Files
puzzles/signpost.c
Simon Tatham 0058331aeb New backend functions: get_prefs and set_prefs.
These are similar to the existing pair configure() and custom_params()
in that get_prefs() returns an array of config_item describing a set
of dialog-box controls to present to the user, and set_prefs()
receives the same array with answers filled in and implements the
answers. But where configure() and custom_params() operate on a
game_params structure, the new pair operate on a game_ui, and are
intended to permit GUI configuration of all the settings I just moved
into that structure.

However, nothing actually _calls_ these routines yet. All I've done in
this commit is to add them to 'struct game' and implement them for the
functions that need them.

Also, config_item has new fields, permitting each config option to
define a machine-readable identifying keyword as well as the
user-facing description. For options of type C_CHOICES, each choice
also has a keyword. These keyword fields are only defined at all by
the new get_prefs() function - they're left uninitialised in existing
uses of the dialog system. The idea is to use them when writing out
the user's preferences into a configuration file on disk, although I
haven't actually done any of that work in this commit.
2023-04-23 13:25:06 +01:00

2561 lines
76 KiB
C

/*
* signpost.c: implementation of the janko game 'arrow path'
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <limits.h>
#ifdef NO_TGMATH_H
# include <math.h>
#else
# include <tgmath.h>
#endif
#include "puzzles.h"
#define PREFERRED_TILE_SIZE 48
#define TILE_SIZE (ds->tilesize)
#define BLITTER_SIZE TILE_SIZE
#define BORDER (TILE_SIZE / 2)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
#define FLASH_SPIN 0.7F
#define NBACKGROUNDS 16
enum {
COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
COL_GRID, COL_CURSOR, COL_ERROR, COL_DRAG_ORIGIN,
COL_ARROW, COL_ARROW_BG_DIM,
COL_NUMBER, COL_NUMBER_SET, COL_NUMBER_SET_MID,
COL_B0, /* background colours */
COL_M0 = COL_B0 + 1*NBACKGROUNDS, /* mid arrow colours */
COL_D0 = COL_B0 + 2*NBACKGROUNDS, /* dim arrow colours */
COL_X0 = COL_B0 + 3*NBACKGROUNDS, /* dim arrow colours */
NCOLOURS = COL_B0 + 4*NBACKGROUNDS
};
struct game_params {
int w, h;
bool force_corner_start;
};
enum { DIR_N = 0, DIR_NE, DIR_E, DIR_SE, DIR_S, DIR_SW, DIR_W, DIR_NW, DIR_MAX };
static const char *dirstrings[8] = { "N ", "NE", "E ", "SE", "S ", "SW", "W ", "NW" };
static const int dxs[DIR_MAX] = { 0, 1, 1, 1, 0, -1, -1, -1 };
static const int dys[DIR_MAX] = { -1, -1, 0, 1, 1, 1, 0, -1 };
#define DIR_OPPOSITE(d) ((d+4)%8)
struct game_state {
int w, h, n;
bool completed, used_solve, impossible;
int *dirs; /* direction enums, size n */
int *nums; /* numbers, size n */
unsigned int *flags; /* flags, size n */
int *next, *prev; /* links to other cell indexes, size n (-1 absent) */
DSF *dsf; /* connects regions with a dsf. */
int *numsi; /* for each number, which index is it in? (-1 absent) */
};
#define FLAG_IMMUTABLE 1
#define FLAG_ERROR 2
/* --- Generally useful functions --- */
#define ISREALNUM(state, num) ((num) > 0 && (num) <= (state)->n)
static int whichdir(int fromx, int fromy, int tox, int toy)
{
int i, dx, dy;
dx = tox - fromx;
dy = toy - fromy;
if (dx && dy && abs(dx) != abs(dy)) return -1;
if (dx) dx = dx / abs(dx); /* limit to (-1, 0, 1) */
if (dy) dy = dy / abs(dy); /* ditto */
for (i = 0; i < DIR_MAX; i++) {
if (dx == dxs[i] && dy == dys[i]) return i;
}
return -1;
}
static int whichdiri(game_state *state, int fromi, int toi)
{
int w = state->w;
return whichdir(fromi%w, fromi/w, toi%w, toi/w);
}
static bool ispointing(const game_state *state, int fromx, int fromy,
int tox, int toy)
{
int w = state->w, dir = state->dirs[fromy*w+fromx];
/* (by convention) squares do not point to themselves. */
if (fromx == tox && fromy == toy) return false;
/* the final number points to nothing. */
if (state->nums[fromy*w + fromx] == state->n) return false;
while (1) {
if (!INGRID(state, fromx, fromy)) return false;
if (fromx == tox && fromy == toy) return true;
fromx += dxs[dir]; fromy += dys[dir];
}
return false; /* not reached */
}
static bool ispointingi(game_state *state, int fromi, int toi)
{
int w = state->w;
return ispointing(state, fromi%w, fromi/w, toi%w, toi/w);
}
/* Taking the number 'num', work out the gap between it and the next
* available number up or down (depending on d). Return true if the
* region at (x,y) will fit in that gap. */
static bool move_couldfit(
const game_state *state, int num, int d, int x, int y)
{
int n, gap, i = y*state->w+x, sz;
assert(d != 0);
/* The 'gap' is the number of missing numbers in the grid between
* our number and the next one in the sequence (up or down), or
* the end of the sequence (if we happen not to have 1/n present) */
for (n = num + d, gap = 0;
ISREALNUM(state, n) && state->numsi[n] == -1;
n += d, gap++) ; /* empty loop */
if (gap == 0) {
/* no gap, so the only allowable move is that that directly
* links the two numbers. */
n = state->nums[i];
return n != num+d;
}
if (state->prev[i] == -1 && state->next[i] == -1)
return true; /* single unconnected square, always OK */
sz = dsf_size(state->dsf, i);
return sz <= gap;
}
static bool isvalidmove(const game_state *state, bool clever,
int fromx, int fromy, int tox, int toy)
{
int w = state->w, from = fromy*w+fromx, to = toy*w+tox;
int nfrom, nto;
if (!INGRID(state, fromx, fromy) || !INGRID(state, tox, toy))
return false;
/* can only move where we point */
if (!ispointing(state, fromx, fromy, tox, toy))
return false;
nfrom = state->nums[from]; nto = state->nums[to];
/* can't move _from_ the preset final number, or _to_ the preset 1. */
if (((nfrom == state->n) && (state->flags[from] & FLAG_IMMUTABLE)) ||
((nto == 1) && (state->flags[to] & FLAG_IMMUTABLE)))
return false;
/* can't create a new connection between cells in the same region
* as that would create a loop. */
if (dsf_equivalent(state->dsf, from, to))
return false;
/* if both cells are actual numbers, can't drag if we're not
* one digit apart. */
if (ISREALNUM(state, nfrom) && ISREALNUM(state, nto)) {
if (nfrom != nto-1)
return false;
} else if (clever && ISREALNUM(state, nfrom)) {
if (!move_couldfit(state, nfrom, +1, tox, toy))
return false;
} else if (clever && ISREALNUM(state, nto)) {
if (!move_couldfit(state, nto, -1, fromx, fromy))
return false;
}
return true;
}
static void makelink(game_state *state, int from, int to)
{
if (state->next[from] != -1)
state->prev[state->next[from]] = -1;
state->next[from] = to;
if (state->prev[to] != -1)
state->next[state->prev[to]] = -1;
state->prev[to] = from;
}
static bool game_can_format_as_text_now(const game_params *params)
{
if (params->w * params->h >= 100) return false;
return true;
}
static char *game_text_format(const game_state *state)
{
int len = state->h * 2 * (4*state->w + 1) + state->h + 2;
int x, y, i, num, n, set;
char *ret, *p;
p = ret = snewn(len, char);
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->h; x++) {
i = y*state->w+x;
*p++ = dirstrings[state->dirs[i]][0];
*p++ = dirstrings[state->dirs[i]][1];
*p++ = (state->flags[i] & FLAG_IMMUTABLE) ? 'I' : ' ';
*p++ = ' ';
}
*p++ = '\n';
for (x = 0; x < state->h; x++) {
i = y*state->w+x;
num = state->nums[i];
if (num == 0) {
*p++ = ' ';
*p++ = ' ';
*p++ = ' ';
} else {
n = num % (state->n+1);
set = num / (state->n+1);
assert(n <= 99); /* two digits only! */
if (set != 0)
*p++ = set+'a'-1;
*p++ = (n >= 10) ? ('0' + (n/10)) : ' ';
*p++ = '0' + (n%10);
if (set == 0)
*p++ = ' ';
}
*p++ = ' ';
}
*p++ = '\n';
*p++ = '\n';
}
*p++ = '\0';
return ret;
}
static void debug_state(const char *desc, game_state *state)
{
#ifdef DEBUGGING
char *dbg;
if (state->n >= 100) {
debug(("[ no game_text_format for this size ]"));
return;
}
dbg = game_text_format(state);
debug(("%s\n%s", desc, dbg));
sfree(dbg);
#endif
}
static void strip_nums(game_state *state) {
int i;
for (i = 0; i < state->n; i++) {
if (!(state->flags[i] & FLAG_IMMUTABLE))
state->nums[i] = 0;
}
memset(state->next, -1, state->n*sizeof(int));
