = ni;
|
|
toward = trans234_subtree_right;
|
|
}
|
|
|
|
sub = n->kids[ki];
|
|
if (sub && !sub->elems[1]) {
|
|
/*
|
|
* This node is undersized or minimum-size. If we
|
|
* can merge it with its neighbour, we do so;
|
|
* otherwise we must be able to transfer subtrees
|
|
* over to it until it is greater than minimum
|
|
* size.
|
|
*/
|
|
int undersized = (!sub->elems[0]);
|
|
LOG((" child %d is %ssize\n", ki,
|
|
undersized ? "under" : "minimum-"));
|
|
LOG((" neighbour is %s\n",
|
|
n->kids[ni]->elems[2] ? "large" :
|
|
n->kids[ni]->elems[1] ? "medium" : "small"));
|
|
if (!n->kids[ni]->elems[1] ||
|
|
(undersized && !n->kids[ni]->elems[2])) {
|
|
/*
|
|
* Neighbour is small, or possibly neighbour is
|
|
* medium and we are undersize.
|
|
*/
|
|
trans234_subtree_merge(n, merge, NULL, NULL);
|
|
sub = n->kids[merge];
|
|
if (!n->elems[0]) {
|
|
/*
|
|
* n is empty, and hence must have been the
|
|
* root and needs to be removed.
|
|
*/
|
|
assert(!n->parent);
|
|
LOG((" shifting root!\n"));
|
|
halves[half] = sub;
|
|
halves[half]->parent = NULL;
|
|
sfree(n);
|
|
}
|
|
} else {
|
|
/* Neighbour is big enough to move trees over. */
|
|
toward(n, ni, NULL, NULL);
|
|
if (undersized)
|
|
toward(n, ni, NULL, NULL);
|
|
}
|
|
}
|
|
n = sub;
|
|
}
|
|
}
|
|
|
|
t->root = halves[1];
|
|
return halves[0];
|
|
}
|
|
tree234 *splitpos234(tree234 *t, int index, int before) {
|
|
tree234 *ret;
|
|
node234 *n;
|
|
int count;
|
|
|
|
count = countnode234(t->root);
|
|
if (index < 0 || index > count)
|
|
return NULL; /* error */
|
|
ret = newtree234(t->cmp);
|
|
n = split234_internal(t, index);
|
|
if (before) {
|
|
/* We want to return the ones before the index. */
|
|
ret->root = n;
|
|
} else {
|
|
/*
|
|
* We want to keep the ones before the index and return the
|
|
* ones after.
|
|
*/
|
|
ret->root = t->root;
|
|
t->root = n;
|
|
}
|
|
return ret;
|
|
}
|
|
tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel) {
|
|
int before;
|
|
int index;
|
|
|
|
assert(rel != REL234_EQ);
|
|
|
|
if (rel == REL234_GT || rel == REL234_GE) {
|
|
before = 1;
|
|
rel = (rel == REL234_GT ? REL234_LE : REL234_LT);
|
|
} else {
|
|
before = 0;
|
|
}
|
|
if (!findrelpos234(t, e, cmp, rel, &index))
|
|
index = 0;
|
|
|
|
return splitpos234(t, index+1, before);
|
|
}
|
|
|
|
static node234 *copynode234(node234 *n, copyfn234 copyfn, void *copyfnstate) {
|
|
int i;
|
|
node234 *n2 = mknew(node234);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
if (n->elems[i] && copyfn)
|
|
n2->elems[i] = copyfn(copyfnstate, n->elems[i]);
|
|
else
|
|
n2->elems[i] = n->elems[i];
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (n->kids[i]) {
|
|
n2->kids[i] = copynode234(n->kids[i], copyfn, copyfnstate);
|
|
n2->kids[i]->parent = n2;
|
|
} else {
|
|
n2->kids[i] = NULL;
|
|
}
|
|
n2->counts[i] = n->counts[i];
|
|
}
|
|
|
|
return n2;
|
|
}
|
|
tree234 *copytree234(tree234 *t, copyfn234 copyfn, void *copyfnstate) {
|
|
tree234 *t2;
|
|
|
|
t2 = newtree234(t->cmp);
|
|
t2->root = copynode234(t->root, copyfn, copyfnstate);
|
|
