mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

more general-purpose flags word for some time now. Rename it to `flags'. [originally from svn r6414]
1783 lines
52 KiB
C
1783 lines
52 KiB
C
/*
|
|
* dominosa.c: Domino jigsaw puzzle. Aim to place one of every
|
|
* possible domino within a rectangle in such a way that the number
|
|
* on each square matches the provided clue.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - improve solver so as to use more interesting forms of
|
|
* deduction
|
|
*
|
|
* * rule out a domino placement if it would divide an unfilled
|
|
* region such that at least one resulting region had an odd
|
|
* area
|
|
* + use b.f.s. to determine the area of an unfilled region
|
|
* + a square is unfilled iff it has at least two possible
|
|
* placements, and two adjacent unfilled squares are part
|
|
* of the same region iff the domino placement joining
|
|
* them is possible
|
|
*
|
|
* * perhaps set analysis
|
|
* + look at all unclaimed squares containing a given number
|
|
* + for each one, find the set of possible numbers that it
|
|
* can connect to (i.e. each neighbouring tile such that
|
|
* the placement between it and that neighbour has not yet
|
|
* been ruled out)
|
|
* + now proceed similarly to Solo set analysis: try to find
|
|
* a subset of the squares such that the union of their
|
|
* possible numbers is the same size as the subset. If so,
|
|
* rule out those possible numbers for all other squares.
|
|
* * important wrinkle: the double dominoes complicate
|
|
* matters. Connecting a number to itself uses up _two_
|
|
* of the unclaimed squares containing a number. Thus,
|
|
* when finding the initial subset we must never
|
|
* include two adjacent squares; and also, when ruling
|
|
* things out after finding the subset, we must be
|
|
* careful that we don't rule out precisely the domino
|
|
* placement that was _included_ in our set!
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/* nth triangular number */
|
|
#define TRI(n) ( (n) * ((n) + 1) / 2 )
|
|
/* number of dominoes for value n */
|
|
#define DCOUNT(n) TRI((n)+1)
|
|
/* map a pair of numbers to a unique domino index from 0 upwards. */
|
|
#define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) )
|
|
|
|
#define FLASH_TIME 0.13F
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_TEXT,
|
|
COL_DOMINO,
|
|
COL_DOMINOCLASH,
|
|
COL_DOMINOTEXT,
|
|
COL_EDGE,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int n;
|
|
int unique;
|
|
};
|
|
|
|
struct game_numbers {
|
|
int refcount;
|
|
int *numbers; /* h x w */
|
|
};
|
|
|
|
#define EDGE_L 0x100
|
|
#define EDGE_R 0x200
|
|
#define EDGE_T 0x400
|
|
#define EDGE_B 0x800
|
|
|
|
struct game_state {
|
|
game_params params;
|
|
int w, h;
|
|
struct game_numbers *numbers;
|
|
int *grid;
|
|
unsigned short *edges; /* h x w */
|
|
int completed, cheated;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = 6;
|
|
ret->unique = TRUE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
int n;
|
|
char buf[80];
|
|
|
|
switch (i) {
|
|
case 0: n = 3; break;
|
|
case 1: n = 6; break;
|
|
case 2: n = 9; break;
|
|
default: return FALSE;
|
|
}
|
|
|
|
sprintf(buf, "Up to double-%d", n);
|
|
*name = dupstr(buf);
|
|
|
|
*params = ret = snew(game_params);
|
|
ret->n = n;
|
|
ret->unique = TRUE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->n = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'a')
|
|
params->unique = FALSE;
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char buf[80];
|
|
sprintf(buf, "%d", params->n);
|
|
if (full && !params->unique)
|
|
strcat(buf, "a");
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Maximum number on dominoes";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Ensure unique solution";
|
|
ret[1].type = C_BOOLEAN;
|
|
ret[1].sval = NULL;
|
|
ret[1].ival = params->unique;
|
|
|
|
ret[2].name = NULL;
|
|
ret[2].type = C_END;
|
|
ret[2].sval = NULL;
|
|
ret[2].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = atoi(cfg[0].sval);
|
|
ret->unique = cfg[1].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->n < 1)
|
|
return "Maximum face number must be at least one";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Solver.
|
|
*/
|
|
|
|
static int find_overlaps(int w, int h, int placement, int *set)
|
|
{
|
|
int x, y, n;
|
|
|
|
n = 0; /* number of returned placements */
|
|
|
|
x = placement / 2;
|
|
y = x / w;
|
|
x %= w;
|
|
|
|
if (placement & 1) {
|
|
/*
|
|
* Horizontal domino, indexed by its left end.
|
|
*/
|
|
if (x > 0)
|
|
set[n++] = placement-2; /* horizontal domino to the left */
|
|
if (y > 0)
|
|
set[n++] = placement-2*w-1;/* vertical domino above left side */
|
|
if (y+1 < h)
|
|
set[n++] = placement-1; /* vertical domino below left side */
|
|
if (x+2 < w)
|
|
set[n++] = placement+2; /* horizontal domino to the right */
|
|
if (y > 0)
|
|
set[n++] = placement-2*w+2-1;/* vertical domino above right side */
|
|
if (y+1 < h)
|
|
set[n++] = placement+2-1; /* vertical domino below right side */
|
|
} else {
|
|
/*
|
|
* Vertical domino, indexed by its top end.
|
|
*/
|
|
if (y > 0)
|
|
set[n++] = placement-2*w; /* vertical domino above */
|
|
if (x > 0)
|
|
set[n++] = placement-2+1; /* horizontal domino left of top */
|
|
if (x+1 < w)
|
|
set[n++] = placement+1; /* horizontal domino right of top */
|
|
if (y+2 < h)
|
|
set[n++] = placement+2*w; /* vertical domino below */
|
|
if (x > 0)
|
|
set[n++] = placement-2+2*w+1;/* horizontal domino left of bottom */
|
|
if (x+1 < w)
|
|
set[n++] = placement+2*w+1;/* horizontal domino right of bottom */
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Returns 0, 1 or 2 for number of solutions. 2 means `any number
|
|
* more than one', or more accurately `we were unable to prove
|
|
* there was only one'.
