mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

basically just so that it can divide mouse coordinates by the tile size, but is definitely not expected to _write_ to it, and it hadn't previously occurred to me that anyone might try. Therefore, interpret_move() now gets a pointer to a _const_ game_drawstate instead of a writable one. All existing puzzles cope fine with this API change (as long as the new const qualifier is also added to a couple of subfunctions to which interpret_move delegates work), except for the just-committed Undead, which somehow had ds->ascii and ui->ascii the wrong way round but is otherwise unproblematic. [originally from svn r9657]
2591 lines
74 KiB
C
2591 lines
74 KiB
C
/*
|
|
* magnets.c: implementation of janko.at 'magnets puzzle' game.
|
|
*
|
|
* http://64.233.179.104/translate_c?hl=en&u=http://www.janko.at/Raetsel/Magnete/Beispiel.htm
|
|
*
|
|
* Puzzle definition is just the size, and then the list of + (across then
|
|
* down) and - (across then down) present, then domino edges.
|
|
*
|
|
* An example:
|
|
*
|
|
* + 2 0 1
|
|
* +-----+
|
|
* 1|+ -| |1
|
|
* |-+-+ |
|
|
* 0|-|#| |1
|
|
* | +-+-|
|
|
* 2|+|- +|1
|
|
* +-----+
|
|
* 1 2 0 -
|
|
*
|
|
* 3x3:201,102,120,111,LRTT*BBLR
|
|
*
|
|
* 'Zotmeister' examples:
|
|
* 5x5:.2..1,3..1.,.2..2,2..2.,LRLRTTLRTBBT*BTTBLRBBLRLR
|
|
* 9x9:3.51...33,.2..23.13,..33.33.2,12...5.3.,**TLRTLR*,*TBLRBTLR,TBLRLRBTT,BLRTLRTBB,LRTB*TBLR,LRBLRBLRT,TTTLRLRTB,BBBTLRTB*,*LRBLRB**
|
|
*
|
|
* Janko 6x6 with solution:
|
|
* 6x6:322223,323132,232223,232223,LRTLRTTTBLRBBBTTLRLRBBLRTTLRTTBBLRBB
|
|
*
|
|
* janko 8x8:
|
|
* 8x8:34131323,23131334,43122323,21332243,LRTLRLRT,LRBTTTTB,LRTBBBBT,TTBTLRTB,BBTBTTBT,TTBTBBTB,BBTBLRBT,LRBLRLRB
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
int verbose = 0;
|
|
#endif
|
|
|
|
enum {
|
|
COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
|
|
COL_TEXT, COL_ERROR, COL_CURSOR,
|
|
COL_NEUTRAL, COL_NEGATIVE, COL_POSITIVE, COL_NOT,
|
|
NCOLOURS
|
|
};
|
|
|
|
/* Cell states. */
|
|
enum { EMPTY = 0, NEUTRAL = EMPTY, POSITIVE = 1, NEGATIVE = 2 };
|
|
|
|
#if defined DEBUGGING || defined STANDALONE_SOLVER
|
|
static const char *cellnames[3] = { "neutral", "positive", "negative" };
|
|
#define NAME(w) ( ((w) < 0 || (w) > 2) ? "(out of range)" : cellnames[(w)] )
|
|
#endif
|
|
|
|
#define GRID2CHAR(g) ( ((g) >= 0 && (g) <= 2) ? ".+-"[(g)] : '?' )
|
|
#define CHAR2GRID(c) ( (c) == '+' ? POSITIVE : (c) == '-' ? NEGATIVE : NEUTRAL )
|
|
|
|
#define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
|
|
|
|
#define OPPOSITE(x) ( ((x)*2) % 3 ) /* 0 --> 0,
|
|
1 --> 2,
|
|
2 --> 4 --> 1 */
|
|
|
|
#define FLASH_TIME 0.7F
|
|
|
|
/* Macro ickery copied from slant.c */
|
|
#define DIFFLIST(A) \
|
|
A(EASY,Easy,e) \
|
|
A(TRICKY,Tricky,t)
|
|
#define ENUM(upper,title,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define ENCODE(upper,title,lower) #lower
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
enum { DIFFLIST(ENUM) DIFFCOUNT };
|
|
static char const *const magnets_diffnames[] = { DIFFLIST(TITLE) "(count)" };
|
|
static char const magnets_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
|
|
/* --------------------------------------------------------------- */
|
|
/* Game parameter functions. */
|
|
|
|
struct game_params {
|
|
int w, h, diff, stripclues;
|
|
};
|
|
|
|
#define DEFAULT_PRESET 2
|
|
|
|
static const struct game_params magnets_presets[] = {
|
|
{6, 5, DIFF_EASY, 0},
|
|
{6, 5, DIFF_TRICKY, 0},
|
|
{6, 5, DIFF_TRICKY, 1},
|
|
{8, 7, DIFF_EASY, 0},
|
|
{8, 7, DIFF_TRICKY, 0},
|
|
{8, 7, DIFF_TRICKY, 1},
|
|
{10, 9, DIFF_TRICKY, 0},
|
|
{10, 9, DIFF_TRICKY, 1}
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
*ret = magnets_presets[DEFAULT_PRESET];
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char buf[64];
|
|
|
|
if (i < 0 || i >= lenof(magnets_presets)) return FALSE;
|
|
|
|
ret = default_params();
|
|
*ret = magnets_presets[i]; /* struct copy */
|
|
*params = ret;
|
|
|
|
sprintf(buf, "%dx%d %s%s",
|
|
magnets_presets[i].w, magnets_presets[i].h,
|
|
magnets_diffnames[magnets_presets[i].diff],
|
|
magnets_presets[i].stripclues ? ", strip clues" : "");
|
|
*name = dupstr(buf);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char) *string)) ++string;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
|
|
ret->diff = DIFF_EASY;
|
|
if (*string == 'd') {
|
|
int i;
|
|
string++;
|
|
for (i = 0; i < DIFFCOUNT; i++)
|
|
if (*string == magnets_diffchars[i])
|
|
ret->diff = i;
|
|
if (*string) string++;
|
|
}
|
|
|
|
ret->stripclues = 0;
|
|
if (*string == 'S') {
|
|
string++;
|
|
ret->stripclues = 1;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char buf[256];
|
|
sprintf(buf, "%dx%d", params->w, params->h);
|
|
if (full)
|
|
sprintf(buf + strlen(buf), "d%c%s",
|
|
magnets_diffchars[params->diff],
|
|
params->stripclues ? "S" : "");
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[64];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Difficulty";
|
|
ret[2].type = C_CHOICES;
|
|
ret[2].sval = DIFFCONFIG;
|
|
ret[2].ival = params->diff;
|
|
|
|
ret[3].name = "Strip clues";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = params->stripclues;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->diff = cfg[2].ival;
|
|
ret->stripclues = cfg[3].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w < 2) return "Width must be at least one";
|
|
if (params->h < 2) return "Height must be at least one";
|
|
if (params->diff < 0 || params->diff >= DIFFCOUNT)
|
|
return "Unknown difficulty level";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* --------------------------------------------------------------- */
|
|
/* Game state allocation, deallocation. */
|
|
|
|
struct game_common {
|
|
int *dominoes; /* size w*h, dominoes[i] points to other end of domino. */
|
|
int *rowcount; /* size 3*h, array of [plus, minus, neutral] counts */
|
|
int *colcount; /* size 3*w, ditto */
|
|
int refcount;
|
|
};
|
|
|
|
#define GS_ERROR 1
|
|
#define GS_SET 2
|
|
#define GS_NOTPOSITIVE 4
|
|
#define GS_NOTNEGATIVE 8
|
|
#define GS_NOTNEUTRAL 16
|
|
#define GS_MARK 32
|
|
|
|
#define GS_NOTMASK (GS_NOTPOSITIVE|GS_NOTNEGATIVE|GS_NOTNEUTRAL)
|
|
|
|
#define NOTFLAG(w) ( (w) == NEUTRAL ? GS_NOTNEUTRAL : \
|
|
(w) == POSITIVE ? GS_NOTPOSITIVE : \
|
|
(w) == NEGATIVE ? GS_NOTNEGATIVE : \
|
|
0 )
|
|
|
|
#define POSSIBLE(f,w) (!(state->flags[(f)] & NOTFLAG(w)))
|
|
|
|
struct game_state {
|
|
int w, h, wh;
|
|
int *grid; /* size w*h, for cell state (pos/neg) */
|
|
unsigned int *flags; /* size w*h */
|
|
int solved, completed, numbered;
|
|
|
|
struct game_common *common; /* domino layout never changes. */
|
|
};
|
|
|
|
static void clear_state(game_state *ret)
|
|
{
|
|
int i;
|
|
|
|
ret->solved = ret->completed = ret->numbered = 0;
|
|
|
|
memset(ret->common->rowcount, 0, ret->h*3*sizeof(int));
|
|
memset(ret->common->colcount, 0, ret->w*3*sizeof(int));
|
|
|
|
for (i = 0; i < ret->wh; i++) {
|
|
ret->grid[i] = EMPTY;
|
|
ret->flags[i] = 0;
|
|
ret->common->dominoes[i] = i;
|
|
}
|
|
}
|
|
|
|
static game_state *new_state(int w, int h)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
memset(ret, 0, sizeof(game_state));
|
|
ret->w = w;
|
|
ret->h = h;
|
|
ret->wh = w*h;
|
|
|
|
ret->grid = snewn(ret->wh, int);
|
|
ret->flags = snewn(ret->wh, unsigned int);
|
|
|
|
ret->common = snew(struct game_common);
|
|
ret->common->refcount = 1;
|
|
|
|
ret->common->dominoes = snewn(ret->wh, int);
|
|
ret->common->rowcount = snewn(ret->h*3, int);
|
|
ret->common->colcount = snewn(ret->w*3, int);
|
|
|
|
clear_state(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *src)
|
|
{
|
|
game_state *dest = snew(game_state);
|
|
|
|
dest->w = src->w;
|
|
dest->h = src->h;
|
|
dest->wh = src->wh;
|
|
|
|
dest->solved = src->solved;
|
|
dest->completed = src->completed;
|
|
dest->numbered = src->numbered;
|
|
|
|
dest->common = src->common;
|
|
dest->common->refcount++;
|
|
|
|
dest->grid = snewn(dest->wh, int);
|
|
memcpy(dest->grid, src->grid, dest->wh*sizeof(int));
|
|
|
|
dest->flags = snewn(dest->wh, unsigned int);
|
|
memcpy(dest->flags, src->flags, dest->wh*sizeof(unsigned int));
|
|
|
|
return dest;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
state->common->refcount--;
|
|
if (state->common->refcount == 0) {
|
|
sfree(state->common->dominoes);
|
|
sfree(state->common->rowcount);
|
|
sfree(state->common->colcount);
|
|
sfree(state->common);
|
|
}
|
|
sfree(state->flags);
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
/* --------------------------------------------------------------- */
|
|
/* Game generation and reading. */
|
|
|
|
/* For a game of size w*h the game description is:
|
|
* w-sized string of column + numbers (L-R), or '.' for none
|
|
* semicolon
|
|
* h-sized string of row + numbers (T-B), or '.'