t2->root->parent = NULL;
|
|
|
|
return t2;
|
|
}
|
|
|
|
#ifdef TEST
|
|
|
|
/*
|
|
* Test code for the 2-3-4 tree. This code maintains an alternative
|
|
* representation of the data in the tree, in an array (using the
|
|
* obvious and slow insert and delete functions). After each tree
|
|
* operation, the verify() function is called, which ensures all
|
|
* the tree properties are preserved:
|
|
* - node->child->parent always equals node
|
|
* - tree->root->parent always equals NULL
|
|
* - number of kids == 0 or number of elements + 1;
|
|
* - tree has the same depth everywhere
|
|
* - every node has at least one element
|
|
* - subtree element counts are accurate
|
|
* - any NULL kid pointer is accompanied by a zero count
|
|
* - in a sorted tree: ordering property between elements of a
|
|
* node and elements of its children is preserved
|
|
* and also ensures the list represented by the tree is the same
|
|
* list it should be. (This last check also doubly verifies the
|
|
* ordering properties, because the `same list it should be' is by
|
|
* definition correctly ordered. It also ensures all nodes are
|
|
* distinct, because the enum functions would get caught in a loop
|
|
* if not.)
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
#define srealloc realloc
|
|
|
|
/*
|
|
* Error reporting function.
|
|
*/
|
|
void error(char *fmt, ...) {
|
|
va_list ap;
|
|
printf("ERROR: ");
|
|
va_start(ap, fmt);
|
|
vfprintf(stdout, fmt, ap);
|
|
va_end(ap);
|
|
printf("\n");
|
|
}
|
|
|
|
/* The array representation of the data. */
|
|
void **array;
|
|
int arraylen, arraysize;
|
|
cmpfn234 cmp;
|
|
|
|
/* The tree representation of the same data. */
|
|
tree234 *tree;
|
|
|
|
/*
|
|
* Routines to provide a diagnostic printout of a tree. Currently
|
|
* relies on every element in the tree being a one-character string
|
|
* :-)
|
|
*/
|
|
typedef struct {
|
|
char **levels;
|
|
} dispctx;
|
|
|
|
int dispnode(node234 *n, int level, dispctx *ctx) {
|
|
if (level == 0) {
|
|
int xpos = strlen(ctx->levels[0]);
|
|
int len;
|
|
|
|
if (n->elems[2])
|
|
len = sprintf(ctx->levels[0]+xpos, " %s%s%s",
|
|
n->elems[0], n->elems[1], n->elems[2]);
|
|
else if (n->elems[1])
|
|
len = sprintf(ctx->levels[0]+xpos, " %s%s",
|
|
n->elems[0], n->elems[1]);
|
|
else
|
|
len = sprintf(ctx->levels[0]+xpos, " %s",
|
|
n->elems[0]);
|
|
return xpos + 1 + (len-1) / 2;
|
|
} else {
|
|
int xpos[4], nkids;
|
|
int nodelen, mypos, myleft, x, i;
|
|
|
|
xpos[0] = dispnode(n->kids[0], level-3, ctx);
|
|
xpos[1] = dispnode(n->kids[1], level-3, ctx);
|
|
nkids = 2;
|
|
if (n->kids[2]) {
|
|
xpos[2] = dispnode(n->kids[2], level-3, ctx);
|
|
nkids = 3;
|
|
}
|
|
if (n->kids[3]) {
|
|
xpos[3] = dispnode(n->kids[3], level-3, ctx);
|
|
nkids = 4;
|
|
}
|
|
|
|
if (nkids == 4)
|
|
mypos = (xpos[1] + xpos[2]) / 2;
|
|
else if (nkids == 3)
|
|
mypos = xpos[1];
|
|
else
|
|
mypos = (xpos[0] + xpos[1]) / 2;
|
|
nodelen = nkids * 2 - 1;
|
|
myleft = mypos - ((nodelen-1)/2);
|
|
assert(myleft >= xpos[0]);
|
|
assert(myleft + nodelen-1 <= xpos[nkids-1]);