|
|
*
|
|
* Outputs in a `placements' array, indexed the same way as the one
|
|
* within this function (see below); entries in there are <0 for a
|
|
* placement ruled out, 0 for an uncertain placement, and 1 for a
|
|
* definite one.
|
|
*/
|
|
static int solver(int w, int h, int n, int *grid, int *output)
|
|
{
|
|
int wh = w*h, dc = DCOUNT(n);
|
|
int *placements, *heads;
|
|
int i, j, x, y, ret;
|
|
|
|
/*
|
|
* This array has one entry for every possible domino
|
|
* placement. Vertical placements are indexed by their top
|
|
* half, at (y*w+x)*2; horizontal placements are indexed by
|
|
* their left half at (y*w+x)*2+1.
|
|
*
|
|
* This array is used to link domino placements together into
|
|
* linked lists, so that we can track all the possible
|
|
* placements of each different domino. It's also used as a
|
|
* quick means of looking up an individual placement to see
|
|
* whether we still think it's possible. Actual values stored
|
|
* in this array are -2 (placement not possible at all), -1
|
|
* (end of list), or the array index of the next item.
|
|
*
|
|
* Oh, and -3 for `not even valid', used for array indices
|
|
* which don't even represent a plausible placement.
|
|
*/
|
|
placements = snewn(2*wh, int);
|
|
for (i = 0; i < 2*wh; i++)
|
|
placements[i] = -3; /* not even valid */
|
|
|
|
/*
|
|
* This array has one entry for every domino, and it is an
|
|
* index into `placements' denoting the head of the placement
|
|
* list for that domino.
|
|
*/
|
|
heads = snewn(dc, int);
|
|
for (i = 0; i < dc; i++)
|
|
heads[i] = -1;
|
|
|
|
/*
|
|
* Set up the initial possibility lists by scanning the grid.
|
|
*/
|
|
for (y = 0; y < h-1; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int di = DINDEX(grid[y*w+x], grid[(y+1)*w+x]);
|
|
placements[(y*w+x)*2] = heads[di];
|
|
heads[di] = (y*w+x)*2;
|
|
}
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w-1; x++) {
|
|
int di = DINDEX(grid[y*w+x], grid[y*w+(x+1)]);
|
|
placements[(y*w+x)*2+1] = heads[di];
|
|
heads[di] = (y*w+x)*2+1;
|
|
}
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("before solver:\n");
|
|
for (i = 0; i <= n; i++)
|
|
for (j = 0; j <= i; j++) {
|
|
int k, m;
|
|
m = 0;
|
|
printf("%2d [%d %d]:", DINDEX(i, j), i, j);
|
|
for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
|
|
printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
while (1) {
|
|
int done_something = FALSE;
|
|
|
|
/*
|
|
* For each domino, look at its possible placements, and
|
|
* for each placement consider the placements (of any
|
|
* domino) it overlaps. Any placement overlapped by all
|
|
* placements of this domino can be ruled out.
|
|
*
|
|
* Each domino placement overlaps only six others, so we
|
|
* need not do serious set theory to work this out.
|
|
*/
|
|
for (i = 0; i < dc; i++) {
|
|
int permset[6], permlen = 0, p;
|
|
|
|
|
|
if (heads[i] == -1) { /* no placement for this domino */
|
|
ret = 0; /* therefore puzzle is impossible */
|
|
goto done;
|
|
}
|
|
for (j = heads[i]; j >= 0; j = placements[j]) {
|
|
assert(placements[j] != -2);
|
|
|
|
if (j == heads[i]) {
|
|
permlen = find_overlaps(w, h, j, permset);
|
|
} else {
|
|
int tempset[6], templen, m, n, k;
|
|
|
|
templen = find_overlaps(w, h, j, tempset);
|
|
|
|
/*
|
|
* Pathetically primitive set intersection
|
|
* algorithm, which I'm only getting away with
|
|
* because I know my sets are bounded by a very
|
|
* small size.
|
|
*/
|
|
for (m = n = 0; m < permlen; m++) {
|
|
for (k = 0; k < templen; k++)
|
|
if (tempset[k] == permset[m])
|
|
break;
|
|
if (k < templen)
|
|
permset[n++] = permset[m];
|
|
}
|
|
permlen = n;
|
|
}
|
|
}
|
|
for (p = 0; p < permlen; p++) {
|
|
j = permset[p];
|
|
if (placements[j] != -2) {
|
|
int p1, p2, di;
|
|
|
|
done_something = TRUE;
|
|
|
|
/*
|
|
* Rule out this placement. First find what
|
|
* domino it is...
|
|
*/
|
|
p1 = j / 2;
|
|
p2 = (j & 1) ? p1 + 1 : p1 + w;
|
|
di = DINDEX(grid[p1], grid[p2]);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("considering domino %d: ruling out placement %d"
|
|
" for %d\n", i, j, di);
|
|
#endif
|
|
|
|
/*
|
|
* ... then walk that domino's placement list,
|
|
* removing this placement when we find it.
|
|
*/
|
|
if (heads[di] == j)
|
|
heads[di] = placements[j];
|
|
else {
|
|
int k = heads[di];
|
|
while (placements[k] != -1 && placements[k] != j)
|
|
k = placements[k];
|
|
assert(placements[k] == j);
|
|
placements[k] = placements[j];
|
|
}
|
|
placements[j] = -2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For each square, look at the available placements
|
|
* involving that square. If all of them are for the same
|
|
* domino, then rule out any placements for that domino
|
|
* _not_ involving this square.