|
|
* semicolon
|
|
* w-sized string of column - numbers (L-R), or '.'
|
|
* semicolon
|
|
* h-sized string of row - numbers (T-B), or '.'
|
|
* semicolon
|
|
* w*h-sized string of 'L', 'R', 'U', 'D' for domino associations,
|
|
* or '*' for a black singleton square.
|
|
*
|
|
* for a total length of 2w + 2h + wh + 4.
|
|
*/
|
|
|
|
static char n2c(int num) { /* XXX cloned from singles.c */
|
|
if (num == -1)
|
|
return '.';
|
|
if (num < 10)
|
|
return '0' + num;
|
|
else if (num < 10+26)
|
|
return 'a' + num - 10;
|
|
else
|
|
return 'A' + num - 10 - 26;
|
|
return '?';
|
|
}
|
|
|
|
static int c2n(char c) { /* XXX cloned from singles.c */
|
|
if (isdigit((unsigned char)c))
|
|
return (int)(c - '0');
|
|
else if (c >= 'a' && c <= 'z')
|
|
return (int)(c - 'a' + 10);
|
|
else if (c >= 'A' && c <= 'Z')
|
|
return (int)(c - 'A' + 10 + 26);
|
|
return -1;
|
|
}
|
|
|
|
static char *readrow(char *desc, int n, int *array, int off, const char **prob)
|
|
{
|
|
int i, num;
|
|
char c;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
c = *desc++;
|
|
if (c == 0) goto badchar;
|
|
if (c == '.')
|
|
num = -1;
|
|
else {
|
|
num = c2n(c);
|
|
if (num < 0) goto badchar;
|
|
}
|
|
array[i*3+off] = num;
|
|
}
|
|
c = *desc++;
|
|
if (c != ',') goto badchar;
|
|
return desc;
|
|
|
|
badchar:
|
|
*prob = (c == 0) ?
|
|
"Game description too short" :
|
|
"Game description contained unexpected characters";
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game_int(game_params *params, char *desc, const char **prob)
|
|
{
|
|
game_state *state = new_state(params->w, params->h);
|
|
int x, y, idx, *count;
|
|
char c;
|
|
|
|
*prob = NULL;
|
|
|
|
/* top row, left-to-right */
|
|
desc = readrow(desc, state->w, state->common->colcount, POSITIVE, prob);
|
|
if (*prob) goto done;
|
|
|
|
/* left column, top-to-bottom */
|
|
desc = readrow(desc, state->h, state->common->rowcount, POSITIVE, prob);
|
|
if (*prob) goto done;
|
|
|
|
/* bottom row, left-to-right */
|
|
desc = readrow(desc, state->w, state->common->colcount, NEGATIVE, prob);
|
|
if (*prob) goto done;
|
|
|
|
/* right column, top-to-bottom */
|
|
desc = readrow(desc, state->h, state->common->rowcount, NEGATIVE, prob);
|
|
if (*prob) goto done;
|
|
|
|
/* Add neutral counts (== size - pos - neg) to columns and rows.
|
|
* Any singleton cells will just be treated as permanently neutral. */
|
|
count = state->common->colcount;
|
|
for (x = 0; x < state->w; x++) {
|
|
if (count[x*3+POSITIVE] < 0 || count[x*3+NEGATIVE] < 0)
|
|
count[x*3+NEUTRAL] = -1;
|
|
else {
|
|
count[x*3+NEUTRAL] =
|
|
state->h - count[x*3+POSITIVE] - count[x*3+NEGATIVE];
|
|
if (count[x*3+NEUTRAL] < 0) {
|
|
*prob = "Column counts inconsistent";
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
count = state->common->rowcount;
|
|
for (y = 0; y < state->h; y++) {
|
|
if (count[y*3+POSITIVE] < 0 || count[y*3+NEGATIVE] < 0)
|
|
count[y*3+NEUTRAL] = -1;
|
|
else {
|
|
count[y*3+NEUTRAL] =
|
|
state->w - count[y*3+POSITIVE] - count[y*3+NEGATIVE];
|
|
if (count[y*3+NEUTRAL] < 0) {
|
|
*prob = "Row counts inconsistent";
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
idx = y*state->w + x;
|
|
nextchar:
|
|
c = *desc++;
|
|
|
|
if (c == 'L') /* this square is LHS of a domino */
|
|
state->common->dominoes[idx] = idx+1;
|
|
else if (c == 'R') /* ... RHS of a domino */
|
|
state->common->dominoes[idx] = idx-1;
|
|
else if (c == 'T') /* ... top of a domino */
|
|
state->common->dominoes[idx] = idx+state->w;
|
|
else if (c == 'B') /* ... bottom of a domino */
|
|
state->common->dominoes[idx] = idx-state->w;
|
|
else if (c == '*') /* singleton */
|
|
state->common->dominoes[idx] = idx;
|
|
else if (c == ',') /* spacer, ignore */
|
|
goto nextchar;
|
|
else goto badchar;
|
|
}
|
|
}
|
|
|
|
/* Check dominoes as input are sensibly consistent
|
|
* (i.e. each end points to the other) */
|
|
for (idx = 0; idx < state->wh; idx++) {
|
|
if (state->common->dominoes[idx] < 0 ||
|
|
state->common->dominoes[idx] > state->wh ||
|
|
state->common->dominoes[state->common->dominoes[idx]] != idx) {
|
|
*prob = "Domino descriptions inconsistent";
|
|
goto done;
|
|
}
|
|
if (state->common->dominoes[idx] == idx) {
|
|
state->grid[idx] = NEUTRAL;
|
|
state->flags[idx] |= GS_SET;
|
|
}
|
|
}
|
|
/* Success. */
|
|
state->numbered = 1;
|
|
goto done;
|
|
|
|
badchar:
|
|
*prob = (c == 0) ?
|
|
"Game description too short" :
|
|
"Game description contained unexpected characters";
|
|
|
|
done:
|
|
if (*prob) {
|
|
free_game(state);
|
|
return NULL;
|
|
}
|
|
return state;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
const char *prob;
|
|
game_state *st = new_game_int(params, desc, &prob);
|
|
if (!st) return (char*)prob;
|
|
free_game(st);
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
const char *prob;
|
|
game_state *st = new_game_int(params, desc, &prob);
|
|
assert(st);
|
|
return st;
|
|
}
|
|
|
|
static char *generate_desc(game_state *new)
|
|
{
|
|
int x, y, idx, other, w = new->w, h = new->h;
|
|
char *desc = snewn(new->wh + 2*(w + h) + 5, char), *p = desc;
|
|
|
|
for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+POSITIVE]);
|
|
*p++ = ',';
|
|
for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+POSITIVE]);
|
|
*p++ = ',';
|
|
|
|
for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+NEGATIVE]);
|
|
*p++ = ',';
|
|
for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+NEGATIVE]);
|
|
*p++ = ',';
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
idx = y*w + x;
|
|
other = new->common->dominoes[idx];
|
|
|
|
if (other == idx) *p++ = '*';
|
|
else if (other == idx+1) *p++ = 'L';
|
|
else if (other == idx-1) *p++ = 'R';
|
|
else if (other == idx+w) *p++ = 'T';
|
|
else if (other == idx-w) *p++ = 'B';
|
|
else assert(!"mad domino orientation");
|
|
}
|
|
}
|
|
*p = '\0';
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void game_text_hborder(game_state *state, char **p_r)
|
|
{
|
|
char *p = *p_r;
|
|
int x;
|
|
|
|
*p++ = ' ';
|
|
*p++ = '+';
|
|
for (x = 0; x < state->w*2-1; x++) *p++ = '-';
|
|
*p++ = '+';
|
|
*p++ = '\n';
|
|
|
|
*p_r = p;
|
|
}
|
|
|
|
static int game_can_format_as_text_now(game_params *params)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
int len, x, y, i;
|
|
char *ret, *p;
|
|
|
|
len = ((state->w*2)+4) * ((state->h*2)+4) + 2;
|
|
p = ret = snewn(len, char);
|
|
|
|
/* top row: '+' then column totals for plus. */
|
|
*p++ = '+';
|
|
for (x = 0; x < state->w; x++) {
|
|
*p++ = ' ';
|
|
*p++ = n2c(state->common->colcount[x*3+POSITIVE]);
|
|
}
|
|
*p++ = '\n';
|
|
|
|
/* top border. */
|
|
game_text_hborder(state, &p);
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
*p++ = n2c(state->common->rowcount[y*3+POSITIVE]);
|
|
*p++ = '|';
|
|
for (x = 0; x < state->w; x++) {
|
|
i = y*state->w+x;
|
|
*p++ = state->common->dominoes[i] == i ? '#' :
|
|
state->grid[i] == POSITIVE ? '+' :
|
|
state->grid[i] == NEGATIVE ? '-' :
|
|
state->flags[i] & GS_SET ? '*' : ' ';
|
|
if (x < (state->w-1))
|
|
*p++ = state->common->dominoes[i] == i+1 ? ' ' : '|';
|
|
}
|
|
*p++ = '|';
|
|
*p++ = n2c(state->common->rowcount[y*3+NEGATIVE]);
|
|
*p++ = '\n';
|
|
|
|
if (y < (state->h-1)) {
|
|
*p++ = ' ';
|
|
*p++ = '|';
|
|
for (x = 0; x < state->w; x++) {
|
|
i = y*state->w+x;
|
|
*p++ = state->common->dominoes[i] == i+state->w ? ' ' : '-';
|
|
if (x < (state->w-1))
|
|
*p++ = '+';
|
|
}
|
|
*p++ = '|';
|
|
*p++ = '\n';
|
|
}
|
|
}
|
|
|
|
/* bottom border. */
|
|
game_text_hborder(state, &p);
|
|
|
|
/* bottom row: column totals for minus then '-'. */
|
|
*p++ = ' ';
|
|
for (x = 0; x < state->w; x++) {
|
|
*p++ = ' ';
|
|
*p++ = n2c(state->common->colcount[x*3+NEGATIVE]);
|
|
}
|
|
*p++ = ' ';
|
|
*p++ = '-';
|
|
*p++ = '\n';
|
|
*p++ = '\0';
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void game_debug(game_state *state, const char *desc)
|
|
{
|
|
char *fmt = game_text_format(state);
|
|
debug(("%s:\n%s\n", desc, fmt));
|
|
sfree(fmt);
|
|
}
|
|
|
|
enum { ROW, COLUMN };
|
|
|
|
typedef struct rowcol {
|
|
int i, di, n, roworcol, num;
|
|
int *targets;
|
|
const char *name;
|
|
} rowcol;
|
|
|
|
static rowcol mkrowcol(game_state *state, int num, int roworcol)
|
|
{
|
|
rowcol rc;
|
|
|