|
|
|
|
x = strlen(ctx->levels[level]);
|
|
while (x <= xpos[0] && x < myleft)
|
|
ctx->levels[level][x++] = ' ';
|
|
while (x < myleft)
|
|
ctx->levels[level][x++] = '_';
|
|
if (nkids==4)
|
|
x += sprintf(ctx->levels[level]+x, ".%s.%s.%s.",
|
|
n->elems[0], n->elems[1], n->elems[2]);
|
|
else if (nkids==3)
|
|
x += sprintf(ctx->levels[level]+x, ".%s.%s.",
|
|
n->elems[0], n->elems[1]);
|
|
else
|
|
x += sprintf(ctx->levels[level]+x, ".%s.",
|
|
n->elems[0]);
|
|
while (x < xpos[nkids-1])
|
|
ctx->levels[level][x++] = '_';
|
|
ctx->levels[level][x] = '\0';
|
|
|
|
x = strlen(ctx->levels[level-1]);
|
|
for (i = 0; i < nkids; i++) {
|
|
int rpos, pos;
|
|
rpos = xpos[i];
|
|
if (i > 0 && i < nkids-1)
|
|
pos = myleft + 2*i;
|
|
else
|
|
pos = rpos;
|
|
if (rpos < pos)
|
|
rpos++;
|
|
while (x < pos && x < rpos)
|
|
ctx->levels[level-1][x++] = ' ';
|
|
if (x == pos)
|
|
ctx->levels[level-1][x++] = '|';
|
|
while (x < pos || x < rpos)
|
|
ctx->levels[level-1][x++] = '_';
|
|
if (x == pos)
|
|
ctx->levels[level-1][x++] = '|';
|
|
}
|
|
ctx->levels[level-1][x] = '\0';
|
|
|
|
x = strlen(ctx->levels[level-2]);
|
|
for (i = 0; i < nkids; i++) {
|
|
int rpos = xpos[i];
|
|
|
|
while (x < rpos)
|
|
ctx->levels[level-2][x++] = ' ';
|
|
ctx->levels[level-2][x++] = '|';
|
|
}
|
|
ctx->levels[level-2][x] = '\0';
|
|
|
|
return mypos;
|
|
}
|
|
}
|
|
|
|
void disptree(tree234 *t) {
|
|
dispctx ctx;
|
|
char *leveldata;
|
|
int width = count234(t);
|
|
int ht = height234(t) * 3 - 2;
|
|
int i;
|
|
|
|
if (!t->root) {
|
|
printf("[empty tree]\n");
|
|
}
|
|
|
|
leveldata = smalloc(ht * (width+2));
|
|
ctx.levels = smalloc(ht * sizeof(char *));
|
|
for (i = 0; i < ht; i++) {
|
|
ctx.levels[i] = leveldata + i * (width+2);
|
|
ctx.levels[i][0] = '\0';
|
|
}
|
|
|
|
(void) dispnode(t->root, ht-1, &ctx);
|
|
|
|
for (i = ht; i-- ;)
|
|
printf("%s\n", ctx.levels[i]);
|
|
|
|
sfree(ctx.levels);
|
|
sfree(leveldata);
|
|
}
|
|
|
|
typedef struct {
|
|
int treedepth;
|
|
int elemcount;
|
|
} chkctx;
|
|
|
|
int chknode(chkctx *ctx, int level, node234 *node,
|
|
void *lowbound, void *highbound) {
|
|
int nkids, nelems;
|
|
int i;
|
|
int count;
|
|
|
|
/* Count the non-NULL kids. */
|
|
for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
|
|
/* Ensure no kids beyond the first NULL are non-NULL. */
|
|
for (i = nkids; i < 4; i++)
|
|
if (node->kids[i]) {
|
|
error("node %p: nkids=%d but kids[%d] non-NULL",
|
|
node, nkids, i);
|
|
} else if (node->counts[i]) {
|
|
error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
|
|
node, i, i, node->counts[i]);
|
|
}
|
|
|
|
/* Count the non-NULL elements. */
|
|
for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
|
|
/* Ensure no elements beyond the first NULL are non-NULL. */
|
|
for (i = nelems; i < 3; i++)
|
|
if (node->elems[i]) {
|
|
error("node %p: nelems=%d but elems[%d] non-NULL",
|
|
node, nelems, i);
|
|
}
|
|
|
|
if (nkids == 0) {
|
|
/*
|
|
* If nkids==0, this is a leaf node; verify that the tree
|
|
* depth is the same everywhere.