|
|
*/
|
|
for (i = 0; i < wh; i++) {
|
|
int list[4], k, n, adi;
|
|
|
|
x = i % w;
|
|
y = i / w;
|
|
|
|
j = 0;
|
|
if (x > 0)
|
|
list[j++] = 2*(i-1)+1;
|
|
if (x+1 < w)
|
|
list[j++] = 2*i+1;
|
|
if (y > 0)
|
|
list[j++] = 2*(i-w);
|
|
if (y+1 < h)
|
|
list[j++] = 2*i;
|
|
|
|
for (n = k = 0; k < j; k++)
|
|
if (placements[list[k]] >= -1)
|
|
list[n++] = list[k];
|
|
|
|
adi = -1;
|
|
|
|
for (j = 0; j < n; j++) {
|
|
int p1, p2, di;
|
|
k = list[j];
|
|
|
|
p1 = k / 2;
|
|
p2 = (k & 1) ? p1 + 1 : p1 + w;
|
|
di = DINDEX(grid[p1], grid[p2]);
|
|
|
|
if (adi == -1)
|
|
adi = di;
|
|
if (adi != di)
|
|
break;
|
|
}
|
|
|
|
if (j == n) {
|
|
int nn;
|
|
|
|
assert(adi >= 0);
|
|
/*
|
|
* We've found something. All viable placements
|
|
* involving this square are for domino `adi'. If
|
|
* the current placement list for that domino is
|
|
* longer than n, reduce it to precisely this
|
|
* placement list and we've done something.
|
|
*/
|
|
nn = 0;
|
|
for (k = heads[adi]; k >= 0; k = placements[k])
|
|
nn++;
|
|
if (nn > n) {
|
|
done_something = TRUE;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("considering square %d,%d: reducing placements "
|
|
"of domino %d\n", x, y, adi);
|
|
#endif
|
|
/*
|
|
* Set all other placements on the list to
|
|
* impossible.
|
|
*/
|
|
k = heads[adi];
|
|
while (k >= 0) {
|
|
int tmp = placements[k];
|
|
placements[k] = -2;
|
|
k = tmp;
|
|
}
|
|
/*
|
|
* Set up the new list.
|
|
*/
|
|
heads[adi] = list[0];
|
|
for (k = 0; k < n; k++)
|
|
placements[list[k]] = (k+1 == n ? -1 : list[k+1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!done_something)
|
|
break;
|
|
}
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("after solver:\n");
|
|
for (i = 0; i <= n; i++)
|
|
for (j = 0; j <= i; j++) {
|
|
int k, m;
|
|
m = 0;
|
|
printf("%2d [%d %d]:", DINDEX(i, j), i, j);
|
|
for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
|
|
printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
ret = 1;
|
|
for (i = 0; i < wh*2; i++) {
|
|
if (placements[i] == -2) {
|
|
if (output)
|
|
output[i] = -1; /* ruled out */
|
|
} else if (placements[i] != -3) {
|
|
int p1, p2, di;
|
|
|
|
p1 = i / 2;
|
|
p2 = (i & 1) ? p1 + 1 : p1 + w;
|
|
di = DINDEX(grid[p1], grid[p2]);
|
|
|
|
if (i == heads[di] && placements[i] == -1) {
|
|
if (output)
|
|
output[i] = 1; /* certain */
|
|
} else {
|
|
if (output)
|
|
output[i] = 0; /* uncertain */
|
|
ret = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Free working data.
|
|
*/
|
|
sfree(placements);
|
|
sfree(heads);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* End of solver code.
|
|
*/
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1, wh = w*h;
|
|
int *grid, *grid2, *list;
|
|
int i, j, k, m, todo, done, len;
|
|
char *ret;
|
|
|
|
/*
|
|
* Allocate space in which to lay the grid out.
|
|
*/
|
|
grid = snewn(wh, int);
|
|
grid2 = snewn(wh, int);
|
|
list = snewn(2*wh, int);
|
|
|
|
/*
|
|
* I haven't been able to think of any particularly clever
|
|
* techniques for generating instances of Dominosa with a
|
|
* unique solution. Many of the deductions used in this puzzle
|
|
* are based on information involving half the grid at a time
|
|
* (`of all the 6s, exactly one is next to a 3'), so a strategy
|
|
* of partially solving the grid and then perturbing the place
|
|
* where the solver got stuck seems particularly likely to
|
|
* accidentally destroy the information which the solver had
|
|
* used in getting that far. (Contrast with, say, Mines, in
|
|
* which most deductions are local so this is an excellent
|
|
* strategy.)
|
|
*
|
|
* Therefore I resort to the basest of brute force methods:
|
|
* generate a random grid, see if it's solvable, throw it away
|
|
* and try again if not. My only concession to sophistication
|
|
* and cleverness is to at least _try_ not to generate obvious
|
|
* 2x2 ambiguous sections (see comment below in the domino-
|
|
* flipping section).
|
|
*
|
|
* During tests performed on 2005-07-15, I found that the brute
|
|
* force approach without that tweak had to throw away about 87
|
|
* grids on average (at the default n=6) before finding a
|
|
* unique one, or a staggering 379 at n=9; good job the
|
|
* generator and solver are fast! When I added the
|
|
* ambiguous-section avoidance, those numbers came down to 19
|
|
* and 26 respectively, which is a lot more sensible.
|
|
*/
|
|
|
|
do {
|
|
/*
|
|
* To begin with, set grid[i] = i for all i to indicate
|
|
* that all squares are currently singletons. Later we'll
|
|
* set grid[i] to be the index of the other end of the
|
|
* domino on i.
|
|
*/
|
|
for (i = 0; i < wh; i++)
|
|
grid[i] = i;
|
|
|
|
/*
|
|
* Now prepare a list of the possible domino locations. There
|
|
* are w*(h-1) possible vertical locations, and (w-1)*h
|
|
* horizontal ones, for a total of 2*wh - h - w.
|
|
*
|
|
* I'm going to denote the vertical domino placement with
|
|
* its top in square i as 2*i, and the horizontal one with
|
|
* its left half in square i as 2*i+1.
|
|
*/
|
|
k = 0;
|
|
for (j = 0; j < h-1; j++)
|
|
for (i = 0; i < w; i++)
|
|
list[k++] = 2 * (j*w+i); /* vertical positions */
|
|
for (j = 0; j < h; j++)
|
|
for (i = 0; i < w-1; i++)
|
|
list[k++] = 2 * (j*w+i) + 1; /* horizontal positions */
|
|
assert(k == 2*wh - h - w);
|
|
|
|
/*
|
|
* Shuffle the list.
|
|
*/
|
|
shuffle(list, k, sizeof(*list), rs);
|
|
|
|
/*
|
|
* Work down the shuffled list, placing a domino everywhere
|
|
* we can.