memset(state->prev, -1, state->n*sizeof(int));
memset(state->numsi, -1, (state->n+1)*sizeof(int));
dsf_reinit(state->dsf);
}
static bool check_nums(game_state *orig, game_state *copy, bool only_immutable)
{
int i;
bool ret = true;
assert(copy->n == orig->n);
for (i = 0; i < copy->n; i++) {
if (only_immutable && !(copy->flags[i] & FLAG_IMMUTABLE)) continue;
assert(copy->nums[i] >= 0);
assert(copy->nums[i] <= copy->n);
if (copy->nums[i] != orig->nums[i]) {
debug(("check_nums: (%d,%d) copy=%d, orig=%d.",
i%orig->w, i/orig->w, copy->nums[i], orig->nums[i]));
ret = false;
}
}
return ret;
}
/* --- Game parameter/presets functions --- */
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 4;
ret->force_corner_start = true;
return ret;
}
static const struct game_params signpost_presets[] = {
{ 4, 4, 1 },
{ 4, 4, 0 },
{ 5, 5, 1 },
{ 5, 5, 0 },
{ 6, 6, 1 },
{ 7, 7, 1 }
};
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char buf[80];
if (i < 0 || i >= lenof(signpost_presets))
return false;
ret = default_params();
*ret = signpost_presets[i];
*params = ret;
sprintf(buf, "%dx%d%s", ret->w, ret->h,
ret->force_corner_start ? "" : ", free ends");
*name = dupstr(buf);
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
ret->force_corner_start = false;
if (*string == 'c') {
string++;
ret->force_corner_start = true;
}
}
static char *encode_params(const game_params *params, bool full)
{
char data[256];
if (full)
sprintf(data, "%dx%d%s", params->w, params->h,
params->force_corner_start ? "c" : "");
else
sprintf(data, "%dx%d", params->w, params->h);
return dupstr(data);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(4, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "Start and end in corners";
ret[2].type = C_BOOLEAN;
ret[2].u.boolean.bval = params->force_corner_start;
ret[3].name = NULL;
ret[3].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->force_corner_start = cfg[2].u.boolean.bval;
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->w < 1) return "Width must be at least one";
if (params->h < 1) return "Height must be at least one";
if (params->w > INT_MAX / params->h)
return "Width times height must not be unreasonably large";
if (full && params->w == 1 && params->h == 1)
/* The UI doesn't let us move these from unsolved to solved,
* so we disallow generating (but not playing) them. */
return "Width and height cannot both be one";
return NULL;
}
/* --- Game description string generation and unpicking --- */
static void blank_game_into(game_state *state)
{
memset(state->dirs, 0, state->n*sizeof(int));
memset(state->nums, 0, state->n*sizeof(int));
memset(state->flags, 0, state->n*sizeof(unsigned int));
memset(state->next, -1, state->n*sizeof(int));
memset(state->prev, -1, state->n*sizeof(int));
memset(state->numsi, -1, (state->n+1)*sizeof(int));
}
static game_state *blank_game(int w, int h)
{
game_state *state = snew(game_state);
memset(state, 0, sizeof(game_state));
state->w = w;
state->h = h;
state->n = w*h;
state->dirs = snewn(state->n, int);
state->nums = snewn(state->n, int);
state->flags = snewn(state->n, unsigned int);
state->next = snewn(state->n, int);
state->prev = snewn(state->n, int);
state->dsf = dsf_new(state->n);
state->numsi = snewn(state->n+1, int);
blank_game_into(state);
return state;
}
static void dup_game_to(game_state *to, const game_state *from)
{
to->completed = from->completed;
to->used_solve = from->used_solve;
to->impossible = from->impossible;
memcpy(to->dirs, from->dirs, to->n*sizeof(int));
memcpy(to->flags, from->flags, to->n*sizeof(unsigned int));
memcpy(to->nums, from->nums, to->n*sizeof(int));
memcpy(to->next, from->next, to->n*sizeof(int));
memcpy(to->prev, from->prev, to->n*sizeof(int));
dsf_copy(to->dsf, from->dsf);
memcpy(to->numsi, from->numsi, (to->n+1)*sizeof(int));
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = blank_game(state->w, state->h);
dup_game_to(ret, state);
return ret;
}
static void free_game(game_state *state)
{
sfree(state->dirs);
sfree(state->nums);
sfree(state->flags);
sfree(state->next);
sfree(state->prev);
dsf_free(state->dsf);
sfree(state->numsi);
sfree(state);
}
static void unpick_desc(const game_params *params, const char *desc,
game_state **sout, const char **mout)
{
game_state *state = blank_game(params->w, params->h);
const char *msg = NULL;
char c;
int num = 0, i = 0;
while (*desc) {
if (i >= state->n) {
msg = "Game description longer than expected";
goto done;
}
c = *desc;
if (isdigit((unsigned char)c)) {
num = (num*10) + (int)(c-'0');
if (num > state->n) {
msg = "Number too large";
goto done;
}
} else if ((c-'a') >= 0 && (c-'a') < DIR_MAX) {
state->nums[i] = num;
state->flags[i] = num ? FLAG_IMMUTABLE : 0;
num = 0;
state->dirs[i] = c - 'a';
i++;
} else if (!*desc) {
msg = "Game description shorter than expected";
goto done;
} else {
msg = "Game description contains unexpected characters";
goto done;
}
desc++;
}
if (i < state->n) {
msg = "Game description shorter than expected";
goto done;
}
done:
if (msg) { /* sth went wrong. */
if (mout) *mout = msg;
free_game(state);
} else {
if (mout) *mout = NULL;
if (sout) *sout = state;
else free_game(state);
}
}
static char *generate_desc(game_state *state, bool issolve)
{
char *ret, buf[80];
int retlen, i, k;
ret = NULL; retlen = 0;
if (issolve) {
ret = sresize(ret, 2, char);
ret[0] = 'S'; ret[1] = '\0';
retlen += 1;
}
for (i = 0; i < state->n; i++) {
if (state->nums[i])
k = sprintf(buf, "%d%c", state->nums[i], (int)(state->dirs[i]+'a'));
else
k = sprintf(buf, "%c", (int)(state->dirs[i]+'a'));
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
return ret;
}
/* --- Game generation --- */
/* Fills in preallocated arrays ai (indices) and ad (directions)
* showing all non-numbered cells adjacent to index i, returns length */
/* This function has been somewhat optimised... */
static int cell_adj(game_state *state, int i, int *ai, int *ad)
{
int n = 0, a, x, y, sx, sy, dx, dy, newi;
int w = state->w, h = state->h;
sx = i % w; sy = i / w;
for (a = 0; a < DIR_MAX; a++) {
x = sx; y = sy;
dx = dxs[a]; dy = dys[a];
while (1) {
x += dx; y += dy;
if (x < 0 || y < 0 || x >= w || y >= h) break;
newi = y*w + x;
if (state->nums[newi] == 0) {
ai[n] = newi;
ad[n] = a;
n++;
}
}
}
return n;
}
static bool new_game_fill(game_state *state, random_state *rs,
int headi, int taili)
{
int nfilled, an, j;
bool ret = false;
int *aidx, *adir;
aidx = snewn(state->n, int);
adir = snewn(state->n, int);
debug(("new_game_fill: headi=%d, taili=%d.", headi, taili));
memset(state->nums, 0, state->n*sizeof(int));
state->nums[headi] = 1;
state->nums[taili] = state->n;
state->dirs[taili] = 0;
nfilled = 2;
assert(state->n > 1);
while (nfilled < state->n) {
/* Try and expand _from_ headi; keep going if there's only one
* place to go to. */
an = cell_adj(state, headi, aidx, adir);
do {
if (an == 0) goto done;
j = random_upto(rs, an);
state->dirs[headi] = adir[j];
state->nums[aidx[j]] = state->nums[headi] + 1;
nfilled++;
headi = aidx[j];
an = cell_adj(state, headi, aidx, adir);
} while (an == 1);
if (nfilled == state->n) break;
/* Try and expand _to_ taili; keep going if there's only one
* place to go to. */
an = cell_adj(state, taili, aidx, adir);
do {
if (an == 0) goto done;
j = random_upto(rs, an);
state->dirs[aidx[j]] = DIR_OPPOSITE(adir[j]);
state->nums[aidx[j]] = state->nums[taili] - 1;
nfilled++;
taili = aidx[j];
an = cell_adj(state, taili, aidx, adir);
} while (an == 1);
}
/* If we get here we have headi and taili set but unconnected
* by direction: we need to set headi's direction so as to point
* at taili. */
state->dirs[headi] = whichdiri(state, headi, taili);
/* it could happen that our last two weren't in line; if that's the
* case, we have to start again. */
if (state->dirs[headi] != -1) ret = true;
done:
sfree(aidx);
sfree(adir);
return ret;
}
/* Better generator: with the 'generate, sprinkle numbers, solve,
* repeat' algorithm we're _never_ generating anything greater than
* 6x6, and spending all of our time in new_game_fill (and very little
* in solve_state).