|
|
*/
|
|
if (ctx->treedepth < 0)
|
|
ctx->treedepth = level; /* we didn't know the depth yet */
|
|
else if (ctx->treedepth != level)
|
|
error("node %p: leaf at depth %d, previously seen depth %d",
|
|
node, level, ctx->treedepth);
|
|
} else {
|
|
/*
|
|
* If nkids != 0, then it should be nelems+1, unless nelems
|
|
* is 0 in which case nkids should also be 0 (and so we
|
|
* shouldn't be in this condition at all).
|
|
*/
|
|
int shouldkids = (nelems ? nelems+1 : 0);
|
|
if (nkids != shouldkids) {
|
|
error("node %p: %d elems should mean %d kids but has %d",
|
|
node, nelems, shouldkids, nkids);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nelems should be at least 1.
|
|
*/
|
|
if (nelems == 0) {
|
|
error("node %p: no elems", node, nkids);
|
|
}
|
|
|
|
/*
|
|
* Add nelems to the running element count of the whole tree.
|
|
*/
|
|
ctx->elemcount += nelems;
|
|
|
|
/*
|
|
* Check ordering property: all elements should be strictly >
|
|
* lowbound, strictly < highbound, and strictly < each other in
|
|
* sequence. (lowbound and highbound are NULL at edges of tree
|
|
* - both NULL at root node - and NULL is considered to be <
|
|
* everything and > everything. IYSWIM.)
|
|
*/
|
|
if (cmp) {
|
|
for (i = -1; i < nelems; i++) {
|
|
void *lower = (i == -1 ? lowbound : node->elems[i]);
|
|
void *higher = (i+1 == nelems ? highbound : node->elems[i+1]);
|
|
if (lower && higher && cmp(lower, higher) >= 0) {
|
|
error("node %p: kid comparison [%d=%s,%d=%s] failed",
|
|
node, i, lower, i+1, higher);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check parent pointers: all non-NULL kids should have a
|
|
* parent pointer coming back to this node.
|
|
*/
|
|
for (i = 0; i < nkids; i++)
|
|
if (node->kids[i]->parent != node) {
|
|
error("node %p kid %d: parent ptr is %p not %p",
|
|
node, i, node->kids[i]->parent, node);
|
|
}
|
|
|
|
|
|
/*
|
|
* Now (finally!) recurse into subtrees.
|
|
*/
|
|
count = nelems;
|
|
|
|
for (i = 0; i < nkids; i++) {
|
|
void *lower = (i == 0 ? lowbound : node->elems[i-1]);
|
|
void *higher = (i >= nelems ? highbound : node->elems[i]);
|
|
int subcount = chknode(ctx, level+1, node->kids[i], lower, higher);
|
|
if (node->counts[i] != subcount) {
|
|
error("node %p kid %d: count says %d, subtree really has %d",
|
|
node, i, node->counts[i], subcount);
|
|
}
|
|
count += subcount;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void verifytree(tree234 *tree, void **array, int arraylen) {
|
|
chkctx ctx;
|
|
int i;
|
|
void *p;
|
|
|
|
ctx.treedepth = -1; /* depth unknown yet */
|
|
ctx.elemcount = 0; /* no elements seen yet */
|
|
/*
|
|
* Verify validity of tree properties.
|
|
*/
|
|
if (tree->root) {
|
|
if (tree->root->parent != NULL)
|
|
error("root->parent is %p should be null", tree->root->parent);
|
|
chknode(&ctx, 0, tree->root, NULL, NULL);
|
|
}
|
|
printf("tree depth: %d\n", ctx.treedepth);
|
|
/*
|
|
* Enumerate the tree and ensure it matches up to the array.