|
|
*/
|
|
for (i = 0; i < k; i++) {
|
|
int horiz, xy, xy2;
|
|
|
|
horiz = list[i] % 2;
|
|
xy = list[i] / 2;
|
|
xy2 = xy + (horiz ? 1 : w);
|
|
|
|
if (grid[xy] == xy && grid[xy2] == xy2) {
|
|
/*
|
|
* We can place this domino. Do so.
|
|
*/
|
|
grid[xy] = xy2;
|
|
grid[xy2] = xy;
|
|
}
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("generated initial layout\n");
|
|
#endif
|
|
|
|
/*
|
|
* Now we've placed as many dominoes as we can immediately
|
|
* manage. There will be squares remaining, but they'll be
|
|
* singletons. So loop round and deal with the singletons
|
|
* two by two.
|
|
*/
|
|
while (1) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (j = 0; j < h; j++) {
|
|
for (i = 0; i < w; i++) {
|
|
int xy = j*w+i;
|
|
int v = grid[xy];
|
|
int c = (v == xy+1 ? '[' : v == xy-1 ? ']' :
|
|
v == xy+w ? 'n' : v == xy-w ? 'U' : '.');
|
|
putchar(c);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
putchar('\n');
|
|
#endif
|
|
|
|
/*
|
|
* Our strategy is:
|
|
*
|
|
* First find a singleton square.
|
|
*
|
|
* Then breadth-first search out from the starting
|
|
* square. From that square (and any others we reach on
|
|
* the way), examine all four neighbours of the square.
|
|
* If one is an end of a domino, we move to the _other_
|
|
* end of that domino before looking at neighbours
|
|
* again. When we encounter another singleton on this
|
|
* search, stop.
|
|
*
|
|
* This will give us a path of adjacent squares such
|
|
* that all but the two ends are covered in dominoes.
|
|
* So we can now shuffle every domino on the path up by
|
|
* one.
|
|
*
|
|
* (Chessboard colours are mathematically important
|
|
* here: we always end up pairing each singleton with a
|
|
* singleton of the other colour. However, we never
|
|
* have to track this manually, since it's
|
|
* automatically taken care of by the fact that we
|
|
* always make an even number of orthogonal moves.)
|
|
*/
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] == i)
|
|
break;
|
|
if (i == wh)
|
|
break; /* no more singletons; we're done. */
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("starting b.f.s. at singleton %d\n", i);
|
|
#endif
|
|
/*
|
|
* Set grid2 to -1 everywhere. It will hold our
|
|
* distance-from-start values, and also our
|
|
* backtracking data, during the b.f.s.
|
|
*/
|
|
for (j = 0; j < wh; j++)
|
|
grid2[j] = -1;
|
|
grid2[i] = 0; /* starting square has distance zero */
|
|
|
|
/*
|
|
* Start our to-do list of squares. It'll live in
|
|
* `list'; since the b.f.s can cover every square at
|
|
* most once there is no need for it to be circular.
|
|
* We'll just have two counters tracking the end of the
|
|
* list and the squares we've already dealt with.
|
|
*/
|
|
done = 0;
|
|
todo = 1;
|
|
list[0] = i;
|
|
|
|
/*
|
|
* Now begin the b.f.s. loop.
|
|
*/
|
|
while (done < todo) {
|
|
int d[4], nd, x, y;
|
|
|
|
i = list[done++];
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("b.f.s. iteration from %d\n", i);
|
|
#endif
|
|
x = i % w;
|
|
y = i / w;
|
|
nd = 0;
|
|
if (x > 0)
|
|
d[nd++] = i - 1;
|
|
if (x+1 < w)
|
|
d[nd++] = i + 1;
|
|
if (y > 0)
|
|
d[nd++] = i - w;
|
|
if (y+1 < h)
|
|
d[nd++] = i + w;
|
|
/*
|
|
* To avoid directional bias, process the
|
|
* neighbours of this square in a random order.
|
|
*/
|
|
shuffle(d, nd, sizeof(*d), rs);
|
|
|
|
for (j = 0; j < nd; j++) {
|
|
k = d[j];
|
|
if (grid[k] == k) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("found neighbouring singleton %d\n", k);
|
|
#endif
|
|
grid2[k] = i;
|
|
break; /* found a target singleton! */
|
|
}
|
|
|
|
/*
|
|
* We're moving through a domino here, so we
|
|
* have two entries in grid2 to fill with
|
|
* useful data. In grid[k] - the square
|
|
* adjacent to where we came from - I'm going
|
|
* to put the address _of_ the square we came
|
|
* from. In the other end of the domino - the
|
|
* square from which we will continue the
|
|
* search - I'm going to put the distance.
|
|
*/
|
|
m = grid[k];
|
|
|
|
if (grid2[m] < 0 || grid2[m] > grid2[i]+1) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("found neighbouring domino %d/%d\n", k, m);
|
|
#endif
|
|
grid2[m] = grid2[i]+1;
|
|
grid2[k] = i;
|
|
/*
|
|
* And since we've now visited a new
|
|
* domino, add m to the to-do list.
|
|
*/
|
|
assert(todo < wh);
|
|
list[todo++] = m;
|
|
}
|
|
}
|
|
|
|
if (j < nd) {
|
|
i = k;
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("terminating b.f.s. loop, i = %d\n", i);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
i = -1; /* just in case the loop terminates */
|
|
}
|
|
|
|
/*
|
|
* We expect this b.f.s. to have found us a target
|
|
* square.
|
|
*/
|
|
assert(i >= 0);
|
|
|
|
/*
|
|
* Now we can follow the trail back to our starting
|
|
* singleton, re-laying dominoes as we go.
|
|
*/
|
|
while (1) {
|
|
j = grid2[i];
|
|
assert(j >= 0 && j < wh);
|
|
k = grid[j];
|
|
|
|
grid[i] = j;
|
|
grid[j] = i;
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("filling in domino %d/%d (next %d)\n", i, j, k);
|
|
#endif
|
|
if (j == k)
|
|
break; /* we've reached the other singleton */
|
|
i = k;
|
|
}
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("fixup path completed\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Now we have a complete layout covering the whole
|
|
* rectangle with dominoes. So shuffle the actual domino
|
|
* values and fill the rectangle with numbers.