*
* So, new generator steps:
* generate the grid, at random (same as now). Numbers 1 and N get
immutable flag immediately.
* squirrel that away for the solved state.
*
* (solve:) Try and solve it.
* If we solved it, we're done:
* generate the description from current immutable numbers,
* free stuff that needs freeing,
* return description + solved state.
* If we didn't solve it:
* count #tiles in state we've made deductions about.
* while (1):
* randomise a scratch array.
* for each index in scratch (in turn):
* if the cell isn't empty, continue (through scratch array)
* set number + immutable in state.
* try and solve state.
* if we've solved it, we're done.
* otherwise, count #tiles. If it's more than we had before:
* good, break from this loop and re-randomise.
* otherwise (number didn't help):
* remove number and try next in scratch array.
* if we've got to the end of the scratch array, no luck:
free everything we need to, and go back to regenerate the grid.
*/
static int solve_state(game_state *state);
static void debug_desc(const char *what, game_state *state)
{
#if DEBUGGING
{
char *desc = generate_desc(state, 0);
debug(("%s game state: %dx%d:%s", what, state->w, state->h, desc));
sfree(desc);
}
#endif
}
/* Expects a fully-numbered game_state on input, and makes sure
* FLAG_IMMUTABLE is only set on those numbers we need to solve
* (as for a real new-game); returns true if it managed
* this (such that it could solve it), or false if not. */
static bool new_game_strip(game_state *state, random_state *rs)
{
int *scratch, i, j;
bool ret = true;
game_state *copy = dup_game(state);
debug(("new_game_strip."));
strip_nums(copy);
debug_desc("Stripped", copy);
if (solve_state(copy) > 0) {
debug(("new_game_strip: soluble immediately after strip."));
free_game(copy);
return true;
}
scratch = snewn(state->n, int);
for (i = 0; i < state->n; i++) scratch[i] = i;
shuffle(scratch, state->n, sizeof(int), rs);
/* This is scungy. It might just be quick enough.
* It goes through, adding set numbers in empty squares
* until either we run out of empty squares (in the one
* we're half-solving) or else we solve it properly.
* NB that we run the entire solver each time, which
* strips the grid beforehand; we will save time if we
* avoid that. */
for (i = 0; i < state->n; i++) {
j = scratch[i];
if (copy->nums[j] > 0 && copy->nums[j] <= state->n)
continue; /* already solved to a real number here. */
assert(state->nums[j] <= state->n);
debug(("new_game_strip: testing add IMMUTABLE number %d at square (%d,%d).",
state->nums[j], j%state->w, j/state->w));
copy->nums[j] = state->nums[j];
copy->flags[j] |= FLAG_IMMUTABLE;
state->flags[j] |= FLAG_IMMUTABLE;
debug_state("Copy of state: ", copy);
strip_nums(copy);
if (solve_state(copy) > 0) goto solved;
assert(check_nums(state, copy, true));
}
ret = false;
goto done;
solved:
debug(("new_game_strip: now solved."));
/* Since we added basically at random, try now to remove numbers
* and see if we can still solve it; if we can (still), really
* remove the number. Make sure we don't remove the anchor numbers
* 1 and N. */
for (i = 0; i < state->n; i++) {
j = scratch[i];
if ((state->flags[j] & FLAG_IMMUTABLE) &&
(state->nums[j] != 1 && state->nums[j] != state->n)) {
debug(("new_game_strip: testing remove IMMUTABLE number %d at square (%d,%d).",
state->nums[j], j%state->w, j/state->w));
state->flags[j] &= ~FLAG_IMMUTABLE;
dup_game_to(copy, state);
strip_nums(copy);
if (solve_state(copy) > 0) {
assert(check_nums(state, copy, false));
debug(("new_game_strip: OK, removing number"));
} else {
assert(state->nums[j] <= state->n);
debug(("new_game_strip: cannot solve, putting IMMUTABLE back."));
copy->nums[j] = state->nums[j];
state->flags[j] |= FLAG_IMMUTABLE;
}
}
}
done:
debug(("new_game_strip: %ssuccessful.", ret ? "" : "not "));
sfree(scratch);
free_game(copy);
return ret;
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
game_state *state = blank_game(params->w, params->h);
char *ret;
int headi, taili;
/* this shouldn't happen (validate_params), but let's play it safe */
if (params->w == 1 && params->h == 1) return dupstr("1a");
generate:
blank_game_into(state);
/* keep trying until we fill successfully. */
do {
if (params->force_corner_start) {
headi = 0;
taili = state->n-1;
} else {
do {
headi = random_upto(rs, state->n);
taili = random_upto(rs, state->n);
} while (headi == taili);
}
} while (!new_game_fill(state, rs, headi, taili));
debug_state("Filled game:", state);
assert(state->nums[headi] <= state->n);
assert(state->nums[taili] <= state->n);
state->flags[headi] |= FLAG_IMMUTABLE;
state->flags[taili] |= FLAG_IMMUTABLE;
/* This will have filled in directions and _all_ numbers.
* Store the game definition for this, as the solved-state. */
if (!new_game_strip(state, rs)) {
goto generate;
}
strip_nums(state);
{
game_state *tosolve = dup_game(state);
assert(solve_state(tosolve) > 0);
free_game(tosolve);
}
ret = generate_desc(state, false);
free_game(state);
return ret;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
const char *ret = NULL;
unpick_desc(params, desc, NULL, &ret);
return ret;
}
/* --- Linked-list and numbers array --- */
/* Assuming numbers are always up-to-date, there are only four possibilities
* for regions changing after a single valid move:
*
* 1) two differently-coloured regions being combined (the resulting colouring
* should be based on the larger of the two regions)
* 2) a numbered region having a single number added to the start (the
* region's colour will remain, and the numbers will shift by 1)
* 3) a numbered region having a single number added to the end (the
* region's colour and numbering remains as-is)
* 4) two unnumbered squares being joined (will pick the smallest unused set
* of colours to use for the new region).
*
* There should never be any complications with regions containing 3 colours
* being combined, since two of those colours should have been merged on a
* previous move.
*
* Most of the complications are in ensuring we don't accidentally set two
* regions with the same colour (e.g. if a region was split). If this happens
* we always try and give the largest original portion the original colour.
*/
#define COLOUR(a) ((a) / (state->n+1))
#define START(c) ((c) * (state->n+1))
struct head_meta {
int i; /* position */
int sz; /* size of region */
int start; /* region start number preferred, or 0 if !preference */
int preference; /* 0 if we have no preference (and should just pick one) */
const char *why;
};
static void head_number(game_state *state, int i, struct head_meta *head)
{
int off = 0, ss, j = i, c, n, sz;
/* Insist we really were passed the head of a chain. */
assert(state->prev[i] == -1 && state->next[i] != -1);
head->i = i;
head->sz = dsf_size(state->dsf, i);
head->why = NULL;
/* Search through this chain looking for real numbers, checking that
* they match up (if there are more than one). */
head->preference = 0;
while (j != -1) {
if (state->flags[j] & FLAG_IMMUTABLE) {
ss = state->nums[j] - off;
if (!head->preference) {
head->start = ss;
head->preference = 1;
head->why = "contains cell with immutable number";
} else if (head->start != ss) {
debug(("head_number: chain with non-sequential numbers!"));
state->impossible = true;
}
}
off++;
j = state->next[j];
assert(j != i); /* we have created a loop, obviously wrong */
}
if (head->preference) goto done;
if (state->nums[i] == 0 && state->nums[state->next[i]] > state->n) {
/* (probably) empty cell onto the head of a coloured region:
* make sure we start at a 0 offset. */
head->start = START(COLOUR(state->nums[state->next[i]]));
head->preference = 1;
head->why = "adding blank cell to head of numbered region";
} else if (state->nums[i] <= state->n) {
/* if we're 0 we're probably just blank -- but even if we're a
* (real) numbered region, we don't have an immutable number
* in it (any more) otherwise it'd have been caught above, so
* reassign the colour. */
head->start = 0;
head->preference = 0;
head->why = "lowest available colour group";
} else {
c = COLOUR(state->nums[i]);
n = 1;
sz = dsf_size(state->dsf, i);
j = i;
while (state->next[j] != -1) {
j = state->next[j];
if (state->nums[j] == 0 && state->next[j] == -1) {
head->start = START(c);
head->preference = 1;
head->why = "adding blank cell to end of numbered region";
goto done;
}
if (COLOUR(state->nums[j]) == c)
n++;
else {
int start_alternate = START(COLOUR(state->nums[j]));
if (n < (sz - n)) {
head->start = start_alternate;
head->preference = 1;
head->why = "joining two coloured regions, swapping to larger colour";
} else {
head->start = START(c);
head->preference = 1;
head->why = "joining two coloured regions, taking largest";
}
goto done;
}
}
/* If we got here then we may have split a region into
* two; make sure we don't assign a colour we've already used. */
if (c == 0) {
/* not convinced this shouldn't be an assertion failure here. */
head->start = 0;
head->preference = 0;
} else {
head->start = START(c);
head->preference = 1;
}
head->why = "got to end of coloured region";
}
done:
assert(head->why != NULL);
if (head->preference)
debug(("Chain at (%d,%d) numbered for preference at %d (colour %d): %s.",
head->i%state->w, head->i/state->w,
head->start, COLOUR(head->start), head->why));
else
debug(("Chain at (%d,%d) using next available colour: %s.",
head->i%state->w, head->i/state->w,
head->why));
}
#if 0
static void debug_numbers(game_state *state)
{
int i, w=state->w;
for (i = 0; i < state->n; i++) {
debug(("(%d,%d) --> (%d,%d) --> (%d,%d)",
state->prev[i]==-1 ? -1 : state->prev[i]%w,
state->prev[i]==-1 ? -1 : state->prev[i]/w,
i%w, i/w,
state->next[i]==-1 ? -1 : state->next[i]%w,