|
|
*/
|
|
for (i = 0; NULL != (p = index234(tree, i)); i++) {
|
|
if (i >= arraylen)
|
|
error("tree contains more than %d elements", arraylen);
|
|
if (array[i] != p)
|
|
error("enum at position %d: array says %s, tree says %s",
|
|
i, array[i], p);
|
|
}
|
|
if (ctx.elemcount != i) {
|
|
error("tree really contains %d elements, enum gave %d",
|
|
ctx.elemcount, i);
|
|
}
|
|
if (i < arraylen) {
|
|
error("enum gave only %d elements, array has %d", i, arraylen);
|
|
}
|
|
i = count234(tree);
|
|
if (ctx.elemcount != i) {
|
|
error("tree really contains %d elements, count234 gave %d",
|
|
ctx.elemcount, i);
|
|
}
|
|
}
|
|
void verify(void) { verifytree(tree, array, arraylen); }
|
|
|
|
void internal_addtest(void *elem, int index, void *realret) {
|
|
int i, j;
|
|
void *retval;
|
|
|
|
if (arraysize < arraylen+1) {
|
|
arraysize = arraylen+1+256;
|
|
array = (array == NULL ? smalloc(arraysize*sizeof(*array)) :
|
|
srealloc(array, arraysize*sizeof(*array)));
|
|
}
|
|
|
|
i = index;
|
|
/* now i points to the first element >= elem */
|
|
retval = elem; /* expect elem returned (success) */
|
|
for (j = arraylen; j > i; j--)
|
|
array[j] = array[j-1];
|
|
array[i] = elem; /* add elem to array */
|
|
arraylen++;
|
|
|
|
if (realret != retval) {
|
|
error("add: retval was %p expected %p", realret, retval);
|
|
}
|
|
|
|
verify();
|
|
}
|
|
|
|
void addtest(void *elem) {
|
|
int i;
|
|
void *realret;
|
|
|
|
realret = add234(tree, elem);
|
|
|
|
i = 0;
|
|
while (i < arraylen && cmp(elem, array[i]) > 0)
|
|
i++;
|
|
if (i < arraylen && !cmp(elem, array[i])) {
|
|
void *retval = array[i]; /* expect that returned not elem */
|
|
if (realret != retval) {
|
|
error("add: retval was %p expected %p", realret, retval);
|
|
}
|
|
} else
|
|
internal_addtest(elem, i, realret);
|
|
}
|
|
|
|
void addpostest(void *elem, int i) {
|
|
void *realret;
|
|
|
|
realret = addpos234(tree, elem, i);
|
|
|
|
internal_addtest(elem, i, realret);
|
|
}
|
|
|
|
void delpostest(int i) {
|
|
int index = i;
|
|
void *elem = array[i], *ret;
|
|
|
|
/* i points to the right element */
|
|
while (i < arraylen-1) {
|
|
array[i] = array[i+1];
|
|
i++;
|
|
}
|
|
arraylen--; /* delete elem from array */
|
|
|
|
if (tree->cmp)
|
|
ret = del234(tree, elem);
|
|
else
|
|
ret = delpos234(tree, index);
|
|
|
|
if (ret != elem) {
|
|
error("del returned %p, expected %p", ret, elem);
|
|
}
|
|
|
|
verify();
|
|
}
|
|
|
|
void deltest(void *elem) {
|
|
int i;
|
|
|
|
i = 0;
|
|
while (i < arraylen && cmp(elem, array[i]) > 0)
|
|
i++;
|
|
if (i >= arraylen || cmp(elem, array[i]) != 0)
|
|
return; /* don't do it! */
|
|
delpostest(i);
|
|
}
|
|
|
|
/* A sample data set and test utility. Designed for pseudo-randomness,
|
|
* and yet repeatability. */
|
|
|
|
/*
|
|
* This random number generator uses the `portable implementation'
|
|
* given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
|
|
* change it if not.