|
|
*/
|
|
k = 0;
|
|
for (i = 0; i <= params->n; i++)
|
|
for (j = 0; j <= i; j++) {
|
|
list[k++] = i;
|
|
list[k++] = j;
|
|
}
|
|
shuffle(list, k/2, 2*sizeof(*list), rs);
|
|
j = 0;
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] > i) {
|
|
/* Optionally flip the domino round. */
|
|
int flip = -1;
|
|
|
|
if (params->unique) {
|
|
int t1, t2;
|
|
/*
|
|
* If we're after a unique solution, we can do
|
|
* something here to improve the chances. If
|
|
* we're placing a domino so that it forms a
|
|
* 2x2 rectangle with one we've already placed,
|
|
* and if that domino and this one share a
|
|
* number, we can try not to put them so that
|
|
* the identical numbers are diagonally
|
|
* separated, because that automatically causes
|
|
* non-uniqueness:
|
|
*
|
|
* +---+ +-+-+
|
|
* |2 3| |2|3|
|
|
* +---+ -> | | |
|
|
* |4 2| |4|2|
|
|
* +---+ +-+-+
|
|
*/
|
|
t1 = i;
|
|
t2 = grid[i];
|
|
if (t2 == t1 + w) { /* this domino is vertical */
|
|
if (t1 % w > 0 &&/* and not on the left hand edge */
|
|
grid[t1-1] == t2-1 &&/* alongside one to left */
|
|
(grid2[t1-1] == list[j] || /* and has a number */
|
|
grid2[t1-1] == list[j+1] || /* in common */
|
|
grid2[t2-1] == list[j] ||
|
|
grid2[t2-1] == list[j+1])) {
|
|
if (grid2[t1-1] == list[j] ||
|
|
grid2[t2-1] == list[j+1])
|
|
flip = 0;
|
|
else
|
|
flip = 1;
|
|
}
|
|
} else { /* this domino is horizontal */
|
|
if (t1 / w > 0 &&/* and not on the top edge */
|
|
grid[t1-w] == t2-w &&/* alongside one above */
|
|
(grid2[t1-w] == list[j] || /* and has a number */
|
|
grid2[t1-w] == list[j+1] || /* in common */
|
|
grid2[t2-w] == list[j] ||
|
|
grid2[t2-w] == list[j+1])) {
|
|
if (grid2[t1-w] == list[j] ||
|
|
grid2[t2-w] == list[j+1])
|
|
flip = 0;
|
|
else
|
|
flip = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flip < 0)
|
|
flip = random_upto(rs, 2);
|
|
|
|
grid2[i] = list[j + flip];
|
|
grid2[grid[i]] = list[j + 1 - flip];
|
|
j += 2;
|
|
}
|
|
assert(j == k);
|
|
} while (params->unique && solver(w, h, n, grid2, NULL) > 1);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (j = 0; j < h; j++) {
|
|
for (i = 0; i < w; i++) {
|
|
putchar('0' + grid2[j*w+i]);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
putchar('\n');
|
|
#endif
|
|
|
|
/*
|
|
* Encode the resulting game state.
|
|
*
|
|
* Our encoding is a string of digits. Any number greater than
|
|
* 9 is represented by a decimal integer within square
|
|
* brackets. We know there are n+2 of every number (it's paired
|
|
* with each number from 0 to n inclusive, and one of those is
|
|
* itself so that adds another occurrence), so we can work out
|
|
* the string length in advance.
|
|
*/
|
|
|
|
/*
|
|
* To work out the total length of the decimal encodings of all
|
|
* the numbers from 0 to n inclusive:
|
|
* - every number has a units digit; total is n+1.
|
|
* - all numbers above 9 have a tens digit; total is max(n+1-10,0).
|
|
* - all numbers above 99 have a hundreds digit; total is max(n+1-100,0).
|
|
* - and so on.
|
|
*/
|
|
len = n+1;
|
|
for (i = 10; i <= n; i *= 10)
|
|
len += max(n + 1 - i, 0);
|
|
/* Now add two square brackets for each number above 9. */
|
|
len += 2 * max(n + 1 - 10, 0);
|
|
/* And multiply by n+2 for the repeated occurrences of each number. */
|
|
len *= n+2;
|
|
|
|
/*
|
|
* Now actually encode the string.
|
|
*/
|
|
ret = snewn(len+1, char);
|
|
j = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
k = grid2[i];
|
|
if (k < 10)
|
|
ret[j++] = '0' + k;
|
|
else
|
|
j += sprintf(ret+j, "[%d]", k);
|
|
assert(j <= len);
|
|
}
|
|
assert(j == len);
|
|
ret[j] = '\0';
|
|
|
|
/*
|
|
* Encode the solved state as an aux_info.