|
rc.roworcol = roworcol;
|
|
rc.num = num;
|
|
|
|
if (roworcol == ROW) {
|
|
rc.i = num * state->w;
|
|
rc.di = 1;
|
|
rc.n = state->w;
|
|
rc.targets = &(state->common->rowcount[num*3]);
|
|
rc.name = "row";
|
|
} else if (roworcol == COLUMN) {
|
|
rc.i = num;
|
|
rc.di = state->w;
|
|
rc.n = state->h;
|
|
rc.targets = &(state->common->colcount[num*3]);
|
|
rc.name = "column";
|
|
} else {
|
|
assert(!"unknown roworcol");
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int count_rowcol(game_state *state, int num, int roworcol, int which)
|
|
{
|
|
int i, count = 0;
|
|
rowcol rc = mkrowcol(state, num, roworcol);
|
|
|
|
for (i = 0; i < rc.n; i++, rc.i += rc.di) {
|
|
if (which < 0) {
|
|
if (state->grid[rc.i] == EMPTY &&
|
|
!(state->flags[rc.i] & GS_SET))
|
|
count++;
|
|
} else if (state->grid[rc.i] == which)
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static void check_rowcol(game_state *state, int num, int roworcol, int which,
|
|
int *wrong, int *incomplete)
|
|
{
|
|
int count, target = mkrowcol(state, num, roworcol).targets[which];
|
|
|
|
if (target == -1) return; /* no number to check against. */
|
|
|
|
count = count_rowcol(state, num, roworcol, which);
|
|
if (count < target) *incomplete = 1;
|
|
if (count > target) *wrong = 1;
|
|
}
|
|
|
|
static int check_completion(game_state *state)
|
|
{
|
|
int i, j, x, y, idx, w = state->w, h = state->h;
|
|
int which = POSITIVE, wrong = 0, incomplete = 0;
|
|
|
|
/* Check row and column counts for magnets. */
|
|
for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
|
|
for (i = 0; i < w; i++)
|
|
check_rowcol(state, i, COLUMN, which, &wrong, &incomplete);
|
|
|
|
for (i = 0; i < h; i++)
|
|
check_rowcol(state, i, ROW, which, &wrong, &incomplete);
|
|
}
|
|
/* Check each domino has been filled, and that we don't have
|
|
* touching identical terminals. */
|
|
for (i = 0; i < state->wh; i++) state->flags[i] &= ~GS_ERROR;
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
idx = y*w + x;
|
|
if (state->common->dominoes[idx] == idx)
|
|
continue; /* no domino here */
|
|
|
|
if (!(state->flags[idx] & GS_SET))
|
|
incomplete = 1;
|
|
|
|
which = state->grid[idx];
|
|
if (which != NEUTRAL) {
|
|
#define CHECK(xx,yy) do { \
|
|
if (INGRID(state,xx,yy) && \
|
|
(state->grid[(yy)*w+(xx)] == which)) { \
|
|
wrong = 1; \
|
|
state->flags[(yy)*w+(xx)] |= GS_ERROR; \
|
|
state->flags[y*w+x] |= GS_ERROR; \
|
|
} \
|
|
} while(0)
|
|
CHECK(x,y-1);
|
|
CHECK(x,y+1);
|
|
CHECK(x-1,y);
|
|
CHECK(x+1,y);
|
|
#undef CHECK
|
|
}
|
|
}
|
|
}
|
|
return wrong ? -1 : incomplete ? 0 : 1;
|
|
}
|
|
|
|
static const int dx[4] = {-1, 1, 0, 0};
|
|
static const int dy[4] = {0, 0, -1, 1};
|
|
|
|
static void solve_clearflags(game_state *state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < state->wh; i++) {
|
|
state->flags[i] &= ~GS_NOTMASK;
|
|
if (state->common->dominoes[i] != i)
|
|
state->flags[i] &= ~GS_SET;
|
|
}
|
|
}
|
|
|
|
/* Knowing a given cell cannot be a certain colour also tells us
|
|
* something about the other cell in that domino. */
|
|
static int solve_unflag(game_state *state, int i, int which,
|
|
const char *why, rowcol *rc)
|
|
{
|
|
int ii, ret = 0;
|
|
#if defined DEBUGGING || defined STANDALONE_SOLVER
|
|
int w = state->w;
|
|
#endif
|
|
|
|
assert(i >= 0 && i < state->wh);
|
|
ii = state->common->dominoes[i];
|
|
if (ii == i) return 0;
|
|
|
|
if (rc)
|
|
debug(("solve_unflag: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
|
|
|
|
if ((state->flags[i] & GS_SET) && (state->grid[i] == which)) {
|
|
debug(("solve_unflag: (%d,%d) already %s, cannot unflag (for %s).",
|
|
i%w, i/w, NAME(which), why));
|
|
return -1;
|
|
}
|
|
if ((state->flags[ii] & GS_SET) && (state->grid[ii] == OPPOSITE(which))) {
|
|
debug(("solve_unflag: (%d,%d) opposite already %s, cannot unflag (for %s).",
|
|
ii%w, ii/w, NAME(OPPOSITE(which)), why));
|
|
return -1;
|
|
}
|
|
if (POSSIBLE(i, which)) {
|
|
state->flags[i] |= NOTFLAG(which);
|
|
ret++;
|
|
debug(("solve_unflag: (%d,%d) CANNOT be %s (%s)",
|
|
i%w, i/w, NAME(which), why));
|
|
}
|
|
if (POSSIBLE(ii, OPPOSITE(which))) {
|
|
state->flags[ii] |= NOTFLAG(OPPOSITE(which));
|
|
ret++;
|
|
debug(("solve_unflag: (%d,%d) CANNOT be %s (%s, other half)",
|
|
ii%w, ii/w, NAME(OPPOSITE(which)), why));
|
|
}
|
|
#ifdef STANDALONE_SOLVER
|
|
if (verbose && ret) {
|
|
printf("(%d,%d)", i%w, i/w);
|
|
if (rc) printf(" in %s %d", rc->name, rc->num);
|
|
printf(" cannot be %s (%s); opposite (%d,%d) not %s.\n",
|
|
NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static int solve_unflag_surrounds(game_state *state, int i, int which)
|
|
{
|
|
int x = i%state->w, y = i/state->w, xx, yy, j, ii;
|
|
|
|
assert(INGRID(state, x, y));
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
xx = x+dx[j]; yy = y+dy[j];
|
|
if (!INGRID(state, xx, yy)) continue;
|
|
|
|
ii = yy*state->w+xx;
|
|
if (solve_unflag(state, ii, which, "adjacent to set cell", NULL) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Sets a cell to a particular colour, and also perform other
|
|
* housekeeping around that. */
|
|
static int solve_set(game_state *state, int i, int which,
|
|
const char *why, rowcol *rc)
|
|
{
|
|
int ii;
|
|
#if defined DEBUGGING || defined STANDALONE_SOLVER
|
|
int w = state->w;
|
|
#endif
|
|
|
|
ii = state->common->dominoes[i];
|
|
|
|
if (state->flags[i] & GS_SET) {
|
|
if (state->grid[i] == which) {
|
|
return 0; /* was already set and held, do nothing. */
|
|
} else {
|
|
debug(("solve_set: (%d,%d) is held and %s, cannot set to %s",
|
|
i%w, i/w, NAME(state->grid[i]), NAME(which)));
|
|
return -1;
|
|
}
|
|
}
|
|
if ((state->flags[ii] & GS_SET) && state->grid[ii] != OPPOSITE(which)) {
|
|
debug(("solve_set: (%d,%d) opposite is held and %s, cannot set to %s",
|
|
ii%w, ii/w, NAME(state->grid[ii]), NAME(OPPOSITE(which))));
|
|
return -1;
|
|
}
|
|
if (!POSSIBLE(i, which)) {
|
|
debug(("solve_set: (%d,%d) NOT %s, cannot set.", i%w, i/w, NAME(which)));
|
|
return -1;
|
|
}
|
|
if (!POSSIBLE(ii, OPPOSITE(which))) {
|
|
debug(("solve_set: (%d,%d) NOT %s, cannot set (%d,%d).",
|
|
ii%w, ii/w, NAME(OPPOSITE(which)), i%w, i/w));
|
|
return -1;
|
|
}
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
if (verbose) {
|
|
printf("(%d,%d)", i%w, i/w);
|
|
if (rc) printf(" in %s %d", rc->name, rc->num);
|
|
printf(" set to %s (%s), opposite (%d,%d) set to %s.\n",
|
|
NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
|
|
}
|
|
#endif
|
|
if (rc)
|
|
debug(("solve_set: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
|
|
debug(("solve_set: (%d,%d) setting to %s (%s), surrounds first:",
|
|
i%w, i/w, NAME(which), why));
|
|
|
|
if (which != NEUTRAL) {
|
|
if (solve_unflag_surrounds(state, i, which) < 0)
|
|
return -1;
|
|
if (solve_unflag_surrounds(state, ii, OPPOSITE(which)) < 0)
|
|
return -1;
|
|
}
|
|
|
|
state->grid[i] = which;
|
|
state->grid[ii] = OPPOSITE(which);
|
|
|
|
state->flags[i] |= GS_SET;
|
|
state->flags[ii] |= GS_SET;
|
|
|
|
debug(("solve_set: (%d,%d) set to %s (%s)", i%w, i/w, NAME(which), why));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* counts should be int[4]. */
|
|
static void solve_counts(game_state *state, rowcol rc, int *counts, int *unset)
|
|
{
|
|
int i, j, which;
|
|
|
|
assert(counts);
|
|
for (i = 0; i < 4; i++) {
|
|
counts[i] = 0;
|
|
if (unset) unset[i] = 0;
|
|
}
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) {
|
|
assert(state->grid[i] < 3);
|
|
counts[state->grid[i]]++;
|
|
} else if (unset) {
|
|
for (which = 0; which <= 2; which++) {
|
|
if (POSSIBLE(i, which))
|
|
unset[which]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int solve_checkfull(game_state *state, rowcol rc, int *counts)
|
|
{
|
|
int starti = rc.i, j, which, didsth = 0, target;
|
|
int unset[4];
|
|
|
|
assert(state->numbered); /* only useful (should only be called) if numbered. */
|
|
|
|
solve_counts(state, rc, counts, unset);
|
|
|
|
for (which = 0; which <= 2; which++) {
|
|
target = rc.targets[which];
|
|
if (target == -1) continue;
|
|
|
|
/*debug(("%s %d for %s: target %d, count %d, unset %d",
|
|
rc.name, rc.num, NAME(which),
|
|
target, counts[which], unset[which]));*/
|
|
|
|
if (target < counts[which]) {