state->next[i]==-1 ? -1 : state->next[i]/w));
}
w = w+1;
}
#endif
static void connect_numbers(game_state *state)
{
int i, di, dni;
dsf_reinit(state->dsf);
for (i = 0; i < state->n; i++) {
if (state->next[i] != -1) {
assert(state->prev[state->next[i]] == i);
di = dsf_canonify(state->dsf, i);
dni = dsf_canonify(state->dsf, state->next[i]);
if (di == dni) {
debug(("connect_numbers: chain forms a loop."));
state->impossible = true;
}
dsf_merge(state->dsf, di, dni);
}
}
}
static int compare_heads(const void *a, const void *b)
{
const struct head_meta *ha = (const struct head_meta *)a;
const struct head_meta *hb = (const struct head_meta *)b;
/* Heads with preferred colours first... */
if (ha->preference && !hb->preference) return -1;
if (hb->preference && !ha->preference) return 1;
/* ...then heads with low colours first... */
if (ha->start < hb->start) return -1;
if (ha->start > hb->start) return 1;
/* ... then large regions first... */
if (ha->sz > hb->sz) return -1;
if (ha->sz < hb->sz) return 1;
/* ... then position. */
if (ha->i > hb->i) return -1;
if (ha->i < hb->i) return 1;
return 0;
}
static int lowest_start(game_state *state, struct head_meta *heads, int nheads)
{
int n, c;
/* NB start at 1: colour 0 is real numbers */
for (c = 1; c < state->n; c++) {
for (n = 0; n < nheads; n++) {
if (COLOUR(heads[n].start) == c)
goto used;
}
return c;
used:
;
}
assert(!"No available colours!");
return 0;
}
static void update_numbers(game_state *state)
{
int i, j, n, nnum, nheads;
struct head_meta *heads = snewn(state->n, struct head_meta);
for (n = 0; n < state->n; n++)
state->numsi[n] = -1;
for (i = 0; i < state->n; i++) {
if (state->flags[i] & FLAG_IMMUTABLE) {
assert(state->nums[i] > 0);
assert(state->nums[i] <= state->n);
state->numsi[state->nums[i]] = i;
}
else if (state->prev[i] == -1 && state->next[i] == -1)
state->nums[i] = 0;
}
connect_numbers(state);
/* Construct an array of the heads of all current regions, together
* with their preferred colours. */
nheads = 0;
for (i = 0; i < state->n; i++) {
/* Look for a cell that is the start of a chain
* (has a next but no prev). */
if (state->prev[i] != -1 || state->next[i] == -1) continue;
head_number(state, i, &heads[nheads++]);
}
/* Sort that array:
* - heads with preferred colours first, then
* - heads with low colours first, then
* - large regions first
*/
qsort(heads, nheads, sizeof(struct head_meta), compare_heads);
/* Remove duplicate-coloured regions. */
for (n = nheads-1; n >= 0; n--) { /* order is important! */
if ((n != 0) && (heads[n].start == heads[n-1].start)) {
/* We have a duplicate-coloured region: since we're
* sorted in size order and this is not the first
* of its colour it's not the largest: recolour it. */
heads[n].start = START(lowest_start(state, heads, nheads));
heads[n].preference = -1; /* '-1' means 'was duplicate' */
}
else if (!heads[n].preference) {
assert(heads[n].start == 0);
heads[n].start = START(lowest_start(state, heads, nheads));
}
}
debug(("Region colouring after duplicate removal:"));
for (n = 0; n < nheads; n++) {
debug((" Chain at (%d,%d) sz %d numbered at %d (colour %d): %s%s",
heads[n].i % state->w, heads[n].i / state->w, heads[n].sz,
heads[n].start, COLOUR(heads[n].start), heads[n].why,
heads[n].preference == 0 ? " (next available)" :
heads[n].preference < 0 ? " (duplicate, next available)" : ""));
nnum = heads[n].start;
j = heads[n].i;
while (j != -1) {
if (!(state->flags[j] & FLAG_IMMUTABLE)) {
if (nnum > 0 && nnum <= state->n)
state->numsi[nnum] = j;
state->nums[j] = nnum;
}
nnum++;
j = state->next[j];
assert(j != heads[n].i); /* loop?! */
}
}
/*debug_numbers(state);*/
sfree(heads);
}
static bool check_completion(game_state *state, bool mark_errors)
{
int n, j, k;
bool error = false, complete;
/* NB This only marks errors that are possible to perpetrate with
* the current UI in interpret_move. Things like forming loops in
* linked sections and having numbers not add up should be forbidden
* by the code elsewhere, so we don't bother marking those (because
* it would add lots of tricky drawing code for very little gain). */
if (mark_errors) {
for (j = 0; j < state->n; j++)
state->flags[j] &= ~FLAG_ERROR;
}
/* Search for repeated numbers. */
for (j = 0; j < state->n; j++) {
if (state->nums[j] > 0 && state->nums[j] <= state->n) {
for (k = j+1; k < state->n; k++) {
if (state->nums[k] == state->nums[j]) {
if (mark_errors) {
state->flags[j] |= FLAG_ERROR;
state->flags[k] |= FLAG_ERROR;
}
error = true;
}
}
}
}
/* Search and mark numbers n not pointing to n+1; if any numbers
* are missing we know we've not completed. */
complete = true;
for (n = 1; n < state->n; n++) {
if (state->numsi[n] == -1 || state->numsi[n+1] == -1)
complete = false;
else if (!ispointingi(state, state->numsi[n], state->numsi[n+1])) {
if (mark_errors) {
state->flags[state->numsi[n]] |= FLAG_ERROR;
state->flags[state->numsi[n+1]] |= FLAG_ERROR;
}
error = true;
} else {
/* make sure the link is explicitly made here; for instance, this
* is nice if the user drags from 2 out (making 3) and a 4 is also
* visible; this ensures that the link from 3 to 4 is also made. */
if (mark_errors)
makelink(state, state->numsi[n], state->numsi[n+1]);
}
}
/* Search and mark numbers less than 0, or 0 with links. */
for (n = 1; n < state->n; n++) {
if ((state->nums[n] < 0) ||
(state->nums[n] == 0 &&
(state->next[n] != -1 || state->prev[n] != -1))) {
error = true;
if (mark_errors)
state->flags[n] |= FLAG_ERROR;
}
}
if (error) return false;
return complete;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = NULL;
unpick_desc(params, desc, &state, NULL);
if (!state) assert(!"new_game failed to unpick");
update_numbers(state);
check_completion(state, true); /* update any auto-links */
return state;
}
/* --- Solver --- */
/* If a tile has a single tile it can link _to_, or there's only a single
* location that can link to a given tile, fill that link in. */
static int solve_single(game_state *state, game_state *copy, int *from)
{
int i, j, sx, sy, x, y, d, poss, w=state->w, nlinks = 0;
/* The from array is a list of 'which square can link _to_ us';
* we start off with from as '-1' (meaning 'not found'); if we find
* something that can link to us it is set to that index, and then if
* we find another we set it to -2. */
memset(from, -1, state->n*sizeof(int));
/* poss is 'can I link to anything' with the same meanings. */
for (i = 0; i < state->n; i++) {
if (state->next[i] != -1) continue;
if (state->nums[i] == state->n) continue; /* no next from last no. */
d = state->dirs[i];
poss = -1;
sx = x = i%w; sy = y = i/w;
while (1) {
x += dxs[d]; y += dys[d];
if (!INGRID(state, x, y)) break;
if (!isvalidmove(state, true, sx, sy, x, y)) continue;
/* can't link to somewhere with a back-link we would have to
* break (the solver just doesn't work like this). */
j = y*w+x;
if (state->prev[j] != -1) continue;
if (state->nums[i] > 0 && state->nums[j] > 0 &&
state->nums[i] <= state->n && state->nums[j] <= state->n &&
state->nums[j] == state->nums[i]+1) {
debug(("Solver: forcing link through existing consecutive numbers."));
poss = j;
from[j] = i;
break;
}
/* if there's been a valid move already, we have to move on;
* we can't make any deductions here. */
poss = (poss == -1) ? j : -2;
/* Modify the from array as described above (which is enumerating
* what points to 'j' in a similar way). */
from[j] = (from[j] == -1) ? i : -2;
}
if (poss == -2) {
/*debug(("Solver: (%d,%d) has multiple possible next squares.", sx, sy));*/
;
} else if (poss == -1) {
debug(("Solver: nowhere possible for (%d,%d) to link to.", sx, sy));
copy->impossible = true;
return -1;
} else {
debug(("Solver: linking (%d,%d) to only possible next (%d,%d).",
sx, sy, poss%w, poss/w));
makelink(copy, i, poss);
nlinks++;
}
}
for (i = 0; i < state->n; i++) {
if (state->prev[i] != -1) continue;
if (state->nums[i] == 1) continue; /* no prev from 1st no. */
x = i%w; y = i/w;
if (from[i] == -1) {
debug(("Solver: nowhere possible to link to (%d,%d)", x, y));
copy->impossible = true;
return -1;
} else if (from[i] == -2) {
/*debug(("Solver: (%d,%d) has multiple possible prev squares.", x, y));*/
;
} else {
debug(("Solver: linking only possible prev (%d,%d) to (%d,%d).",
from[i]%w, from[i]/w, x, y));
makelink(copy, from[i], i);
nlinks++;
}
}
return nlinks;
}
/* Returns 1 if we managed to solve it, 0 otherwise. */
static int solve_state(game_state *state)
{
game_state *copy = dup_game(state);
int *scratch = snewn(state->n, int), ret;
debug_state("Before solver: ", state);
while (1) {
update_numbers(state);
if (solve_single(state, copy, scratch)) {
dup_game_to(state, copy);
if (state->impossible) break; else continue;
}
break;
}
free_game(copy);
sfree(scratch);
update_numbers(state);
ret = state->impossible ? -1 : check_completion(state, false);
debug(("Solver finished: %s",
ret < 0 ? "impossible" : ret > 0 ? "solved" : "not solved"));
debug_state("After solver: ", state);
return ret;
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
game_state *tosolve;
char *ret = NULL;
int result;
tosolve = dup_game(currstate);
result = solve_state(tosolve);
if (result > 0)
ret = generate_desc(tosolve, true);
free_game(tosolve);
if (ret) return ret;
tosolve = dup_game(state);
result = solve_state(tosolve);
if (result < 0)
*error = "Puzzle is impossible.";
else if (result == 0)
*error = "Unable to solve puzzle.";
else
ret = generate_desc(tosolve, true);
free_game(tosolve);
return ret;
}
/* --- UI and move routines. --- */
struct game_ui {
int cx, cy;
bool cshow;
bool dragging, drag_is_from;
int sx, sy; /* grid coords of start cell */
int dx, dy; /* pixel coords of drag posn */
/*
* Trivial and foolish configurable option done on purest whim.