|
|
*/
|
|
int randomnumber(unsigned *seed) {
|
|
*seed *= 1103515245;
|
|
*seed += 12345;
|
|
return ((*seed) / 65536) % 32768;
|
|
}
|
|
|
|
int mycmp(void *av, void *bv) {
|
|
char const *a = (char const *)av;
|
|
char const *b = (char const *)bv;
|
|
return strcmp(a, b);
|
|
}
|
|
|
|
#define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
|
|
|
|
char *strings[] = {
|
|
"0", "2", "3", "I", "K", "d", "H", "J", "Q", "N", "n", "q", "j", "i",
|
|
"7", "G", "F", "D", "b", "x", "g", "B", "e", "v", "V", "T", "f", "E",
|
|
"S", "8", "A", "k", "X", "p", "C", "R", "a", "o", "r", "O", "Z", "u",
|
|
"6", "1", "w", "L", "P", "M", "c", "U", "h", "9", "t", "5", "W", "Y",
|
|
"m", "s", "l", "4",
|
|
#if 0
|
|
"a", "ab", "absque", "coram", "de",
|
|
"palam", "clam", "cum", "ex", "e",
|
|
"sine", "tenus", "pro", "prae",
|
|
"banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
|
|
"penguin", "blancmange", "pangolin", "whale", "hedgehog",
|
|
"giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
|
|
"murfl", "spoo", "breen", "flarn", "octothorpe",
|
|
"snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
|
|
"aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
|
|
"pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
|
|
"wand", "ring", "amulet"
|
|
#endif
|
|
};
|
|
|
|
#define NSTR lenof(strings)
|
|
|
|
void findtest(void) {
|
|
static const int rels[] = {
|
|
REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
|
|
};
|
|
static const char *const relnames[] = {
|
|
"EQ", "GE", "LE", "LT", "GT"
|
|
};
|
|
int i, j, rel, index;
|
|
char *p, *ret, *realret, *realret2;
|
|
int lo, hi, mid, c;
|
|
|
|
for (i = 0; i < (int)NSTR; i++) {
|
|
p = strings[i];
|
|
for (j = 0; j < (int)(sizeof(rels)/sizeof(*rels)); j++) {
|
|
rel = rels[j];
|
|
|
|
lo = 0; hi = arraylen-1;
|
|
while (lo <= hi) {
|
|
mid = (lo + hi) / 2;
|
|
c = strcmp(p, array[mid]);
|
|
if (c < 0)
|
|
hi = mid-1;
|
|
else if (c > 0)
|
|
lo = mid+1;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (c == 0) {
|
|
if (rel == REL234_LT)
|
|
ret = (mid > 0 ? array[--mid] : NULL);
|
|
else if (rel == REL234_GT)
|
|
ret = (mid < arraylen-1 ? array[++mid] : NULL);
|
|
else
|
|
ret = array[mid];
|
|
} else {
|
|
assert(lo == hi+1);
|
|
if (rel == REL234_LT || rel == REL234_LE) {
|
|
mid = hi;
|
|
ret = (hi >= 0 ? array[hi] : NULL);
|
|
} else if (rel == REL234_GT || rel == REL234_GE) {
|
|
mid = lo;
|
|
ret = (lo < arraylen ? array[lo] : NULL);
|
|
} else
|
|
ret = NULL;
|
|
}
|
|
|
|
realret = findrelpos234(tree, p, NULL, rel, &index);
|
|
if (realret != ret) {
|
|
error("find(\"%s\",%s) gave %s should be %s",
|
|
p, relnames[j], realret, ret);
|
|
}
|
|
if (realret && index != mid) {
|
|
error("find(\"%s\",%s) gave %d should be %d",
|
|
p, relnames[j], index, mid);
|
|
}
|
|
if (realret && rel == REL234_EQ) {
|
|
realret2 = index234(tree, index);
|
|
if (realret2 != realret) {
|
|
error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
|
|
p, relnames[j], realret, index, index, realret2);
|
|
}
|
|
}
|
|
#if 0
|
|
printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
|
|
realret, index);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
|
|