|
|
debug(("%s %d has too many (%d) %s squares (target %d), impossible!",
|
|
rc.name, rc.num, counts[which], NAME(which), target));
|
|
return -1;
|
|
}
|
|
if (target == counts[which]) {
|
|
/* We have the correct no. of the colour in this row/column
|
|
* already; unflag all the rest. */
|
|
for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
|
|
if (state->flags[rc.i] & GS_SET) continue;
|
|
if (!POSSIBLE(rc.i, which)) continue;
|
|
|
|
if (solve_unflag(state, rc.i, which, "row/col full", &rc) < 0)
|
|
return -1;
|
|
didsth = 1;
|
|
}
|
|
} else if ((target - counts[which]) == unset[which]) {
|
|
/* We need all the remaining unset squares for this colour;
|
|
* set them all. */
|
|
for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
|
|
if (state->flags[rc.i] & GS_SET) continue;
|
|
if (!POSSIBLE(rc.i, which)) continue;
|
|
|
|
if (solve_set(state, rc.i, which, "row/col needs all unset", &rc) < 0)
|
|
return -1;
|
|
didsth = 1;
|
|
}
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solve_startflags(game_state *state)
|
|
{
|
|
int x, y, i;
|
|
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
i = y*state->w+x;
|
|
if (state->common->dominoes[i] == i) continue;
|
|
if (state->grid[i] != NEUTRAL ||
|
|
state->flags[i] & GS_SET) {
|
|
if (solve_set(state, i, state->grid[i], "initial set-and-hold", NULL) < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef int (*rowcolfn)(game_state *state, rowcol rc, int *counts);
|
|
|
|
static int solve_rowcols(game_state *state, rowcolfn fn)
|
|
{
|
|
int x, y, didsth = 0, ret;
|
|
rowcol rc;
|
|
int counts[4];
|
|
|
|
for (x = 0; x < state->w; x++) {
|
|
rc = mkrowcol(state, x, COLUMN);
|
|
solve_counts(state, rc, counts, NULL);
|
|
|
|
ret = fn(state, rc, counts);
|
|
if (ret < 0) return ret;
|
|
didsth += ret;
|
|
}
|
|
for (y = 0; y < state->h; y++) {
|
|
rc = mkrowcol(state, y, ROW);
|
|
solve_counts(state, rc, counts, NULL);
|
|
|
|
ret = fn(state, rc, counts);
|
|
if (ret < 0) return ret;
|
|
didsth += ret;
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solve_force(game_state *state)
|
|
{
|
|
int i, which, didsth = 0;
|
|
unsigned long f;
|
|
|
|
for (i = 0; i < state->wh; i++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
if (state->common->dominoes[i] == i) continue;
|
|
|
|
f = state->flags[i] & GS_NOTMASK;
|
|
which = -1;
|
|
if (f == (GS_NOTPOSITIVE|GS_NOTNEGATIVE))
|
|
which = NEUTRAL;
|
|
if (f == (GS_NOTPOSITIVE|GS_NOTNEUTRAL))
|
|
which = NEGATIVE;
|
|
if (f == (GS_NOTNEGATIVE|GS_NOTNEUTRAL))
|
|
which = POSITIVE;
|
|
if (which != -1) {
|
|
if (solve_set(state, i, which, "forced by flags", NULL) < 0)
|
|
return -1;
|
|
didsth = 1;
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solve_neither(game_state *state)
|
|
{
|
|
int i, j, didsth = 0;
|
|
|
|
for (i = 0; i < state->wh; i++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
j = state->common->dominoes[i];
|
|
if (i == j) continue;
|
|
|
|
if (((state->flags[i] & GS_NOTPOSITIVE) &&
|
|
(state->flags[j] & GS_NOTPOSITIVE)) ||
|
|
((state->flags[i] & GS_NOTNEGATIVE) &&
|
|
(state->flags[j] & GS_NOTNEGATIVE))) {
|
|
if (solve_set(state, i, NEUTRAL, "neither tile magnet", NULL) < 0)
|
|
return -1;
|
|
didsth = 1;
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solve_advancedfull(game_state *state, rowcol rc, int *counts)
|
|
{
|
|
int i, j, nfound = 0, clearpos = 0, clearneg = 0, ret = 0;
|
|
|
|
/* For this row/col, look for a domino entirely within the row where
|
|
* both ends can only be + or - (but isn't held).
|
|
* The +/- counts can thus be decremented by 1 each, and the 'unset'
|
|
* count by 2.
|
|
*
|
|
* Once that's done for all such dominoes (and they're marked), try
|
|
* and made usual deductions about rest of the row based on new totals. */
|
|
|
|
if (rc.targets[POSITIVE] == -1 && rc.targets[NEGATIVE] == -1)
|
|
return 0; /* don't have a target for either colour, nothing to do. */
|
|
if ((rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) &&
|
|
(rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]))
|
|
return 0; /* both colours are full up already, nothing to do. */
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++)
|
|
state->flags[i] &= ~GS_MARK;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
|
|
/* We're looking for a domino in our row/col, thus if
|
|
* dominoes[i] -> i+di we've found one. */
|
|
if (state->common->dominoes[i] != i+rc.di) continue;
|
|
|
|
/* We need both squares of this domino to be either + or -
|
|
* (i.e. both NOTNEUTRAL only). */
|
|
if (((state->flags[i] & GS_NOTMASK) != GS_NOTNEUTRAL) ||
|
|
((state->flags[i+rc.di] & GS_NOTMASK) != GS_NOTNEUTRAL))
|
|
continue;
|
|
|
|
debug(("Domino in %s %d at (%d,%d) must be polarised.",
|
|
rc.name, rc.num, i%state->w, i/state->w));
|
|
state->flags[i] |= GS_MARK;
|
|
state->flags[i+rc.di] |= GS_MARK;
|
|
nfound++;
|
|
}
|
|
if (nfound == 0) return 0;
|
|
|
|
/* nfound is #dominoes we matched, which will all be marked. */
|
|
counts[POSITIVE] += nfound;
|
|
counts[NEGATIVE] += nfound;
|
|
|
|
if (rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) {
|
|
debug(("%s %d has now filled POSITIVE:", rc.name, rc.num));
|
|
clearpos = 1;
|
|
}
|
|
if (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]) {
|
|
debug(("%s %d has now filled NEGATIVE:", rc.name, rc.num));
|
|
clearneg = 1;
|
|
}
|
|
|
|
if (!clearpos && !clearneg) return 0;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
if (state->flags[i] & GS_MARK) continue;
|
|
|
|
if (clearpos && !(state->flags[i] & GS_NOTPOSITIVE)) {
|
|
if (solve_unflag(state, i, POSITIVE, "row/col full (+ve) [tricky]", &rc) < 0)
|
|
return -1;
|
|
ret++;
|
|
}
|
|
if (clearneg && !(state->flags[i] & GS_NOTNEGATIVE)) {
|
|
if (solve_unflag(state, i, NEGATIVE, "row/col full (-ve) [tricky]", &rc) < 0)
|
|
return -1;
|
|
ret++;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* If we only have one neutral still to place on a row/column then no
|
|
dominoes entirely in that row/column can be neutral. */
|
|
static int solve_nonneutral(game_state *state, rowcol rc, int *counts)
|
|
{
|
|
int i, j, ret = 0;
|
|
|
|
if (rc.targets[NEUTRAL] != counts[NEUTRAL]+1)
|
|
return 0;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
if (state->common->dominoes[i] != i+rc.di) continue;
|
|
|
|
if (!(state->flags[i] & GS_NOTNEUTRAL)) {
|
|
if (solve_unflag(state, i, NEUTRAL, "single neutral in row/col [tricky]", &rc) < 0)
|
|
return -1;
|
|
ret++;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* If we need to fill all unfilled cells with +-, and we need 1 more of
|
|
* one than the other, and we have a single odd-numbered region of unfilled
|
|
* cells, that odd-numbered region must start and end with the extra number. */
|
|
static int solve_oddlength(game_state *state, rowcol rc, int *counts)
|
|
{
|
|
int i, j, ret = 0, extra, tpos, tneg;
|
|
int start = -1, length = 0, inempty = 0, startodd = -1;
|
|
|
|
/* need zero neutral cells still to find... */
|
|
if (rc.targets[NEUTRAL] != counts[NEUTRAL])
|
|
return 0;
|
|
|
|
/* ...and #positive and #negative to differ by one. */
|
|
tpos = rc.targets[POSITIVE] - counts[POSITIVE];
|
|
tneg = rc.targets[NEGATIVE] - counts[NEGATIVE];
|
|
if (tpos == tneg+1)
|
|
extra = POSITIVE;
|
|
else if (tneg == tpos+1)
|
|
extra = NEGATIVE;
|
|
else return 0;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) {
|
|
if (inempty) {
|
|
if (length % 2) {
|
|
/* we've just finished an odd-length section. */
|
|
if (startodd != -1) goto twoodd;
|
|
startodd = start;
|
|
}
|
|
inempty = 0;
|
|
}
|
|
} else {
|
|
if (inempty)
|
|
length++;
|
|
else {
|
|
start = i;
|
|
length = 1;
|
|
inempty = 1;
|
|
}
|
|
}
|
|
}
|
|
if (inempty && (length % 2)) {
|
|
if (startodd != -1) goto twoodd;
|
|
startodd = start;
|
|
}
|
|
if (startodd != -1)
|
|
ret = solve_set(state, startodd, extra, "odd-length section start", &rc);
|
|
|
|
return ret;
|
|
|
|
twoodd:
|
|
debug(("%s %d has >1 odd-length sections, starting at %d,%d and %d,%d.",
|
|
rc.name, rc.num,
|
|
startodd%state->w, startodd/state->w,
|
|
start%state->w, start/state->w));
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of remaining empty dominoes in any row/col.