* With this option enabled, the victory flash is done by rotating
* each square in the opposite direction from its immediate
* neighbours, so that they behave like a field of interlocking
* gears. With it disabled, they all rotate in the same direction.
* Choose for yourself which is more brain-twisting :-)
*/
bool gear_mode;
};
static void legacy_prefs_override(struct game_ui *ui_out)
{
static bool initialised = false;
static int gear_mode = -1;
if (!initialised) {
initialised = true;
gear_mode = getenv_bool("SIGNPOST_GEARS", -1);
}
if (gear_mode != -1)
ui_out->gear_mode = gear_mode;
}
static game_ui *new_ui(const game_state *state)
{
game_ui *ui = snew(game_ui);
/* NB: if this is ever changed to as to require more than a structure
* copy to clone, there's code that needs fixing in game_redraw too. */
ui->cx = ui->cy = 0;
ui->cshow = getenv_bool("PUZZLES_SHOW_CURSOR", false);
ui->dragging = false;
ui->sx = ui->sy = ui->dx = ui->dy = 0;
ui->gear_mode = false;
legacy_prefs_override(ui);
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static config_item *get_prefs(game_ui *ui)
{
config_item *ret;
ret = snewn(2, config_item);
ret[0].name = "Victory rotation effect";
ret[0].kw = "flash-type";
ret[0].type = C_CHOICES;
ret[0].u.choices.choicenames = ":Unidirectional:Meshing gears";
ret[0].u.choices.choicekws = ":unidirectional:gears";
ret[0].u.choices.selected = ui->gear_mode;
ret[1].name = NULL;
ret[1].type = C_END;
return ret;
}
static void set_prefs(game_ui *ui, const config_item *cfg)
{
ui->gear_mode = cfg[0].u.choices.selected;
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
if (!oldstate->completed && newstate->completed) {
ui->cshow = false;
ui->dragging = false;
}
}
static const char *current_key_label(const game_ui *ui,
const game_state *state, int button)
{
if (IS_CURSOR_SELECT(button) && ui->cshow) {
if (ui->dragging) {
if (ui->drag_is_from) {
if (isvalidmove(state, false, ui->sx, ui->sy, ui->cx, ui->cy))
return "To here";
} else {
if (isvalidmove(state, false, ui->cx, ui->cy, ui->sx, ui->sy))
return "From here";
}
return "Cancel";
} else {
return button == CURSOR_SELECT ? "From here" : "To here";
}
}
return "";
}
struct game_drawstate {
int tilesize;
bool started, solved;
int w, h, n;
int *nums, *dirp;
unsigned int *f;
double angle_offset;
bool dragging;
int dx, dy;
blitter *dragb;
};
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int mx, int my, int button)
{
int x = FROMCOORD(mx), y = FROMCOORD(my), w = state->w;
char buf[80];
if (IS_CURSOR_MOVE(button)) {
move_cursor(button, &ui->cx, &ui->cy, state->w, state->h, false);
ui->cshow = true;
if (ui->dragging) {
ui->dx = COORD(ui->cx) + TILE_SIZE/2;
ui->dy = COORD(ui->cy) + TILE_SIZE/2;
}
return UI_UPDATE;
} else if (IS_CURSOR_SELECT(button)) {
if (!ui->cshow)
ui->cshow = true;
else if (ui->dragging) {
ui->dragging = false;
if (ui->sx == ui->cx && ui->sy == ui->cy) return UI_UPDATE;
if (ui->drag_is_from) {
if (!isvalidmove(state, false, ui->sx, ui->sy, ui->cx, ui->cy))
return UI_UPDATE;
sprintf(buf, "L%d,%d-%d,%d", ui->sx, ui->sy, ui->cx, ui->cy);
} else {
if (!isvalidmove(state, false, ui->cx, ui->cy, ui->sx, ui->sy))
return UI_UPDATE;
sprintf(buf, "L%d,%d-%d,%d", ui->cx, ui->cy, ui->sx, ui->sy);
}
return dupstr(buf);
} else {
ui->dragging = true;
ui->sx = ui->cx;
ui->sy = ui->cy;
ui->dx = COORD(ui->cx) + TILE_SIZE/2;
ui->dy = COORD(ui->cy) + TILE_SIZE/2;
ui->drag_is_from = (button == CURSOR_SELECT);
}
return UI_UPDATE;
}
if (IS_MOUSE_DOWN(button)) {
if (ui->cshow) {
ui->cshow = false;
ui->dragging = false;
}
assert(!ui->dragging);
if (!INGRID(state, x, y)) return NULL;
if (button == LEFT_BUTTON) {
/* disallow dragging from the final number. */
if ((state->nums[y*w+x] == state->n) &&
(state->flags[y*w+x] & FLAG_IMMUTABLE))
return NULL;
} else if (button == RIGHT_BUTTON) {
/* disallow dragging to the first number. */
if ((state->nums[y*w+x] == 1) &&
(state->flags[y*w+x] & FLAG_IMMUTABLE))
return NULL;
}
ui->dragging = true;
ui->drag_is_from = (button == LEFT_BUTTON);
ui->sx = x;
ui->sy = y;
ui->dx = mx;
ui->dy = my;
ui->cshow = false;
return UI_UPDATE;
} else if (IS_MOUSE_DRAG(button) && ui->dragging) {
ui->dx = mx;
ui->dy = my;
return UI_UPDATE;
} else if (IS_MOUSE_RELEASE(button) && ui->dragging) {
ui->dragging = false;
if (ui->sx == x && ui->sy == y) return UI_UPDATE; /* single click */
if (!INGRID(state, x, y)) {
int si = ui->sy*w+ui->sx;
if (state->prev[si] == -1 && state->next[si] == -1)
return UI_UPDATE;
sprintf(buf, "%c%d,%d",
(int)(ui->drag_is_from ? 'C' : 'X'), ui->sx, ui->sy);
return dupstr(buf);
}
if (ui->drag_is_from) {
if (!isvalidmove(state, false, ui->sx, ui->sy, x, y))
return UI_UPDATE;
sprintf(buf, "L%d,%d-%d,%d", ui->sx, ui->sy, x, y);
} else {
if (!isvalidmove(state, false, x, y, ui->sx, ui->sy))
return UI_UPDATE;
sprintf(buf, "L%d,%d-%d,%d", x, y, ui->sx, ui->sy);
}
return dupstr(buf);
} /* else if (button == 'H' || button == 'h')
return dupstr("H"); */
else if ((button == 'x' || button == 'X') && ui->cshow) {
int si = ui->cy*w + ui->cx;
if (state->prev[si] == -1 && state->next[si] == -1)
return UI_UPDATE;
sprintf(buf, "%c%d,%d",
(int)((button == 'x') ? 'C' : 'X'), ui->cx, ui->cy);
return dupstr(buf);
}
return NULL;