|
|
*/
|
|
{
|
|
char *auxinfo = snewn(wh+1, char);
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
int v = grid[i];
|
|
auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' :
|
|
v == i+w ? 'T' : v == i-w ? 'B' : '.');
|
|
}
|
|
auxinfo[wh] = '\0';
|
|
|
|
*aux = auxinfo;
|
|
}
|
|
|
|
sfree(list);
|
|
sfree(grid2);
|
|
sfree(grid);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1, wh = w*h;
|
|
int *occurrences;
|
|
int i, j;
|
|
char *ret;
|
|
|
|
ret = NULL;
|
|
occurrences = snewn(n+1, int);
|
|
for (i = 0; i <= n; i++)
|
|
occurrences[i] = 0;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (!*desc) {
|
|
ret = ret ? ret : "Game description is too short";
|
|
} else {
|
|
if (*desc >= '0' && *desc <= '9')
|
|
j = *desc++ - '0';
|
|
else if (*desc == '[') {
|
|
desc++;
|
|
j = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc != ']')
|
|
ret = ret ? ret : "Missing ']' in game description";
|
|
else
|
|
desc++;
|
|
} else {
|
|
j = -1;
|
|
ret = ret ? ret : "Invalid syntax in game description";
|
|
}
|
|
if (j < 0 || j > n)
|
|
ret = ret ? ret : "Number out of range in game description";
|
|
else
|
|
occurrences[j]++;
|
|
}
|
|
}
|
|
|
|
if (*desc)
|
|
ret = ret ? ret : "Game description is too long";
|
|
|
|
if (!ret) {
|
|
for (i = 0; i <= n; i++)
|
|
if (occurrences[i] != n+2)
|
|
ret = "Incorrect number balance in game description";
|
|
}
|
|
|
|
sfree(occurrences);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1, wh = w*h;
|
|
game_state *state = snew(game_state);
|
|
int i, j;
|
|
|
|
state->params = *params;
|
|
state->w = w;
|
|
state->h = h;
|
|
|
|
state->grid = snewn(wh, int);
|
|
for (i = 0; i < wh; i++)
|
|
state->grid[i] = i;
|
|
|
|
state->edges = snewn(wh, unsigned short);
|
|
for (i = 0; i < wh; i++)
|
|
state->edges[i] = 0;
|
|
|
|
state->numbers = snew(struct game_numbers);
|
|
state->numbers->refcount = 1;
|
|
state->numbers->numbers = snewn(wh, int);
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
assert(*desc);
|
|
if (*desc >= '0' && *desc <= '9')
|
|
j = *desc++ - '0';
|
|
else {
|
|
assert(*desc == '[');
|
|
desc++;
|
|
j = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
assert(*desc == ']');
|
|
desc++;
|
|
}
|
|
assert(j >= 0 && j <= n);
|
|
state->numbers->numbers[i] = j;
|
|
}
|
|
|
|
state->completed = state->cheated = FALSE;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
int n = state->params.n, w = n+2, h = n+1, wh = w*h;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->params = state->params;
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->grid = snewn(wh, int);
|
|
memcpy(ret->grid, state->grid, wh * sizeof(int));
|
|
ret->edges = snewn(wh, unsigned short);
|
|
memcpy(ret->edges, state->edges, wh * sizeof(unsigned short));
|
|
ret->numbers = state->numbers;
|
|
ret->numbers->refcount++;
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
sfree(state->edges);
|
|
if (--state->numbers->refcount <= 0) {
|
|
sfree(state->numbers->numbers);
|
|
sfree(state->numbers);
|
|
}
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
int n = state->params.n, w = n+2, h = n+1, wh = w*h;
|
|
int *placements;
|
|
char *ret;
|
|
int retlen, retsize;
|
|
int i, v;
|
|
char buf[80];
|
|
int extra;
|
|
|
|
if (aux) {
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = sprintf(ret, "S");
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (aux[i] == 'L')
|
|
extra = sprintf(buf, ";D%d,%d", i, i+1);
|
|
else if (aux[i] == 'T')
|
|
extra = sprintf(buf, ";D%d,%d", i, i+w);
|
|
else
|
|
continue;
|
|
|
|
if (retlen + extra + 1 >= retsize) {
|
|
retsize = retlen + extra + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += extra;
|
|
}
|
|
|
|
} else {
|
|
|
|
placements = snewn(wh*2, int);
|
|
for (i = 0; i < wh*2; i++)
|
|
placements[i] = -3;
|
|
solver(w, h, n, state->numbers->numbers, placements);
|
|
|
|
/*
|
|
* First make a pass putting in edges for -1, then make a pass
|
|
* putting in dominoes for +1.
|
|
*/
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = sprintf(ret, "S");
|
|
|
|
for (v = -1; v <= +1; v += 2)
|
|
for (i = 0; i < wh*2; i++)
|
|
if (placements[i] == v) {
|
|
int p1 = i / 2;
|
|
int p2 = (i & 1) ? p1+1 : p1+w;
|
|
|
|
extra = sprintf(buf, ";%c%d,%d",
|
|
(int)(v==-1 ? 'E' : 'D'), p1, p2);
|
|
|
|
if (retlen + extra + 1 >= retsize) {
|
|
retsize = retlen + extra + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += extra;
|
|
}
|
|
|
|
sfree(placements);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
#define PREFERRED_TILESIZE 32
|
|
#define TILESIZE (ds->tilesize)
|
|
#define BORDER (TILESIZE * 3 / 4)
|
|
#define DOMINO_GUTTER (TILESIZE / 16)
|
|
#define DOMINO_RADIUS (TILESIZE / 8)
|
|
#define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
|
|
|
|
#define COORD(x) ( (x) * TILESIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h, tilesize;
|
|
unsigned long *visible;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
char buf[80];
|
|
|
|
/*
|
|
* A left-click between two numbers toggles a domino covering
|
|
* them. A right-click toggles an edge.
|
|
*/
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx;
|
|
int dx, dy;
|
|
int d1, d2;
|
|
|
|
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
|
|
return NULL;
|
|
|
|
/*
|
|
* Now we know which square the click was in, decide which
|
|
* edge of the square it was closest to.
|
|
*/
|
|
dx = 2 * (x - COORD(tx)) - TILESIZE;
|
|
dy = 2 * (y - COORD(ty)) - TILESIZE;
|
|
|
|
if (abs(dx) > abs(dy) && dx < 0 && tx > 0)
|
|
d1 = t - 1, d2 = t; /* clicked in right side of domino */
|
|
else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w)
|
|
d1 = t, d2 = t + 1; /* clicked in left side of domino */
|
|
else if (abs(dy) > abs(dx) && dy < 0 && ty > 0)
|
|
d1 = t - w, d2 = t; /* clicked in bottom half of domino */
|
|
else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h)
|
|
d1 = t, d2 = t + w; /* clicked in top half of domino */
|
|
else
|
|
return NULL;
|
|
|
|
/*
|
|
* We can't mark an edge next to any domino.
|
|
*/
|
|
if (button == RIGHT_BUTTON &&
|
|
(state->grid[d1] != d1 || state->grid[d2] != d2))
|
|
return NULL;
|
|
|
|
sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
int n = state->params.n, w = n+2, h = n+1, wh = w*h;
|
|
int d1, d2, d3, p;
|
|
game_state *ret = dup_game(state);
|
|
|
|
while (*move) {
|
|
if (move[0] == 'S') {
|
|
int i;
|
|
|
|
ret->cheated = TRUE;
|
|
|
|
/*
|
|
* Clear the existing edges and domino placements. We
|
|
* expect the S to be followed by other commands.