|
|
* If that number is equal to the #remaining positive,
|
|
* or to the #remaining negative, no empty cells can be neutral. */
|
|
static int solve_countdominoes_neutral(game_state *state, rowcol rc, int *counts)
|
|
{
|
|
int i, j, ndom = 0, nonn = 0, ret = 0;
|
|
|
|
if ((rc.targets[POSITIVE] == -1) && (rc.targets[NEGATIVE] == -1))
|
|
return 0; /* need at least one target to compare. */
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
assert(state->grid[i] == EMPTY);
|
|
|
|
/* Skip solo cells, or second cell in domino. */
|
|
if ((state->common->dominoes[i] == i) ||
|
|
(state->common->dominoes[i] == i-rc.di))
|
|
continue;
|
|
|
|
ndom++;
|
|
}
|
|
|
|
if ((rc.targets[POSITIVE] != -1) &&
|
|
(rc.targets[POSITIVE]-counts[POSITIVE] == ndom))
|
|
nonn = 1;
|
|
if ((rc.targets[NEGATIVE] != -1) &&
|
|
(rc.targets[NEGATIVE]-counts[NEGATIVE] == ndom))
|
|
nonn = 1;
|
|
|
|
if (!nonn) return 0;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (state->flags[i] & GS_SET) continue;
|
|
|
|
if (!(state->flags[i] & GS_NOTNEUTRAL)) {
|
|
if (solve_unflag(state, i, NEUTRAL, "all dominoes +/- [tricky]", &rc) < 0)
|
|
return -1;
|
|
ret++;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int solve_domino_count(game_state *state, rowcol rc, int i, int which)
|
|
{
|
|
int nposs = 0;
|
|
|
|
/* Skip solo cells or 2nd in domino. */
|
|
if ((state->common->dominoes[i] == i) ||
|
|
(state->common->dominoes[i] == i-rc.di))
|
|
return 0;
|
|
|
|
if (state->flags[i] & GS_SET)
|
|
return 0;
|
|
|
|
if (POSSIBLE(i, which))
|
|
nposs++;
|
|
|
|
if (state->common->dominoes[i] == i+rc.di) {
|
|
/* second cell of domino is on our row: test that too. */
|
|
if (POSSIBLE(i+rc.di, which))
|
|
nposs++;
|
|
}
|
|
return nposs;
|
|
}
|
|
|
|
/* Count number of dominoes we could put each of + and - into. If it is equal
|
|
* to the #left, any domino we can only put + or - in one cell of must have it. */
|
|
static int solve_countdominoes_nonneutral(game_state *state, rowcol rc, int *counts)
|
|
{
|
|
int which, w, i, j, ndom = 0, didsth = 0, toset;
|
|
|
|
for (which = POSITIVE, w = 0; w < 2; which = OPPOSITE(which), w++) {
|
|
if (rc.targets[which] == -1) continue;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (solve_domino_count(state, rc, i, which) > 0)
|
|
ndom++;
|
|
}
|
|
|
|
if ((rc.targets[which] - counts[which]) != ndom)
|
|
continue;
|
|
|
|
for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
|
|
if (solve_domino_count(state, rc, i, which) == 1) {
|
|
if (POSSIBLE(i, which))
|
|
toset = i;
|
|
else {
|
|
/* paranoia, should have been checked by solve_domino_count. */
|
|
assert(state->common->dominoes[i] == i+rc.di);
|
|
assert(POSSIBLE(i+rc.di, which));
|
|
toset = i+rc.di;
|
|
}
|
|
if (solve_set(state, toset, which, "all empty dominoes need +/- [tricky]", &rc) < 0)
|
|
return -1;
|
|
didsth++;
|
|
}
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
/* danger, evil macro. can't use the do { ... } while(0) trick because
|
|
* the continue breaks. */
|
|
#define SOLVE_FOR_ROWCOLS(fn) \
|
|
ret = solve_rowcols(state, fn); \
|
|
if (ret < 0) { debug(("%s said impossible, cannot solve", #fn)); return -1; } \
|
|
if (ret > 0) continue
|
|
|
|
static int solve_state(game_state *state, int diff)
|
|
{
|
|
int ret;
|
|
|
|
debug(("solve_state, difficulty %s", magnets_diffnames[diff]));
|
|
|
|
solve_clearflags(state);
|
|
if (solve_startflags(state) < 0) return -1;
|
|
|
|
while (1) {
|
|
ret = solve_force(state);
|
|
if (ret > 0) continue;
|
|
if (ret < 0) return -1;
|
|
|
|
ret = solve_neither(state);
|
|
if (ret > 0) continue;
|
|
if (ret < 0) return -1;
|
|
|
|
SOLVE_FOR_ROWCOLS(solve_checkfull);
|
|
SOLVE_FOR_ROWCOLS(solve_oddlength);
|
|
|
|
if (diff < DIFF_TRICKY) break;
|
|
|
|
SOLVE_FOR_ROWCOLS(solve_advancedfull);
|
|
SOLVE_FOR_ROWCOLS(solve_nonneutral);
|
|
SOLVE_FOR_ROWCOLS(solve_countdominoes_neutral);
|
|
SOLVE_FOR_ROWCOLS(solve_countdominoes_nonneutral);
|
|
|
|
/* more ... */
|
|
|
|
break;
|
|
}
|
|
return check_completion(state);
|
|
}
|
|
|
|
|
|
static char *game_state_diff(game_state *src, game_state *dst, int issolve)
|
|
{
|
|
char *ret = NULL, buf[80], c;
|
|
int retlen = 0, x, y, i, k;
|
|
|
|
assert(src->w == dst->w && src->h == dst->h);
|
|
|
|
if (issolve) {
|
|
ret = sresize(ret, 3, char);
|
|
ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
|
|
retlen += 2;
|
|
}
|
|
for (x = 0; x < dst->w; x++) {
|
|
for (y = 0; y < dst->h; y++) {
|
|
i = y*dst->w+x;
|
|
|
|
if (src->common->dominoes[i] == i) continue;
|
|
|
|
#define APPEND do { \
|
|
ret = sresize(ret, retlen + k + 1, char); \
|
|
strcpy(ret + retlen, buf); \
|
|
retlen += k; \
|
|
} while(0)
|
|
|
|
if ((src->grid[i] != dst->grid[i]) ||
|
|
((src->flags[i] & GS_SET) != (dst->flags[i] & GS_SET))) {
|
|
if (dst->grid[i] == EMPTY && !(dst->flags[i] & GS_SET))
|
|
c = ' ';
|
|
else
|
|
c = GRID2CHAR(dst->grid[i]);
|
|
k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
|
|
APPEND;
|
|
}
|
|
}
|
|
}
|
|
debug(("game_state_diff returns %s", ret));
|
|
return ret;
|
|
}
|
|
|
|
static void solve_from_aux(game_state *state, char *aux)
|
|
{
|
|
int i;
|
|
assert(strlen(aux) == state->wh);
|
|
for (i = 0; i < state->wh; i++) {
|
|
state->grid[i] = CHAR2GRID(aux[i]);
|
|
state->flags[i] |= GS_SET;
|
|
}
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
game_state *solved = dup_game(currstate);
|
|
char *move = NULL;
|
|
int ret;
|
|
|
|
if (aux && strlen(aux) == state->wh) {
|
|
solve_from_aux(solved, aux);
|
|
goto solved;
|
|
}
|
|
|
|
if (solve_state(solved, DIFFCOUNT) > 0) goto solved;
|
|
free_game(solved);
|
|
|
|
solved = dup_game(state);
|
|
ret = solve_state(solved, DIFFCOUNT);
|
|
if (ret > 0) goto solved;
|
|
free_game(solved);
|
|
|
|
*error = (ret < 0) ? "Puzzle is impossible." : "Unable to solve puzzle.";
|
|
return NULL;
|
|
|
|
solved:
|
|
move = game_state_diff(currstate, solved, 1);
|
|
free_game(solved);
|
|
return move;
|
|
}
|
|
|
|
static int solve_unnumbered(game_state *state)
|
|
{
|
|
int i, ret;
|
|
while (1) {
|
|
ret = solve_force(state);
|
|
if (ret > 0) continue;
|
|
if (ret < 0) return -1;
|
|
|
|
ret = solve_neither(state);
|
|
if (ret > 0) continue;
|
|
if (ret < 0) return -1;
|
|
|
|
break;
|
|
}
|
|
for (i = 0; i < state->wh; i++) {
|
|
if (!(state->flags[i] & GS_SET)) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int lay_dominoes(game_state *state, random_state *rs, int *scratch)
|
|
{
|
|
int n, i, ret = 0, nlaid = 0, n_initial_neutral;
|
|
|
|
for (i = 0; i < state->wh; i++) {
|
|
scratch[i] = i;
|
|
state->grid[i] = EMPTY;
|
|
state->flags[i] = (state->common->dominoes[i] == i) ? GS_SET : 0;
|
|
}
|
|
shuffle(scratch, state->wh, sizeof(int), rs);
|
|
|
|
n_initial_neutral = (state->wh > 100) ? 5 : (state->wh / 10);
|
|
|
|
for (n = 0; n < state->wh; n++) {
|
|
/* Find a space ... */
|
|
|
|
i = scratch[n];
|
|
if (state->flags[i] & GS_SET) continue; /* already laid here. */
|
|
|
|
/* ...and lay a domino if we can. */
|
|
|
|
debug(("Laying domino at i:%d, (%d,%d)\n", i, i%state->w, i/state->w));
|
|
|
|
/* The choice of which type of domino to lay here leads to subtle differences
|
|
* in the sorts of boards that get produced. Too much bias towards magnets
|
|
* leads to games that are too easy.
|
|
*
|
|
* Currently, it lays a small set of dominoes at random as neutral, and
|
|
* then lays the rest preferring to be magnets -- however, if the
|
|
* current layout is such that a magnet won't go there, then it lays
|
|
* another neutral.
|
|
*
|
|
* The number of initially neutral dominoes is limited as grids get bigger:
|
|
* too many neutral dominoes invariably ends up with insoluble puzzle at
|
|
* this size, and the positioning process means it'll always end up laying
|
|
* more than the initial 5 anyway.