}
static void unlink_cell(game_state *state, int si)
{
debug(("Unlinking (%d,%d).", si%state->w, si/state->w));
if (state->prev[si] != -1) {
debug((" ... removing prev link from (%d,%d).",
state->prev[si]%state->w, state->prev[si]/state->w));
state->next[state->prev[si]] = -1;
state->prev[si] = -1;
}
if (state->next[si] != -1) {
debug((" ... removing next link to (%d,%d).",
state->next[si]%state->w, state->next[si]/state->w));
state->prev[state->next[si]] = -1;
state->next[si] = -1;
}
}
static game_state *execute_move(const game_state *state, const char *move)
{
game_state *ret = NULL;
int sx, sy, ex, ey, si, ei, w = state->w;
char c;
debug(("move: %s", move));
if (move[0] == 'S') {
game_params p;
game_state *tmp;
const char *valid;
int i;
p.w = state->w; p.h = state->h;
valid = validate_desc(&p, move+1);
if (valid) {
debug(("execute_move: move not valid: %s", valid));
return NULL;
}
ret = dup_game(state);
tmp = new_game(NULL, &p, move+1);
for (i = 0; i < state->n; i++) {
ret->prev[i] = tmp->prev[i];
ret->next[i] = tmp->next[i];
}
free_game(tmp);
ret->used_solve = true;
} else if (sscanf(move, "L%d,%d-%d,%d", &sx, &sy, &ex, &ey) == 4) {
if (!isvalidmove(state, false, sx, sy, ex, ey)) return NULL;
ret = dup_game(state);
si = sy*w+sx; ei = ey*w+ex;
makelink(ret, si, ei);
} else if (sscanf(move, "%c%d,%d", &c, &sx, &sy) == 3) {
int sset;
if (c != 'C' && c != 'X') return NULL;
if (!INGRID(state, sx, sy)) return NULL;
si = sy*w+sx;
if (state->prev[si] == -1 && state->next[si] == -1)
return NULL;
ret = dup_game(state);
sset = state->nums[si] / (state->n+1);
if (c == 'C' || (c == 'X' && sset == 0)) {
/* Unlink the single cell we dragged from the board. */
unlink_cell(ret, si);
} else {
int i, set;
for (i = 0; i < state->n; i++) {
/* Unlink all cells in the same set as the one we dragged
* from the board. */
if (state->nums[i] == 0) continue;
set = state->nums[i] / (state->n+1);
if (set != sset) continue;
unlink_cell(ret, i);
}
}
} else if (strcmp(move, "H") == 0) {
ret = dup_game(state);
solve_state(ret);
}
if (ret) {
update_numbers(ret);
if (check_completion(ret, true)) ret->completed = true;
}
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
const game_ui *ui, int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize, order; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
assert(TILE_SIZE > 0);
assert(!ds->dragb);
ds->dragb = blitter_new(dr, BLITTER_SIZE, BLITTER_SIZE);
}
/* Colours chosen from the webby palette to work as a background to black text,
* W then some plausible approximation to pastelly ROYGBIV; we then interpolate
* between consecutive pairs to give another 8 (and then the drawing routine
* will reuse backgrounds). */
static const unsigned long bgcols[8] = {
0xffffff, /* white */
0xffa07a, /* lightsalmon */
0x98fb98, /* green */
0x7fffd4, /* aquamarine */
0x9370db, /* medium purple */
0xffa500, /* orange */
0x87cefa, /* lightskyblue */
0xffff00, /* yellow */
};
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int c, i;
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
for (i = 0; i < 3; i++) {
ret[COL_NUMBER * 3 + i] = 0.0F;
ret[COL_ARROW * 3 + i] = 0.0F;
ret[COL_CURSOR * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 2.0F;
ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 1.3F;
}
ret[COL_NUMBER_SET * 3 + 0] = 0.0F;
ret[COL_NUMBER_SET * 3 + 1] = 0.0F;
ret[COL_NUMBER_SET * 3 + 2] = 0.9F;
ret[COL_ERROR * 3 + 0] = 1.0F;
ret[COL_ERROR * 3 + 1] = 0.0F;
ret[COL_ERROR * 3 + 2] = 0.0F;
ret[COL_DRAG_ORIGIN * 3 + 0] = 0.2F;
ret[COL_DRAG_ORIGIN * 3 + 1] = 1.0F;
ret[COL_DRAG_ORIGIN * 3 + 2] = 0.2F;
for (c = 0; c < 8; c++) {
ret[(COL_B0 + c) * 3 + 0] = (float)((bgcols[c] & 0xff0000) >> 16) / 256.0F;
ret[(COL_B0 + c) * 3 + 1] = (float)((bgcols[c] & 0xff00) >> 8) / 256.0F;
ret[(COL_B0 + c) * 3 + 2] = (float)((bgcols[c] & 0xff)) / 256.0F;
}
for (c = 0; c < 8; c++) {
for (i = 0; i < 3; i++) {
ret[(COL_B0 + 8 + c) * 3 + i] =
(ret[(COL_B0 + c) * 3 + i] + ret[(COL_B0 + c + 1) * 3 + i]) / 2.0F;
}
}
#define average(r,a,b,w) do { \
for (i = 0; i < 3; i++) \
ret[(r)*3+i] = ret[(a)*3+i] + w * (ret[(b)*3+i] - ret[(a)*3+i]); \
} while (0)
average(COL_ARROW_BG_DIM, COL_BACKGROUND, COL_ARROW, 0.1F);
average(COL_NUMBER_SET_MID, COL_B0, COL_NUMBER_SET, 0.3F);
for (c = 0; c < NBACKGROUNDS; c++) {
/* I assume here that COL_ARROW and COL_NUMBER are the same.
* Otherwise I'd need two sets of COL_M*. */
average(COL_M0 + c, COL_B0 + c, COL_NUMBER, 0.3F);
average(COL_D0 + c, COL_B0 + c, COL_NUMBER, 0.1F);
average(COL_X0 + c, COL_BACKGROUND, COL_B0 + c, 0.5F);
}
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->tilesize = 0;
ds->started = false;
ds->solved = false;
ds->w = state->w;
ds->h = state->h;
ds->n = state->n;
ds->nums = snewn(state->n, int);
ds->dirp = snewn(state->n, int);
ds->f = snewn(state->n, unsigned int);
for (i = 0; i < state->n; i++) {
ds->nums[i] = 0;
ds->dirp[i] = -1;
ds->f[i] = 0;
}
ds->angle_offset = 0.0F;
ds->dragging = false;
ds->dx = ds->dy = 0;
ds->dragb = NULL;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->nums);
sfree(ds->dirp);
sfree(ds->f);
if (ds->dragb) blitter_free(dr, ds->dragb);
sfree(ds);
}
/* cx, cy are top-left corner. sz is the 'radius' of the arrow.