|
|
*/
|
|
for (i = 0; i < wh; i++) {
|
|
ret->grid[i] = i;
|
|
ret->edges[i] = 0;
|
|
}
|
|
move++;
|
|
} else if (move[0] == 'D' &&
|
|
sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
|
|
d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) {
|
|
|
|
/*
|
|
* Toggle domino presence between d1 and d2.
|
|
*/
|
|
if (ret->grid[d1] == d2) {
|
|
assert(ret->grid[d2] == d1);
|
|
ret->grid[d1] = d1;
|
|
ret->grid[d2] = d2;
|
|
} else {
|
|
/*
|
|
* Erase any dominoes that might overlap the new one.
|
|
*/
|
|
d3 = ret->grid[d1];
|
|
if (d3 != d1)
|
|
ret->grid[d3] = d3;
|
|
d3 = ret->grid[d2];
|
|
if (d3 != d2)
|
|
ret->grid[d3] = d3;
|
|
/*
|
|
* Place the new one.
|
|
*/
|
|
ret->grid[d1] = d2;
|
|
ret->grid[d2] = d1;
|
|
|
|
/*
|
|
* Destroy any edges lurking around it.
|
|
*/
|
|
if (ret->edges[d1] & EDGE_L) {
|
|
assert(d1 - 1 >= 0);
|
|
ret->edges[d1 - 1] &= ~EDGE_R;
|
|
}
|
|
if (ret->edges[d1] & EDGE_R) {
|
|
assert(d1 + 1 < wh);
|
|
ret->edges[d1 + 1] &= ~EDGE_L;
|
|
}
|
|
if (ret->edges[d1] & EDGE_T) {
|
|
assert(d1 - w >= 0);
|
|
ret->edges[d1 - w] &= ~EDGE_B;
|
|
}
|
|
if (ret->edges[d1] & EDGE_B) {
|
|
assert(d1 + 1 < wh);
|
|
ret->edges[d1 + w] &= ~EDGE_T;
|
|
}
|
|
ret->edges[d1] = 0;
|
|
if (ret->edges[d2] & EDGE_L) {
|
|
assert(d2 - 1 >= 0);
|
|
ret->edges[d2 - 1] &= ~EDGE_R;
|
|
}
|
|
if (ret->edges[d2] & EDGE_R) {
|
|
assert(d2 + 1 < wh);
|
|
ret->edges[d2 + 1] &= ~EDGE_L;
|
|
}
|
|
if (ret->edges[d2] & EDGE_T) {
|
|
assert(d2 - w >= 0);
|
|
ret->edges[d2 - w] &= ~EDGE_B;
|
|
}
|
|
if (ret->edges[d2] & EDGE_B) {
|
|
assert(d2 + 1 < wh);
|
|
ret->edges[d2 + w] &= ~EDGE_T;
|
|
}
|
|
ret->edges[d2] = 0;
|
|
}
|
|
|
|
move += p+1;
|
|
} else if (move[0] == 'E' &&
|
|
sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
|
|
d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 &&
|
|
ret->grid[d1] == d1 && ret->grid[d2] == d2) {
|
|
|
|
/*
|
|
* Toggle edge presence between d1 and d2.
|
|
*/
|
|
if (d2 == d1 + 1) {
|
|
ret->edges[d1] ^= EDGE_R;
|
|
ret->edges[d2] ^= EDGE_L;
|
|
} else {
|
|
ret->edges[d1] ^= EDGE_B;
|
|
ret->edges[d2] ^= EDGE_T;
|
|
}
|
|
|
|
move += p+1;
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
if (*move) {
|
|
if (*move != ';') {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
move++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After modifying the grid, check completion.
|
|
*/
|
|
if (!ret->completed) {
|
|
int i, ok = 0;
|
|
unsigned char *used = snewn(TRI(n+1), unsigned char);
|
|
|
|
memset(used, 0, TRI(n+1));
|
|
for (i = 0; i < wh; i++)
|
|
if (ret->grid[i] > i) {
|
|
int n1, n2, di;
|
|
|
|
n1 = ret->numbers->numbers[i];
|
|
n2 = ret->numbers->numbers[ret->grid[i]];
|
|
|
|
di = DINDEX(n1, n2);
|
|
assert(di >= 0 && di < TRI(n+1));
|
|
|
|
if (!used[di]) {
|
|
used[di] = 1;
|
|
ok++;
|
|
}
|
|
}
|
|
|
|
sfree(used);
|
|
if (ok == DCOUNT(n))
|
|
ret->completed = TRUE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = w * TILESIZE + 2*BORDER;
|
|
*y = h * TILESIZE + 2*BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_TEXT * 3 + 0] = 0.0F;
|
|
ret[COL_TEXT * 3 + 1] = 0.0F;
|
|
ret[COL_TEXT * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DOMINO * 3 + 0] = 0.0F;
|
|
ret[COL_DOMINO * 3 + 1] = 0.0F;
|
|
ret[COL_DOMINO * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DOMINOCLASH * 3 + 0] = 0.5F;
|
|
ret[COL_DOMINOCLASH * 3 + 1] = 0.0F;
|
|
ret[COL_DOMINOCLASH * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DOMINOTEXT * 3 + 0] = 1.0F;
|
|
ret[COL_DOMINOTEXT * 3 + 1] = 1.0F;
|
|
ret[COL_DOMINOTEXT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3;
|
|
ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3;
|
|
ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->visible = snewn(ds->w * ds->h, unsigned long);
|
|
ds->tilesize = 0; /* not decided yet */
|
|
for (i = 0; i < ds->w * ds->h; i++)
|
|
ds->visible[i] = 0xFFFF;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
enum {
|
|
TYPE_L,
|
|
TYPE_R,
|
|
TYPE_T,
|
|
TYPE_B,
|
|
TYPE_BLANK,
|
|
TYPE_MASK = 0x0F
|
|
};
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
|
|
int x, int y, int type)
|
|
{
|
|
int w = state->w /*, h = state->h */;
|
|
int cx = COORD(x), cy = COORD(y);
|
|
int nc;
|
|
char str[80];
|
|
int flags;
|
|
|
|
draw_rect(dr, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND);
|
|
|
|
flags = type &~ TYPE_MASK;
|
|
type &= TYPE_MASK;
|
|
|
|
if (type != TYPE_BLANK) {
|
|
int i, bg;
|
|
|
|
/*
|
|
* Draw one end of a domino. This is composed of:
|
|
*
|
|
* - two filled circles (rounded corners)
|
|
* - two rectangles
|
|
* - a slight shift in the number
|
|
*/
|
|
|
|
if (flags & 0x80)
|
|
bg = COL_DOMINOCLASH;
|
|
else
|
|
bg = COL_DOMINO;
|
|
nc = COL_DOMINOTEXT;
|
|
|
|
if (flags & 0x40) {
|
|
int tmp = nc;
|
|
nc = bg;
|
|
bg = tmp;
|
|
}
|
|
|
|