|
|
*/
|
|
|
|
/* We should always be able to lay a neutral anywhere. */
|
|
assert(!(state->flags[i] & GS_NOTNEUTRAL));
|
|
|
|
if (n < n_initial_neutral) {
|
|
debug((" ...laying neutral\n"));
|
|
ret = solve_set(state, i, NEUTRAL, "layout initial neutral", NULL);
|
|
} else {
|
|
debug((" ... preferring magnet\n"));
|
|
if (!(state->flags[i] & GS_NOTPOSITIVE))
|
|
ret = solve_set(state, i, POSITIVE, "layout", NULL);
|
|
else if (!(state->flags[i] & GS_NOTNEGATIVE))
|
|
ret = solve_set(state, i, NEGATIVE, "layout", NULL);
|
|
else
|
|
ret = solve_set(state, i, NEUTRAL, "layout", NULL);
|
|
}
|
|
if (!ret) {
|
|
debug(("Unable to lay anything at (%d,%d), giving up.",
|
|
i%state->w, i/state->w));
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
nlaid++;
|
|
ret = solve_unnumbered(state);
|
|
if (ret == -1)
|
|
debug(("solve_unnumbered decided impossible.\n"));
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
|
|
debug(("Laid %d dominoes, total %d dominoes.\n", nlaid, state->wh/2));
|
|
game_debug(state, "Final layout");
|
|
return ret;
|
|
}
|
|
|
|
static void gen_game(game_state *new, random_state *rs)
|
|
{
|
|
int ret, x, y, val;
|
|
int *scratch = snewn(new->wh, int);
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
if (verbose) printf("Generating new game...\n");
|
|
#endif
|
|
|
|
clear_state(new);
|
|
sfree(new->common->dominoes); /* bit grotty. */
|
|
new->common->dominoes = domino_layout(new->w, new->h, rs);
|
|
|
|
do {
|
|
ret = lay_dominoes(new, rs, scratch);
|
|
} while(ret == -1);
|
|
|
|
/* for each cell, update colcount/rowcount as appropriate. */
|
|
memset(new->common->colcount, 0, new->w*3*sizeof(int));
|
|
memset(new->common->rowcount, 0, new->h*3*sizeof(int));
|
|
for (x = 0; x < new->w; x++) {
|
|
for (y = 0; y < new->h; y++) {
|
|
val = new->grid[y*new->w+x];
|
|
new->common->colcount[x*3+val]++;
|
|
new->common->rowcount[y*3+val]++;
|
|
}
|
|
}
|
|
new->numbered = 1;
|
|
|
|
sfree(scratch);
|
|
}
|
|
|
|
static void generate_aux(game_state *new, char *aux)
|
|
{
|
|
int i;
|
|
for (i = 0; i < new->wh; i++)
|
|
aux[i] = GRID2CHAR(new->grid[i]);
|
|
aux[new->wh] = '\0';
|
|
}
|
|
|
|
static int check_difficulty(game_params *params, game_state *new,
|
|
random_state *rs)
|
|
{
|
|
int *scratch, *grid_correct, slen, i;
|
|
|
|
memset(new->grid, EMPTY, new->wh*sizeof(int));
|
|
|
|
if (params->diff > DIFF_EASY) {
|
|
/* If this is too easy, return. */
|
|
if (solve_state(new, params->diff-1) > 0) {
|
|
debug(("Puzzle is too easy."));
|
|
return -1;
|
|
}
|
|
}
|
|
if (solve_state(new, params->diff) <= 0) {
|
|
debug(("Puzzle is not soluble at requested difficulty."));
|
|
return -1;
|
|
}
|
|
if (!params->stripclues) return 0;
|
|
|
|
/* Copy the correct grid away. */
|
|
grid_correct = snewn(new->wh, int);
|
|
memcpy(grid_correct, new->grid, new->wh*sizeof(int));
|
|
|
|
/* Create shuffled array of side-clue locations. */
|
|
slen = new->w*2 + new->h*2;
|
|
scratch = snewn(slen, int);
|
|
for (i = 0; i < slen; i++) scratch[i] = i;
|
|
shuffle(scratch, slen, sizeof(int), rs);
|
|
|
|
/* For each clue, check whether removing it makes the puzzle unsoluble;
|
|
* put it back if so. */
|
|
for (i = 0; i < slen; i++) {
|
|
int num = scratch[i], which, roworcol, target, targetn, ret;
|
|
rowcol rc;
|
|
|
|
/* work out which clue we meant. */
|
|
if (num < new->w+new->h) { which = POSITIVE; }
|
|
else { which = NEGATIVE; num -= new->w+new->h; }
|
|
|
|
if (num < new->w) { roworcol = COLUMN; }
|
|
else { roworcol = ROW; num -= new->w; }
|
|
|
|
/* num is now the row/column index in question. */
|
|
rc = mkrowcol(new, num, roworcol);
|
|
|
|
/* Remove clue, storing original... */
|
|
target = rc.targets[which];
|
|
targetn = rc.targets[NEUTRAL];
|
|
rc.targets[which] = -1;
|
|
rc.targets[NEUTRAL] = -1;
|
|
|
|
/* ...and see if we can still solve it. */
|
|
game_debug(new, "removed clue, new board:");
|
|
memset(new->grid, EMPTY, new->wh * sizeof(int));
|
|
ret = solve_state(new, params->diff);
|
|
assert(ret != -1);
|
|
|
|
if (ret == 0 ||
|
|
memcmp(new->grid, grid_correct, new->wh*sizeof(int)) != 0) {
|
|
/* We made it ambiguous: put clue back. */
|
|
debug(("...now impossible/different, put clue back."));
|
|
rc.targets[which] = target;
|
|
rc.targets[NEUTRAL] = targetn;
|
|
}
|
|
}
|
|
sfree(scratch);
|
|
sfree(grid_correct);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux_r, int interactive)
|
|
{
|
|
game_state *new = new_state(params->w, params->h);
|
|
char *desc, *aux = snewn(new->wh+1, char);
|
|
|
|
do {
|
|
gen_game(new, rs);
|
|
generate_aux(new, aux);
|
|
} while (check_difficulty(params, new, rs) < 0);
|
|
|
|
/* now we're complete, generate the description string
|
|
* and an aux_info for the completed game. */
|
|
desc = generate_desc(new);
|
|
|
|
free_game(new);
|
|
|
|
*aux_r = aux;
|
|
return desc;
|
|
}
|
|
|
|
struct game_ui {
|
|
int cur_x, cur_y, cur_visible;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->cur_x = ui->cur_y = 0;
|
|
ui->cur_visible = 0;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
if (!oldstate->completed && newstate->completed)
|
|
ui->cur_visible = 0;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int tilesize, started, solved;
|
|
int w, h;
|
|
unsigned long *what; /* size w*h */
|
|
unsigned long *colwhat, *rowwhat; /* size 3*w, 3*h */
|
|
};
|
|
|
|
#define DS_WHICH_MASK 0xf
|
|
|
|
#define DS_ERROR 0x10
|
|
#define DS_CURSOR 0x20
|
|
#define DS_SET 0x40
|
|
#define DS_FULL 0x80
|
|
#define DS_NOTPOS 0x100
|
|
#define DS_NOTNEG 0x200
|
|
#define DS_NOTNEU 0x400
|
|
#define DS_FLASH 0x800
|
|
|
|
#define PREFERRED_TILE_SIZE 32
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE / 8)
|
|
|
|
#define COORD(x) ( (x+1) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( (x - BORDER) / TILE_SIZE - 1 )
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int gx = FROMCOORD(x), gy = FROMCOORD(y), idx, curr;
|
|
char *nullret = NULL, buf[80], movech;
|
|
enum { CYCLE_MAGNET, CYCLE_NEUTRAL } action;
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
}
|
|
action = (button == CURSOR_SELECT) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
|
|
gx = ui->cur_x;
|
|
gy = ui->cur_y;
|
|
} else if (INGRID(state, gx, gy) &&
|
|
(button == LEFT_BUTTON || button == RIGHT_BUTTON)) {
|
|
if (ui->cur_visible) {
|
|
ui->cur_visible = 0;
|
|
nullret = "";
|
|
}
|
|
action = (button == LEFT_BUTTON) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
|
|
} else
|
|
return NULL;
|
|
|
|
idx = gy * state->w + gx;
|
|
if (state->common->dominoes[idx] == idx) return nullret;
|
|
curr = state->grid[idx];
|
|
|
|
if (action == CYCLE_MAGNET) {
|
|
/* ... empty --> positive --> negative --> empty ... */
|
|
|
|
if (state->grid[idx] == NEUTRAL && state->flags[idx] & GS_SET)
|
|
return nullret; /* can't cycle a magnet from a neutral. */
|
|
movech = (curr == EMPTY) ? '+' : (curr == POSITIVE) ? '-' : ' ';
|
|
} else if (action == CYCLE_NEUTRAL) {
|
|
/* ... empty -> neutral -> !neutral --> empty ... */
|
|
|
|
if (state->grid[idx] != NEUTRAL)
|
|
return nullret; /* can't cycle through neutral from a magnet. */
|
|
|
|
/* All of these are grid == EMPTY == NEUTRAL; it twiddles
|
|
* combinations of flags. */
|
|
if (state->flags[idx] & GS_SET) /* neutral */
|
|
movech = '?';
|
|
else if (state->flags[idx] & GS_NOTNEUTRAL) /* !neutral */
|
|
movech = ' ';
|
|
else
|
|
movech = '.';
|
|
} else {
|
|
assert(!"unknown action");
|
|
movech = 0; /* placate optimiser */
|
|
}
|
|
|
|
sprintf(buf, "%c%d,%d", movech, gx, gy);
|
|
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
game_state *ret = dup_game(state);
|
|
int x, y, n, idx, idx2;
|
|
char c;
|
|
|
|
if (!*move) goto badmove;
|
|
while (*move) {
|
|
c = *move++;
|
|
if (c == 'S') {
|
|
ret->solved = TRUE;
|
|
n = 0;
|
|
} else if (c == '+' || c == '-' ||
|
|
c == '.' || c == ' ' || c == '?') {
|
|
if ((sscanf(move, "%d,%d%n", &x, &y, &n) != 2) ||
|
|
!INGRID(state, x, y)) goto badmove;
|
|
|
|
idx = y*state->w + x;
|
|
idx2 = state->common->dominoes[idx];
|
|
if (idx == idx2) goto badmove;
|
|
|
|
ret->flags[idx] &= ~GS_NOTMASK;
|
|
ret->flags[idx2] &= ~GS_NOTMASK;
|
|
|
|
if (c == ' ' || c == '?') {
|
|
ret->grid[idx] = EMPTY;
|
|
ret->grid[idx2] = EMPTY;
|
|
ret->flags[idx] &= ~GS_SET;
|
|
ret->flags[idx2] &= ~GS_SET;
|
|
if (c == '?') {
|
|
ret->flags[idx] |= GS_NOTNEUTRAL;
|
|
ret->flags[idx2] |= GS_NOTNEUTRAL;
|
|
}
|
|
} else {
|
|
ret->grid[idx] = CHAR2GRID(c);
|
|
ret->grid[idx2] = OPPOSITE(CHAR2GRID(c));
|
|
ret->flags[idx] |= GS_SET;
|
|
ret->flags[idx2] |= GS_SET;
|
|
}
|
|
} else
|
|
goto badmove;
|
|
|
|
move += n;
|
|
if (*move == ';') move++;
|
|
else if (*move) goto badmove;
|
|
}
|
|
if (check_completion(ret) == 1)
|
|
ret->completed = 1;
|
|
|
|
return ret;
|
|
|
|
badmove:
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * (params->w+2) + 2 * BORDER;
|
|
*y = TILE_SIZE * (params->h+2) + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_TEXT * 3 + i] = 0.0F;
|
|
ret[COL_NEGATIVE * 3 + i] = 0.0F;
|
|
ret[COL_CURSOR * 3 + i] = 0.9F;
|
|
}
|
|
|
|