* ang is in radians, clockwise from 0 == straight up. */
static void draw_arrow(drawing *dr, int cx, int cy, int sz, double ang,
int cfill, int cout)
{
int coords[14];
int xdx, ydx, xdy, ydy, xdx3, xdy3;
double s = sin(ang), c = cos(ang);
xdx3 = (int)(sz * (c/3 + 1) + 0.5) - sz;
xdy3 = (int)(sz * (s/3 + 1) + 0.5) - sz;
xdx = (int)(sz * (c + 1) + 0.5) - sz;
xdy = (int)(sz * (s + 1) + 0.5) - sz;
ydx = -xdy;
ydy = xdx;
coords[2*0 + 0] = cx - ydx;
coords[2*0 + 1] = cy - ydy;
coords[2*1 + 0] = cx + xdx;
coords[2*1 + 1] = cy + xdy;
coords[2*2 + 0] = cx + xdx3;
coords[2*2 + 1] = cy + xdy3;
coords[2*3 + 0] = cx + xdx3 + ydx;
coords[2*3 + 1] = cy + xdy3 + ydy;
coords[2*4 + 0] = cx - xdx3 + ydx;
coords[2*4 + 1] = cy - xdy3 + ydy;
coords[2*5 + 0] = cx - xdx3;
coords[2*5 + 1] = cy - xdy3;
coords[2*6 + 0] = cx - xdx;
coords[2*6 + 1] = cy - xdy;
draw_polygon(dr, coords, 7, cfill, cout);
}
static void draw_arrow_dir(drawing *dr, int cx, int cy, int sz, int dir,
int cfill, int cout, double angle_offset)
{
double ang = 2.0 * PI * (double)dir / 8.0 + angle_offset;
draw_arrow(dr, cx, cy, sz, ang, cfill, cout);
}
/* cx, cy are centre coordinates.. */
static void draw_star(drawing *dr, int cx, int cy, int rad, int npoints,
int cfill, int cout, double angle_offset)
{
int *coords, n;
double a, r;
assert(npoints > 0);
coords = snewn(npoints * 2 * 2, int);
for (n = 0; n < npoints * 2; n++) {
a = 2.0 * PI * ((double)n / ((double)npoints * 2.0)) + angle_offset;
r = (n % 2) ? (double)rad/2.0 : (double)rad;
/* We're rotating the point at (0, -r) by a degrees */
coords[2*n+0] = cx + (int)( r * sin(a));
coords[2*n+1] = cy + (int)(-r * cos(a));
}
draw_polygon(dr, coords, npoints*2, cfill, cout);
sfree(coords);
}
static int num2col(game_drawstate *ds, int num)
{
int set = num / (ds->n+1);
if (num <= 0 || set == 0) return COL_B0;
return COL_B0 + 1 + ((set-1) % 15);
}
#define ARROW_HALFSZ (7 * TILE_SIZE / 32)
#define F_CUR 0x001 /* Cursor on this tile. */
#define F_DRAG_SRC 0x002 /* Tile is source of a drag. */
#define F_ERROR 0x004 /* Tile marked in error. */
#define F_IMMUTABLE 0x008 /* Tile (number) is immutable. */
#define F_ARROW_POINT 0x010 /* Tile points to other tile */
#define F_ARROW_INPOINT 0x020 /* Other tile points in here. */
#define F_DIM 0x040 /* Tile is dim */
static void tile_redraw(drawing *dr, game_drawstate *ds, int tx, int ty,
int dir, int dirp, int num, unsigned int f,
double angle_offset, int print_ink)
{
int cb = TILE_SIZE / 16, textsz;
char buf[20];
int arrowcol, sarrowcol, setcol, textcol;
int acx, acy, asz;
bool empty = false;
if (num == 0 && !(f & F_ARROW_POINT) && !(f & F_ARROW_INPOINT)) {
empty = true;
/*
* We don't display text in empty cells: typically these are
* signified by num=0. However, in some cases a cell could
* have had the number 0 assigned to it if the user made an
* error (e.g. tried to connect a chain of length 5 to the
* immutable number 4) so we _do_ display the 0 if the cell
* has a link in or a link out.
*/
}
/* Calculate colours. */
if (print_ink >= 0) {
/*
* We're printing, so just do everything in black.
*/
arrowcol = textcol = print_ink;
setcol = sarrowcol = -1; /* placate optimiser */
} else {
setcol = empty ? COL_BACKGROUND : num2col(ds, num);
#define dim(fg,bg) ( \
(bg)==COL_BACKGROUND ? COL_ARROW_BG_DIM : \
(bg) + COL_D0 - COL_B0 \
)
#define mid(fg,bg) ( \
(fg)==COL_NUMBER_SET ? COL_NUMBER_SET_MID : \
(bg) + COL_M0 - COL_B0 \
)
#define dimbg(bg) ( \
(bg)==COL_BACKGROUND ? COL_BACKGROUND : \
(bg) + COL_X0 - COL_B0 \
)
if (f & F_DRAG_SRC) arrowcol = COL_DRAG_ORIGIN;
else if (f & F_DIM) arrowcol = dim(COL_ARROW, setcol);
else if (f & F_ARROW_POINT) arrowcol = mid(COL_ARROW, setcol);
else arrowcol = COL_ARROW;
if ((f & F_ERROR) && !(f & F_IMMUTABLE)) textcol = COL_ERROR;
else {
if (f & F_IMMUTABLE) textcol = COL_NUMBER_SET;
else textcol = COL_NUMBER;
if (f & F_DIM) textcol = dim(textcol, setcol);
else if (((f & F_ARROW_POINT) || num==ds->n) &&
((f & F_ARROW_INPOINT) || num==1))
textcol = mid(textcol, setcol);
}
if (f & F_DIM) sarrowcol = dim(COL_ARROW, setcol);
else sarrowcol = COL_ARROW;
}
/* Clear tile background */
if (print_ink < 0) {
draw_rect(dr, tx, ty, TILE_SIZE, TILE_SIZE,
(f & F_DIM) ? dimbg(setcol) : setcol);
}
/* Draw large (outwards-pointing) arrow. */
asz = ARROW_HALFSZ; /* 'radius' of arrow/star. */
acx = tx+TILE_SIZE/2+asz; /* centre x */
acy = ty+TILE_SIZE/2+asz; /* centre y */
if (num == ds->n && (f & F_IMMUTABLE))
draw_star(dr, acx, acy, asz, 5, arrowcol, arrowcol, angle_offset);
else
draw_arrow_dir(dr, acx, acy, asz, dir, arrowcol, arrowcol, angle_offset);
if (print_ink < 0 && (f & F_CUR))
draw_rect_corners(dr, acx, acy, asz+1, COL_CURSOR);
/* Draw dot iff this tile requires a predecessor and doesn't have one. */
if (print_ink < 0) {
acx = tx+TILE_SIZE/2-asz;
acy = ty+TILE_SIZE/2+asz;
if (!(f & F_ARROW_INPOINT) && num != 1) {
draw_circle(dr, acx, acy, asz / 4, sarrowcol, sarrowcol);
}
}
/* Draw text (number or set). */
if (!empty) {
int set = (num <= 0) ? 0 : num / (ds->n+1);
char *p = buf;
if (set == 0 || num <= 0) {
sprintf(buf, "%d", num);
} else {
int n = num % (ds->n+1);
p += sizeof(buf) - 1;
if (n != 0) {
sprintf(buf, "+%d", n); /* Just to get the length... */
p -= strlen(buf);
sprintf(p, "+%d", n);
} else {
*p = '\0';
}
do {
set--;
p--;
*p = (char)((set % 26)+'a');
set /= 26;
} while (set);
}
textsz = min(2*asz, (TILE_SIZE - 2 * cb) / (int)strlen(p));
draw_text(dr, tx + cb, ty + TILE_SIZE/4, FONT_VARIABLE, textsz,
ALIGN_VCENTRE | ALIGN_HLEFT, textcol, p);
}
if (print_ink < 0) {
draw_rect_outline(dr, tx, ty, TILE_SIZE, TILE_SIZE, COL_GRID);
draw_update(dr, tx, ty, TILE_SIZE, TILE_SIZE);
}
}
static void draw_drag_indicator(drawing *dr, game_drawstate *ds,
const game_state *state, const game_ui *ui,
bool validdrag)
{
int dir, w = ds->w, acol = COL_ARROW;
int fx = FROMCOORD(ui->dx), fy = FROMCOORD(ui->dy);
double ang;
if (validdrag) {
/* If we could move here, lock the arrow to the appropriate direction. */
dir = ui->drag_is_from ? state->dirs[ui->sy*w+ui->sx] : state->dirs[fy*w+fx];
ang = (2.0 * PI * dir) / 8.0; /* similar to calculation in draw_arrow_dir. */
} else {
/* Draw an arrow pointing away from/towards the origin cell. */
int ox = COORD(ui->sx) + TILE_SIZE/2, oy = COORD(ui->sy) + TILE_SIZE/2;
double tana, offset;
double xdiff = abs(ox - ui->dx), ydiff = abs(oy - ui->dy);
if (xdiff == 0) {
ang = (oy > ui->dy) ? 0.0F : PI;
} else if (ydiff == 0) {
ang = (ox > ui->dx) ? 3.0F*PI/2.0F : PI/2.0F;
} else {
if (ui->dx > ox && ui->dy < oy) {
tana = xdiff / ydiff;
offset = 0.0F;
} else if (ui->dx > ox && ui->dy > oy) {
tana = ydiff / xdiff;
offset = PI/2.0F;
} else if (ui->dx < ox && ui->dy > oy) {
tana = xdiff / ydiff;
offset = PI;
} else {
tana = ydiff / xdiff;
offset = 3.0F * PI / 2.0F;
}
ang = atan(tana) + offset;
}
if (!ui->drag_is_from) ang += PI; /* point to origin, not away from. */
}
draw_arrow(dr, ui->dx, ui->dy, ARROW_HALFSZ, ang, acol, acol);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int x, y, i, w = ds->w, dirp;
bool force = false;
unsigned int f;
double angle_offset = 0.0;
game_state *postdrop = NULL;
if (flashtime > 0.0F)
angle_offset = 2.0 * PI * (flashtime / FLASH_SPIN);
if (angle_offset != ds->angle_offset) {
ds->angle_offset = angle_offset;
force = true;
}
if (ds->dragging) {
assert(ds->dragb);
blitter_load(dr, ds->dragb, ds->dx, ds->dy);
draw_update(dr, ds->dx, ds->dy, BLITTER_SIZE, BLITTER_SIZE);
ds->dragging = false;
}
/* If an in-progress drag would make a valid move if finished, we
* reflect that move in the board display. We let interpret_move do
* most of the heavy lifting for us: we have to copy the game_ui so