if (type == TYPE_L || type == TYPE_T)
|
|
draw_circle(dr, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
if (type == TYPE_R || type == TYPE_T)
|
|
draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
if (type == TYPE_L || type == TYPE_B)
|
|
draw_circle(dr, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
if (type == TYPE_R || type == TYPE_B)
|
|
draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET,
|
|
cy+TILESIZE-1-DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
int x1, y1, x2, y2;
|
|
|
|
x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET);
|
|
y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER);
|
|
x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET);
|
|
y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER);
|
|
if (type == TYPE_L)
|
|
x2 = cx + TILESIZE + TILESIZE/16;
|
|
else if (type == TYPE_R)
|
|
x1 = cx - TILESIZE/16;
|
|
else if (type == TYPE_T)
|
|
y2 = cy + TILESIZE + TILESIZE/16;
|
|
else if (type == TYPE_B)
|
|
y1 = cy - TILESIZE/16;
|
|
|
|
draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
|
|
}
|
|
} else {
|
|
if (flags & EDGE_T)
|
|
draw_rect(dr, cx+DOMINO_GUTTER, cy,
|
|
TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
|
|
if (flags & EDGE_B)
|
|
draw_rect(dr, cx+DOMINO_GUTTER, cy+TILESIZE-1,
|
|
TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
|
|
if (flags & EDGE_L)
|
|
draw_rect(dr, cx, cy+DOMINO_GUTTER,
|
|
1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
|
|
if (flags & EDGE_R)
|
|
draw_rect(dr, cx+TILESIZE-1, cy+DOMINO_GUTTER,
|
|
1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
|
|
nc = COL_TEXT;
|
|
}
|
|
|
|
sprintf(str, "%d", state->numbers->numbers[y*w+x]);
|
|
draw_text(dr, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2,
|
|
ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str);
|
|
|
|
draw_update(dr, cx, cy, TILESIZE, TILESIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int n = state->params.n, w = state->w, h = state->h, wh = w*h;
|
|
int x, y, i;
|
|
unsigned char *used;
|
|
|
|
if (!ds->started) {
|
|
int pw, ph;
|
|
game_compute_size(&state->params, TILESIZE, &pw, &ph);
|
|
draw_rect(dr, 0, 0, pw, ph, COL_BACKGROUND);
|
|
draw_update(dr, 0, 0, pw, ph);
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
/*
|
|
* See how many dominoes of each type there are, so we can
|
|
* highlight clashes in red.
|
|
*/
|
|
used = snewn(TRI(n+1), unsigned char);
|
|
memset(used, 0, TRI(n+1));
|
|
for (i = 0; i < wh; i++)
|
|
if (state->grid[i] > i) {
|
|
int n1, n2, di;
|
|
|
|
n1 = state->numbers->numbers[i];
|
|
n2 = state->numbers->numbers[state->grid[i]];
|
|
|
|
di = DINDEX(n1, n2);
|
|
assert(di >= 0 && di < TRI(n+1));
|
|
|
|
if (used[di] < 2)
|
|
used[di]++;
|
|
}
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int n = y*w+x;
|
|
int n1, n2, di;
|
|
unsigned long c;
|
|
|
|
if (state->grid[n] == n-1)
|
|
c = TYPE_R;
|
|
else if (state->grid[n] == n+1)
|
|
c = TYPE_L;
|
|
else if (state->grid[n] == n-w)
|
|
c = TYPE_B;
|
|
else if (state->grid[n] == n+w)
|
|
c = TYPE_T;
|
|
else
|
|
c = TYPE_BLANK;
|
|
|
|
if (c != TYPE_BLANK) {
|
|
n1 = state->numbers->numbers[n];
|
|
n2 = state->numbers->numbers[state->grid[n]];
|
|
di = DINDEX(n1, n2);
|
|
if (used[di] > 1)
|
|
c |= 0x80; /* highlight a clash */
|
|
} else {
|
|
c |= state->edges[n];
|
|
}
|
|
|
|
if (flashtime != 0)
|
|
c |= 0x40; /* we're flashing */
|
|
|
|
if (ds->visible[n] != c) {
|
|
draw_tile(dr, ds, state, x, y, c);
|
|
ds->visible[n] = c;
|
|
}
|
|
}
|
|
|
|
sfree(used);
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 6mm squares by default.
|
|
*/
|
|
game_compute_size(params, 600, &pw, &ph);
|
|
*x = pw / 100.0;
|
|
*y = ph / 100.0;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int c, x, y;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
|
|
c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_TEXT);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_DOMINO);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_DOMINOCLASH);
|
|
c = print_mono_colour(dr, 1); assert(c == COL_DOMINOTEXT);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_EDGE);
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int n = y*w+x;
|
|
unsigned long c;
|
|
|
|
if (state->grid[n] == n-1)
|
|
c = TYPE_R;
|
|
else if (state->grid[n] == n+1)
|
|
c = TYPE_L;
|
|
else if (state->grid[n] == n-w)
|
|
c = TYPE_B;
|
|
else if (state->grid[n] == n+w)
|
|
c = TYPE_T;
|
|
else
|
|
c = TYPE_BLANK;
|
|
|
|
draw_tile(dr, ds, state, x, y, c);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame dominosa
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Dominosa", "games.dominosa",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILESIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
game_wants_statusbar,
|
|
FALSE, game_timing_state,
|
|
0, /* flags */
|
|
};
|