ret[COL_POSITIVE * 3 + 0] = 0.8F;
|
|
ret[COL_POSITIVE * 3 + 1] = 0.0F;
|
|
ret[COL_POSITIVE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_NEUTRAL * 3 + 0] = 0.10F;
|
|
ret[COL_NEUTRAL * 3 + 1] = 0.60F;
|
|
ret[COL_NEUTRAL * 3 + 2] = 0.10F;
|
|
|
|
ret[COL_ERROR * 3 + 0] = 1.0F;
|
|
ret[COL_ERROR * 3 + 1] = 0.0F;
|
|
ret[COL_ERROR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_NOT * 3 + 0] = 0.2F;
|
|
ret[COL_NOT * 3 + 1] = 0.2F;
|
|
ret[COL_NOT * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->tilesize = ds->started = ds->solved = 0;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
|
|
ds->what = snewn(state->wh, unsigned long);
|
|
memset(ds->what, 0, state->wh*sizeof(unsigned long));
|
|
|
|
ds->colwhat = snewn(state->w*3, unsigned long);
|
|
memset(ds->colwhat, 0, state->w*3*sizeof(unsigned long));
|
|
ds->rowwhat = snewn(state->h*3, unsigned long);
|
|
memset(ds->rowwhat, 0, state->h*3*sizeof(unsigned long));
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->colwhat);
|
|
sfree(ds->rowwhat);
|
|
sfree(ds->what);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_num_col(drawing *dr, game_drawstate *ds, int rowcol, int which,
|
|
int idx, int colbg, int col, int num)
|
|
{
|
|
char buf[32];
|
|
int cx, cy, tsz;
|
|
|
|
if (num < 0) return;
|
|
|
|
sprintf(buf, "%d", num);
|
|
tsz = (strlen(buf) == 1) ? (7*TILE_SIZE/10) : (9*TILE_SIZE/10)/strlen(buf);
|
|
|
|
if (rowcol == ROW) {
|
|
cx = BORDER;
|
|
if (which == NEGATIVE) cx += TILE_SIZE * (ds->w+1);
|
|
cy = BORDER + TILE_SIZE * (idx+1);
|
|
} else {
|
|
cx = BORDER + TILE_SIZE * (idx+1);
|
|
cy = BORDER;
|
|
if (which == NEGATIVE) cy += TILE_SIZE * (ds->h+1);
|
|
}
|
|
|
|
draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, colbg);
|
|
draw_text(dr, cx + TILE_SIZE/2, cy + TILE_SIZE/2, FONT_VARIABLE, tsz,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, col, buf);
|
|
|
|
draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void draw_num(drawing *dr, game_drawstate *ds, int rowcol, int which,
|
|
int idx, unsigned long c, int num)
|
|
{
|
|
draw_num_col(dr, ds, rowcol, which, idx, COL_BACKGROUND,
|
|
(c & DS_ERROR) ? COL_ERROR : COL_TEXT, num);
|
|
}
|
|
|
|
static void draw_sym(drawing *dr, game_drawstate *ds, int x, int y, int which, int col)
|
|
{
|
|
int cx = COORD(x), cy = COORD(y);
|
|
int ccx = cx + TILE_SIZE/2, ccy = cy + TILE_SIZE/2;
|
|
int roff = TILE_SIZE/4, rsz = 2*roff+1;
|
|
int soff = TILE_SIZE/16, ssz = 2*soff+1;
|
|
|
|
if (which == POSITIVE || which == NEGATIVE) {
|
|
draw_rect(dr, ccx - roff, ccy - soff, rsz, ssz, col);
|
|
if (which == POSITIVE)
|
|
draw_rect(dr, ccx - soff, ccy - roff, ssz, rsz, col);
|
|
} else if (col == COL_NOT) {
|
|
/* not-a-neutral is a blue question mark. */
|
|
char qu[2] = { '?', 0 };
|
|
draw_text(dr, ccx, ccy, FONT_VARIABLE, 7*TILE_SIZE/10,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, col, qu);
|
|
} else {
|
|
draw_line(dr, ccx - roff, ccy - roff, ccx + roff, ccy + roff, col);
|
|
draw_line(dr, ccx + roff, ccy - roff, ccx - roff, ccy + roff, col);
|
|
}
|
|
}
|
|
|
|
enum {
|
|
TYPE_L,
|
|
TYPE_R,
|
|
TYPE_T,
|
|
TYPE_B,
|
|
TYPE_BLANK
|
|
};
|
|
|
|
/* NOT responsible for redrawing background or updating. */
|
|
static void draw_tile_col(drawing *dr, game_drawstate *ds, int *dominoes,
|
|
int x, int y, int which, int bg, int fg, int perc)
|
|
{
|
|
int cx = COORD(x), cy = COORD(y), i, other, type = TYPE_BLANK;
|
|
int gutter, radius, coffset;
|
|
|
|
/* gutter is TSZ/16 for 100%, 8*TSZ/16 (TSZ/2) for 0% */
|
|
gutter = (TILE_SIZE / 16) + ((100 - perc) * (7*TILE_SIZE / 16))/100;
|
|
radius = (perc * (TILE_SIZE / 8)) / 100;
|
|
coffset = gutter + radius;
|
|
|
|
i = y*ds->w + x;
|
|
other = dominoes[i];
|
|
|
|
if (other == i) return;
|
|
else if (other == i+1) type = TYPE_L;
|
|
else if (other == i-1) type = TYPE_R;
|
|
else if (other == i+ds->w) type = TYPE_T;
|
|
else if (other == i-ds->w) type = TYPE_B;
|
|
else assert(!"mad domino orientation");
|
|
|
|
/* domino drawing shamelessly stolen from dominosa.c. */
|
|
if (type == TYPE_L || type == TYPE_T)
|
|
draw_circle(dr, cx+coffset, cy+coffset,
|
|
radius, bg, bg);
|
|
if (type == TYPE_R || type == TYPE_T)
|
|
draw_circle(dr, cx+TILE_SIZE-1-coffset, cy+coffset,
|
|
radius, bg, bg);
|
|
if (type == TYPE_L || type == TYPE_B)
|
|
draw_circle(dr, cx+coffset, cy+TILE_SIZE-1-coffset,
|
|
radius, bg, bg);
|
|
if (type == TYPE_R || type == TYPE_B)
|
|
draw_circle(dr, cx+TILE_SIZE-1-coffset,
|
|
cy+TILE_SIZE-1-coffset,
|
|
radius, bg, bg);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
int x1, y1, x2, y2;
|
|
|
|
x1 = cx + (i ? gutter : coffset);
|
|
y1 = cy + (i ? coffset : gutter);
|
|
x2 = cx + TILE_SIZE-1 - (i ? gutter : coffset);
|
|
y2 = cy + TILE_SIZE-1 - (i ? coffset : gutter);
|
|
if (type == TYPE_L)
|
|
x2 = cx + TILE_SIZE;
|
|
else if (type == TYPE_R)
|
|
x1 = cx;
|
|
else if (type == TYPE_T)
|
|
y2 = cy + TILE_SIZE ;
|
|
else if (type == TYPE_B)
|
|
y1 = cy;
|
|
|
|
draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
|
|
}
|
|
|
|
if (fg != -1) draw_sym(dr, ds, x, y, which, fg);
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, int *dominoes,
|
|
int x, int y, unsigned long flags)
|
|
{
|
|
int cx = COORD(x), cy = COORD(y), bg, fg, perc = 100;
|
|
int which = flags & DS_WHICH_MASK;
|
|
|
|
flags &= ~DS_WHICH_MASK;
|
|
|
|
draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
|
|
|
|
if (flags & DS_CURSOR)
|
|
bg = COL_CURSOR; /* off-white white for cursor */
|
|
else if (which == POSITIVE)
|
|
bg = COL_POSITIVE;
|
|
else if (which == NEGATIVE)
|
|
bg = COL_NEGATIVE;
|
|
else if (flags & DS_SET)
|
|
bg = COL_NEUTRAL; /* green inner for neutral cells */
|
|
else
|
|
bg = COL_LOWLIGHT; /* light grey for empty cells. */
|
|
|
|
if (which == EMPTY && !(flags & DS_SET)) {
|
|
int notwhich = -1;
|
|
fg = -1; /* don't draw cross unless actually set as neutral. */
|
|
|
|
if (flags & DS_NOTPOS) notwhich = POSITIVE;
|
|
if (flags & DS_NOTNEG) notwhich = NEGATIVE;
|
|
if (flags & DS_NOTNEU) notwhich = NEUTRAL;
|
|
if (notwhich != -1) {
|
|
which = notwhich;
|
|
fg = COL_NOT;
|
|
}
|
|
} else
|
|
fg = (flags & DS_ERROR) ? COL_ERROR :
|
|
(flags & DS_CURSOR) ? COL_TEXT : COL_BACKGROUND;
|
|
|
|
draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
|
|
|
|
if (flags & DS_FLASH) {
|
|
int bordercol = COL_HIGHLIGHT;
|
|
draw_tile_col(dr, ds, dominoes, x, y, which, bordercol, -1, perc);
|
|
perc = 3*perc/4;
|
|
}
|
|
draw_tile_col(dr, ds, dominoes, x, y, which, bg, fg, perc);
|
|
|
|
draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int x, y, w = state->w, h = state->h, which, i, j, flash;
|
|
unsigned long c = 0;
|
|
|
|
flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
|
|
|
|
if (!ds->started) {
|
|
/* draw background, corner +-. */
|
|
draw_rect(dr, 0, 0,
|
|
TILE_SIZE * (w+2) + 2 * BORDER,
|
|
TILE_SIZE * (h+2) + 2 * BORDER,
|
|
COL_BACKGROUND);
|
|
|
|
draw_sym(dr, ds, -1, -1, POSITIVE, COL_TEXT);
|
|
draw_sym(dr, ds, state->w, state->h, NEGATIVE, COL_TEXT);
|
|
|
|
draw_update(dr, 0, 0,
|
|
TILE_SIZE * (ds->w+2) + 2 * BORDER,
|
|
TILE_SIZE * (ds->h+2) + 2 * BORDER);
|
|
}
|
|
|
|
/* Draw grid */
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int idx = y*w+x;
|
|
|
|
c = state->grid[idx];
|
|
|
|
if (state->flags[idx] & GS_ERROR)
|
|
c |= DS_ERROR;
|
|
if (state->flags[idx] & GS_SET)
|
|
c |= DS_SET;
|
|
|
|
if (x == ui->cur_x && y == ui->cur_y && ui->cur_visible)
|
|
c |= DS_CURSOR;
|
|
|
|
if (flash)
|
|
c |= DS_FLASH;
|
|
|
|
if (state->flags[idx] & GS_NOTPOSITIVE)
|
|
c |= DS_NOTPOS;
|
|
if (state->flags[idx] & GS_NOTNEGATIVE)
|
|
c |= DS_NOTNEG;
|
|
if (state->flags[idx] & GS_NOTNEUTRAL)
|
|
c |= DS_NOTNEU;
|
|
|
|
if (ds->what[idx] != c || !ds->started) {
|
|
draw_tile(dr, ds, state->common->dominoes, x, y, c);
|
|
ds->what[idx] = c;
|
|
}
|
|
}
|
|
}
|
|
/* Draw counts around side */
|
|
for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
|
|
int target, count;
|
|
for (i = 0; i < w; i++) {
|
|
target = state->common->colcount[i*3+which];
|
|
count = count_rowcol(state, i, COLUMN, which);
|
|
c = 0;
|
|
if ((count > target) ||
|
|
(count < target && !count_rowcol(state, i, COLUMN, -1)))
|
|
c |= DS_ERROR;
|
|
if (count == target) c |= DS_FULL;
|
|
if (c != ds->colwhat[i*3+which] || !ds->started) {
|
|
draw_num(dr, ds, COLUMN, which, i, c,
|
|
state->common->colcount[i*3+which]);
|
|
ds->colwhat[i*3+which] = c;
|
|
}
|
|
}
|
|
for (i = 0; i < h; i++) {
|
|
target = state->common->rowcount[i*3+which];
|
|
count = count_rowcol(state, i, ROW, which);
|
|
c = 0;
|
|
if ((count > target) ||
|
|
(count < target && !count_rowcol(state, i, ROW, -1)))
|
|
c |= DS_ERROR;
|
|
if (count == target) c |= DS_FULL;
|
|
if (c != ds->rowwhat[i*3+which] || !ds->started) {
|
|
draw_num(dr, ds, ROW, which, i, c,
|
|
state->common->rowcount[i*3+which]);
|
|
ds->rowwhat[i*3+which] = c;
|
|
}
|
|
}
|
|
}
|
|
|
|
ds->started = 1;
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->solved && !newstate->solved)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 6mm squares by default.