if (arraylen && (realret != array[0] || index != 0)) {
|
|
error("find(NULL,GT) gave %s(%d) should be %s(0)",
|
|
realret, index, array[0]);
|
|
} else if (!arraylen && (realret != NULL)) {
|
|
error("find(NULL,GT) gave %s(%d) should be NULL",
|
|
realret, index);
|
|
}
|
|
|
|
realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
|
|
if (arraylen && (realret != array[arraylen-1] || index != arraylen-1)) {
|
|
error("find(NULL,LT) gave %s(%d) should be %s(0)",
|
|
realret, index, array[arraylen-1]);
|
|
} else if (!arraylen && (realret != NULL)) {
|
|
error("find(NULL,LT) gave %s(%d) should be NULL",
|
|
realret, index);
|
|
}
|
|
}
|
|
|
|
void splittest(tree234 *tree, void **array, int arraylen) {
|
|
int i;
|
|
tree234 *tree3, *tree4;
|
|
for (i = 0; i <= arraylen; i++) {
|
|
tree3 = copytree234(tree, NULL, NULL);
|
|
tree4 = splitpos234(tree3, i, 0);
|
|
verifytree(tree3, array, i);
|
|
verifytree(tree4, array+i, arraylen-i);
|
|
join234(tree3, tree4);
|
|
freetree234(tree4); /* left empty by join */
|
|
verifytree(tree3, array, arraylen);
|
|
freetree234(tree3);
|
|
}
|
|
}
|
|
|
|
int main(void) {
|
|
int in[NSTR];
|
|
int i, j, k;
|
|
int tworoot, tmplen;
|
|
unsigned seed = 0;
|
|
tree234 *tree2, *tree3, *tree4;
|
|
int c;
|
|
|
|
setvbuf(stdout, NULL, _IOLBF, 0);
|
|
|
|
for (i = 0; i < (int)NSTR; i++) in[i] = 0;
|
|
array = NULL;
|
|
arraylen = arraysize = 0;
|
|
tree = newtree234(mycmp);
|
|
cmp = mycmp;
|
|
|
|
verify();
|
|
for (i = 0; i < 10000; i++) {
|
|
j = randomnumber(&seed);
|
|
j %= NSTR;
|
|
printf("trial: %d\n", i);
|
|
if (in[j]) {
|
|
printf("deleting %s (%d)\n", strings[j], j);
|
|
deltest(strings[j]);
|
|
in[j] = 0;
|
|
} else {
|
|
printf("adding %s (%d)\n", strings[j], j);
|
|
addtest(strings[j]);
|
|
in[j] = 1;
|
|
}
|
|
disptree(tree);
|
|
findtest();
|
|
}
|
|
|
|
while (arraylen > 0) {
|
|
j = randomnumber(&seed);
|
|
j %= arraylen;
|
|
deltest(array[j]);
|
|
}
|
|
|
|
freetree234(tree);
|
|
|
|
/*
|
|
* Now try an unsorted tree. We don't really need to test
|
|
* delpos234 because we know del234 is based on it, so it's
|
|
* already been tested in the above sorted-tree code; but for
|
|
* completeness we'll use it to tear down our unsorted tree
|
|
* once we've built it.
|
|
*/
|
|
tree = newtree234(NULL);
|
|
cmp = NULL;
|
|
verify();
|
|
for (i = 0; i < 1000; i++) {
|
|
printf("trial: %d\n", i);
|
|
j = randomnumber(&seed);
|
|
j %= NSTR;
|
|
k = randomnumber(&seed);
|
|
k %= count234(tree)+1;
|
|
printf("adding string %s at index %d\n", strings[j], k);
|
|
addpostest(strings[j], k);
|
|
}
|
|
|
|
/*
|
|
* While we have this tree in its full form, we'll take a copy
|
|
* of it to use in split and join testing.
|
|
*/
|
|
tree2 = copytree234(tree, NULL, NULL);
|
|
verifytree(tree2, array, arraylen);/* check the copy is accurate */
|
|
/*
|
|
* Split tests. Split the tree at every possible point and
|
|
* check the resulting subtrees.
|
|
*/
|
|
tworoot = (!tree2->root->elems[1]);/* see if it has a 2-root */
|
|
splittest(tree2, array, arraylen);
|
|
/*
|
|
* Now do the split test again, but on a tree that has a 2-root
|
|
* (if the previous one didn't) or doesn't (if the previous one
|
|
* did).