|
|
*/
|
|
game_compute_size(params, 600, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int ink = print_mono_colour(dr, 0);
|
|
int paper = print_mono_colour(dr, 1);
|
|
int x, y, which, i, j;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
ds->w = w; ds->h = h;
|
|
|
|
/* Border. */
|
|
print_line_width(dr, TILE_SIZE/12);
|
|
|
|
/* Numbers and +/- for corners. */
|
|
draw_sym(dr, ds, -1, -1, POSITIVE, ink);
|
|
draw_sym(dr, ds, state->w, state->h, NEGATIVE, ink);
|
|
for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
|
|
for (i = 0; i < w; i++) {
|
|
draw_num_col(dr, ds, COLUMN, which, i, paper, ink,
|
|
state->common->colcount[i*3+which]);
|
|
}
|
|
for (i = 0; i < h; i++) {
|
|
draw_num_col(dr, ds, ROW, which, i, paper, ink,
|
|
state->common->rowcount[i*3+which]);
|
|
}
|
|
}
|
|
|
|
/* Dominoes. */
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
i = y*state->w + x;
|
|
if (state->common->dominoes[i] == i+1 ||
|
|
state->common->dominoes[i] == i+w) {
|
|
int dx = state->common->dominoes[i] == i+1 ? 2 : 1;
|
|
int dy = 3 - dx;
|
|
int xx, yy;
|
|
int cx = COORD(x), cy = COORD(y);
|
|
|
|
print_line_width(dr, 0);
|
|
|
|
/* Ink the domino */
|
|
for (yy = 0; yy < 2; yy++)
|
|
for (xx = 0; xx < 2; xx++)
|
|
draw_circle(dr,
|
|
cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
|
|
cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
|
|
TILE_SIZE/8, ink, ink);
|
|
draw_rect(dr, cx + TILE_SIZE/16, cy + 3*TILE_SIZE/16,
|
|
dx*TILE_SIZE - 2*(TILE_SIZE/16),
|
|
dy*TILE_SIZE - 6*(TILE_SIZE/16), ink);
|
|
draw_rect(dr, cx + 3*TILE_SIZE/16, cy + TILE_SIZE/16,
|
|
dx*TILE_SIZE - 6*(TILE_SIZE/16),
|
|
dy*TILE_SIZE - 2*(TILE_SIZE/16), ink);
|
|
|
|
/* Un-ink the domino interior */
|
|
for (yy = 0; yy < 2; yy++)
|
|
for (xx = 0; xx < 2; xx++)
|
|
draw_circle(dr,
|
|
cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
|
|
cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
|
|
3*TILE_SIZE/32, paper, paper);
|
|
draw_rect(dr, cx + 3*TILE_SIZE/32, cy + 3*TILE_SIZE/16,
|
|
dx*TILE_SIZE - 2*(3*TILE_SIZE/32),
|
|
dy*TILE_SIZE - 6*(TILE_SIZE/16), paper);
|
|
draw_rect(dr, cx + 3*TILE_SIZE/16, cy + 3*TILE_SIZE/32,
|
|
dx*TILE_SIZE - 6*(TILE_SIZE/16),
|
|
dy*TILE_SIZE - 2*(3*TILE_SIZE/32), paper);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Grid symbols (solution). */
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
i = y*state->w + x;
|
|
if ((state->grid[i] != NEUTRAL) || (state->flags[i] & GS_SET))
|
|
draw_sym(dr, ds, x, y, state->grid[i], ink);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame magnets
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Magnets", "games.magnets", "magnets",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_status,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
FALSE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
REQUIRE_RBUTTON, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
#include <time.h>
|
|
#include <stdarg.h>
|
|
|
|
const char *quis = NULL;
|
|
int csv = 0;
|
|
|
|
void usage(FILE *out) {
|
|
fprintf(out, "usage: %s [-v] [--print] <params>|<game id>\n", quis);
|
|
}
|
|
|
|
void doprint(game_state *state)
|
|
{
|
|
char *fmt = game_text_format(state);
|
|
printf("%s", fmt);
|
|
sfree(fmt);
|
|
}
|
|
|
|
static void pnum(int n, int ntot, const char *desc)
|
|
{
|
|
printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
|
|
}
|
|
|
|
static void start_soak(game_params *p, random_state *rs)
|
|
{
|
|
time_t tt_start, tt_now, tt_last;
|
|
char *aux;
|
|
game_state *s, *s2;
|
|
int n = 0, nsolved = 0, nimpossible = 0, ntricky = 0, ret, i;
|
|
long nn, nn_total = 0, nn_solved = 0, nn_tricky = 0;
|
|
|
|
tt_start = tt_now = time(NULL);
|
|
|
|
if (csv)
|
|
printf("time, w, h, #generated, #solved, #tricky, #impossible, "
|
|
"#neutral, #neutral/solved, #neutral/tricky\n");
|
|
else
|
|
printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
|
|
|
|
s = new_state(p->w, p->h);
|
|
aux = snewn(s->wh+1, char);
|
|
|
|
while (1) {
|
|
gen_game(s, rs);
|
|
|
|
nn = 0;
|
|
for (i = 0; i < s->wh; i++) {
|
|
if (s->grid[i] == NEUTRAL) nn++;
|
|
}
|
|
|
|
generate_aux(s, aux);
|
|
memset(s->grid, EMPTY, s->wh * sizeof(int));
|
|
s2 = dup_game(s);
|
|
|
|
ret = solve_state(s, DIFFCOUNT);
|
|
|
|
n++;
|
|
nn_total += nn;
|
|
if (ret > 0) {
|
|
nsolved++;
|
|
nn_solved += nn;
|
|
if (solve_state(s2, DIFF_EASY) <= 0) {
|
|
ntricky++;
|
|
nn_tricky += nn;
|
|
}
|
|
} else if (ret < 0) {
|
|
char *desc = generate_desc(s);
|
|
solve_from_aux(s, aux);
|
|
printf("Game considered impossible:\n %dx%d:%s\n",
|
|
p->w, p->h, desc);
|
|
sfree(desc);
|
|
doprint(s);
|
|
nimpossible++;
|
|
}
|
|
|
|
free_game(s2);
|
|
|
|
tt_last = time(NULL);
|
|
if (tt_last > tt_now) {
|
|
tt_now = tt_last;
|
|
if (csv) {
|
|
printf("%d,%d,%d, %d,%d,%d,%d, %ld,%ld,%ld\n",
|
|
(int)(tt_now - tt_start), p->w, p->h,
|
|
n, nsolved, ntricky, nimpossible,
|
|
nn_total, nn_solved, nn_tricky);
|
|
} else {
|
|
printf("%d total, %3.1f/s, ",
|
|
n, (double)n / ((double)tt_now - tt_start));
|
|
pnum(nsolved, n, "solved"); printf(", ");
|
|
pnum(ntricky, n, "tricky");
|
|
if (nimpossible > 0)
|
|
pnum(nimpossible, n, "impossible");
|
|
printf("\n");
|
|
|
|
printf(" overall %3.1f%% neutral (%3.1f%% for solved, %3.1f%% for tricky)\n",
|
|
(double)(nn_total * 100) / (double)(p->w * p->h * n),
|
|
(double)(nn_solved * 100) / (double)(p->w * p->h * nsolved),
|
|
(double)(nn_tricky * 100) / (double)(p->w * p->h * ntricky));
|
|
}
|
|
}
|
|
}
|
|
free_game(s);
|
|
sfree(aux);
|
|
}
|
|
|
|
int main(int argc, const char *argv[])
|
|
{
|
|
int print = 0, soak = 0, solved = 0, ret;
|
|
char *id = NULL, *desc, *desc_gen = NULL, *err, *aux = NULL;
|
|
game_state *s = NULL;
|
|
game_params *p = NULL;
|
|
random_state *rs = NULL;
|
|
time_t seed = time(NULL);
|
|
|
|
setvbuf(stdout, NULL, _IONBF, 0);
|
|
|
|
quis = argv[0];
|
|
while (--argc > 0) {
|
|
char *p = (char*)(*++argv);
|
|
if (!strcmp(p, "-v") || !strcmp(p, "--verbose")) {
|
|
verbose = 1;
|
|
} else if (!strcmp(p, "--csv")) {
|
|
csv = 1;
|
|
} else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
|
|
seed = atoi(*++argv);
|
|
argc--;
|
|
} else if (!strcmp(p, "-p") || !strcmp(p, "--print")) {
|
|
print = 1;
|
|
} else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) {
|
|
soak = 1;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
usage(stderr);
|
|
exit(1);
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
rs = random_new((void*)&seed, sizeof(time_t));
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
|
|
goto done;
|
|
}
|
|
desc = strchr(id, ':');
|
|
if (desc) *desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_params(p, 1);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s", argv[0], err);
|
|
goto done;
|
|
}
|
|
|
|
if (soak) {
|
|
if (desc) {
|
|
fprintf(stderr, "%s: --soak needs parameters, not description.\n", quis);
|
|
goto done;
|
|
}
|
|
start_soak(p, rs);
|
|
goto done;
|
|
}
|
|
|
|
if (!desc)
|
|
desc = desc_gen = new_game_desc(p, rs, &aux, 0);
|
|
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc);
|
|
goto done;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
printf("%s:%s (seed %ld)\n", id, desc, seed);
|
|
if (aux) {
|
|
/* We just generated this ourself. */
|
|
if (verbose || print) {
|
|
doprint(s);
|
|
solve_from_aux(s, aux);
|
|
solved = 1;
|
|
}
|
|
} else {
|
|
doprint(s);
|
|
verbose = 1;
|
|
ret = solve_state(s, DIFFCOUNT);
|
|
if (ret < 0) printf("Puzzle is impossible.\n");
|
|
else if (ret == 0) printf("Puzzle is ambiguous.\n");
|
|
else printf("Puzzle was solved.\n");
|
|
verbose = 0;
|
|
solved = 1;
|
|
}
|
|
if (solved) doprint(s);
|
|
|
|
done:
|
|
if (desc_gen) sfree(desc_gen);
|
|
if (p) free_params(p);
|
|
if (s) free_game(s);
|
|
if (rs) random_free(rs);
|
|
if (aux) sfree(aux);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|