|
|
*/
|
|
tmplen = arraylen;
|
|
while ((!tree2->root->elems[1]) == tworoot) {
|
|
delpos234(tree2, --tmplen);
|
|
}
|
|
printf("now trying splits on second tree\n");
|
|
splittest(tree2, array, tmplen);
|
|
freetree234(tree2);
|
|
|
|
/*
|
|
* Back to the main testing of uncounted trees.
|
|
*/
|
|
while (count234(tree) > 0) {
|
|
printf("cleanup: tree size %d\n", count234(tree));
|
|
j = randomnumber(&seed);
|
|
j %= count234(tree);
|
|
printf("deleting string %s from index %d\n", (char *)array[j], j);
|
|
delpostest(j);
|
|
}
|
|
freetree234(tree);
|
|
|
|
/*
|
|
* Finally, do some testing on split/join on _sorted_ trees. At
|
|
* the same time, we'll be testing split on very small trees.
|
|
*/
|
|
tree = newtree234(mycmp);
|
|
cmp = mycmp;
|
|
arraylen = 0;
|
|
for (i = 0; i < 16; i++) {
|
|
addtest(strings[i]);
|
|
tree2 = copytree234(tree, NULL, NULL);
|
|
splittest(tree2, array, arraylen);
|
|
freetree234(tree2);
|
|
}
|
|
freetree234(tree);
|
|
|
|
/*
|
|
* Test silly cases of join: join(emptytree, emptytree), and
|
|
* also ensure join correctly spots when sorted trees fail the
|
|
* ordering constraint.
|
|
*/
|
|
tree = newtree234(mycmp);
|
|
tree2 = newtree234(mycmp);
|
|
tree3 = newtree234(mycmp);
|
|
tree4 = newtree234(mycmp);
|
|
assert(mycmp(strings[0], strings[1]) < 0); /* just in case :-) */
|
|
add234(tree2, strings[1]);
|
|
add234(tree4, strings[0]);
|
|
array[0] = strings[0];
|
|
array[1] = strings[1];
|
|
verifytree(tree, array, 0);
|
|
verifytree(tree2, array+1, 1);
|
|
verifytree(tree3, array, 0);
|
|
verifytree(tree4, array, 1);
|
|
|
|
/*
|
|
* So:
|
|
* - join(tree,tree3) should leave both tree and tree3 unchanged.
|
|
* - joinr(tree,tree2) should leave both tree and tree2 unchanged.
|
|
* - join(tree4,tree3) should leave both tree3 and tree4 unchanged.
|
|
* - join(tree, tree2) should move the element from tree2 to tree.
|
|
* - joinr(tree4, tree3) should move the element from tree4 to tree3.
|
|
* - join(tree,tree3) should return NULL and leave both unchanged.
|
|
* - join(tree3,tree) should work and create a bigger tree in tree3.
|
|
*/
|
|
assert(tree == join234(tree, tree3));
|
|
verifytree(tree, array, 0);
|
|
verifytree(tree3, array, 0);
|
|
assert(tree2 == join234r(tree, tree2));
|
|
verifytree(tree, array, 0);
|
|
verifytree(tree2, array+1, 1);
|
|
assert(tree4 == join234(tree4, tree3));
|
|
verifytree(tree3, array, 0);
|
|
verifytree(tree4, array, 1);
|
|
assert(tree == join234(tree, tree2));
|
|
verifytree(tree, array+1, 1);
|
|
verifytree(tree2, array, 0);
|
|
assert(tree3 == join234r(tree4, tree3));
|
|
verifytree(tree3, array, 1);
|
|
verifytree(tree4, array, 0);
|
|
assert(NULL == join234(tree, tree3));
|
|
verifytree(tree, array+1, 1);
|
|
verifytree(tree3, array, 1);
|
|
assert(tree3 == join234(tree3, tree));
|
|
verifytree(tree3, array, 2);
|
|
verifytree(tree, array, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0 /* sorted list of strings might be useful */
|
|
{
|
|
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x",
|
|
}
|
|
#endif
|