* as not to stomp on the real UI's drag state. */
if (ui->dragging) {
game_ui uicopy = *ui;
char *movestr = interpret_move(state, &uicopy, ds, ui->dx, ui->dy, LEFT_RELEASE);
if (movestr != NULL && strcmp(movestr, "") != 0) {
postdrop = execute_move(state, movestr);
sfree(movestr);
state = postdrop;
}
}
if (!ds->started) {
int aw = TILE_SIZE * state->w;
int ah = TILE_SIZE * state->h;
draw_rect_outline(dr, BORDER - 1, BORDER - 1, aw + 2, ah + 2, COL_GRID);
draw_update(dr, 0, 0, aw + 2 * BORDER, ah + 2 * BORDER);
}
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
i = y*w + x;
f = 0;
dirp = -1;
if (ui->cshow && x == ui->cx && y == ui->cy)
f |= F_CUR;
if (ui->dragging) {
if (x == ui->sx && y == ui->sy)
f |= F_DRAG_SRC;
else if (ui->drag_is_from) {
if (!ispointing(state, ui->sx, ui->sy, x, y))
f |= F_DIM;
} else {
if (!ispointing(state, x, y, ui->sx, ui->sy))
f |= F_DIM;
}
}
if (state->impossible ||
state->nums[i] < 0 || state->flags[i] & FLAG_ERROR)
f |= F_ERROR;
if (state->flags[i] & FLAG_IMMUTABLE)
f |= F_IMMUTABLE;
if (state->next[i] != -1)
f |= F_ARROW_POINT;
if (state->prev[i] != -1) {
/* Currently the direction here is from our square _back_
* to its previous. We could change this to give the opposite
* sense to the direction. */
f |= F_ARROW_INPOINT;
dirp = whichdir(x, y, state->prev[i]%w, state->prev[i]/w);
}
if (state->nums[i] != ds->nums[i] ||
f != ds->f[i] || dirp != ds->dirp[i] ||
force || !ds->started) {
int sign = (ui->gear_mode ? 1 - 2 * ((x ^ y) & 1) : 1);
tile_redraw(dr, ds,
BORDER + x * TILE_SIZE,
BORDER + y * TILE_SIZE,
state->dirs[i], dirp, state->nums[i], f,
sign * angle_offset, -1);
ds->nums[i] = state->nums[i];
ds->f[i] = f;
ds->dirp[i] = dirp;
}
}
}
if (ui->dragging) {
ds->dragging = true;
ds->dx = ui->dx - BLITTER_SIZE/2;
ds->dy = ui->dy - BLITTER_SIZE/2;
blitter_save(dr, ds->dragb, ds->dx, ds->dy);
draw_drag_indicator(dr, ds, state, ui, postdrop != NULL);
}
if (postdrop) free_game(postdrop);
if (!ds->started) ds->started = true;
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if (!oldstate->completed &&
newstate->completed && !newstate->used_solve)
return FLASH_SPIN;
else
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cshow) {
*x = COORD(ui->cx);
*y = COORD(ui->cy);
*w = *h = TILE_SIZE;
}
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
static void game_print_size(const game_params *params, const game_ui *ui,
float *x, float *y)
{
int pw, ph;
game_compute_size(params, 1300, ui, &pw, &ph);
*x = pw / 100.0F;
*y = ph / 100.0F;
}
static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
int tilesize)
{
int ink = print_mono_colour(dr, 0);
int x, y;
/* Fake up just enough of a drawstate */
game_drawstate ads, *ds = &ads;
ds->tilesize = tilesize;
ds->n = state->n;
/*
* Border and grid.
*/
print_line_width(dr, TILE_SIZE / 40);
for (x = 1; x < state->w; x++)
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(state->h), ink);
for (y = 1; y < state->h; y++)
draw_line(dr, COORD(0), COORD(y), COORD(state->w), COORD(y), ink);
print_line_width(dr, 2*TILE_SIZE / 40);
draw_rect_outline(dr, COORD(0), COORD(0), TILE_SIZE*state->w,
TILE_SIZE*state->h, ink);
/*
* Arrows and numbers.
*/
print_line_width(dr, 0);
for (y = 0; y < state->h; y++)
for (x = 0; x < state->w; x++)
tile_redraw(dr, ds, COORD(x), COORD(y), state->dirs[y*state->w+x],
0, state->nums[y*state->w+x], 0, 0.0, ink);
}
#ifdef COMBINED
#define thegame signpost
#endif
const struct game thegame = {
"Signpost", "games.signpost", "signpost",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
true, solve_game,
true, game_can_format_as_text_now, game_text_format,
get_prefs, set_prefs,
new_ui,
free_ui,
NULL, /* encode_ui */
NULL, /* decode_ui */
NULL, /* game_request_keys */
game_changed_state,
current_key_label,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
true, false, game_print_size, game_print,
false, /* wants_statusbar */
false, NULL, /* timing_state */
REQUIRE_RBUTTON, /* flags */
};
#ifdef STANDALONE_SOLVER
#include <time.h>
#include <stdarg.h>
static const char *quis = NULL;
static void usage(FILE *out) {
fprintf(out, "usage: %s [--stdin] [--soak] [--seed SEED] <params>|<game id>\n", quis);
}
static void cycle_seed(char **seedstr, random_state *rs)
{
char newseed[16];
int j;
newseed[15] = '\0';
newseed[0] = '1' + (char)random_upto(rs, 9);
for (j = 1; j < 15; j++)
newseed[j] = '0' + (char)random_upto(rs, 10);
sfree(*seedstr);
*seedstr = dupstr(newseed);
}
static void start_soak(game_params *p, char *seedstr)
{
time_t tt_start, tt_now, tt_last;
char *desc, *aux;
random_state *rs;
long n = 0, nnums = 0, i;
game_state *state;
tt_start = tt_now = time(NULL);
printf("Soak-generating a %dx%d grid.\n", p->w, p->h);
while (1) {
rs = random_new(seedstr, strlen(seedstr));
desc = thegame.new_desc(p, rs, &aux, 0);
state = thegame.new_game(NULL, p, desc);
for (i = 0; i < state->n; i++) {
if (state->flags[i] & FLAG_IMMUTABLE)
nnums++;
}
thegame.free_game(state);
sfree(desc);
cycle_seed(&seedstr, rs);
random_free(rs);
n++;
tt_last = time(NULL);
if (tt_last > tt_now) {
tt_now = tt_last;
printf("%ld total, %3.1f/s, %3.1f nums/grid (%3.1f%%).\n",
n,
(double)n / ((double)tt_now - tt_start),
(double)nnums / (double)n,
((double)nnums * 100.0) / ((double)n * (double)p->w * (double)p->h) );
}
}
}
static void process_desc(char *id)
{
char *desc, *solvestr;
const char *err;
game_params *p;
game_state *s;
printf("%s\n ", id);
desc = strchr(id, ':');
if (!desc) {
fprintf(stderr, "%s: expecting game description.", quis);
exit(1);
}
*desc++ = '\0';
p = thegame.default_params();
thegame.decode_params(p, id);
err = thegame.validate_params(p, 1);
if (err) {
fprintf(stderr, "%s: %s", quis, err);
thegame.free_params(p);
return;
}
err = thegame.validate_desc(p, desc);
if (err) {
fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc);
thegame.free_params(p);
return;
}
s = thegame.new_game(NULL, p, desc);
solvestr = thegame.solve(s, s, NULL, &err);
if (!solvestr)
fprintf(stderr, "%s\n", err);
else
printf("Puzzle is soluble.\n");
thegame.free_game(s);
thegame.free_params(p);
}
int main(int argc, char *argv[])
{
char *id = NULL, *desc, *aux = NULL;
const char *err;
bool soak = false, verbose = false, stdin_desc = false;
int n = 1, i;
char *seedstr = NULL, newseed[16];
setvbuf(stdout, NULL, _IONBF, 0);
quis = argv[0];
while (--argc > 0) {
char *p = (char*)(*++argv);
if (!strcmp(p, "-v") || !strcmp(p, "--verbose"))
verbose = true;
else if (!strcmp(p, "--stdin"))
stdin_desc = true;
else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
seedstr = dupstr(*++argv);
argc--;
} else if (!strcmp(p, "-n") || !strcmp(p, "--number")) {
n = atoi(*++argv);
argc--;
} else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) {
soak = true;
} else if (*p == '-') {
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
usage(stderr);
exit(1);
} else {
id = p;
}
}
sprintf(newseed, "%lu", (unsigned long) time(NULL));
seedstr = dupstr(newseed);
if (id || !stdin_desc) {
if (id && strchr(id, ':')) {
/* Parameters and description passed on cmd-line:
* try and solve it. */
process_desc(id);
} else {
/* No description passed on cmd-line: decode parameters
* (with optional seed too) */
game_params *p = thegame.default_params();
if (id) {
char *cmdseed = strchr(id, '#');
if (cmdseed) {
*cmdseed++ = '\0';
sfree(seedstr);
seedstr = dupstr(cmdseed);
}
thegame.decode_params(p, id);
}
err = thegame.validate_params(p, 1);
if (err) {
fprintf(stderr, "%s: %s", quis, err);
thegame.free_params(p);
exit(1);
}
/* We have a set of valid parameters; either soak with it
* or generate a single game description and print to stdout. */
if (soak)
start_soak(p, seedstr);
else {
char *pstring = thegame.encode_params(p, 0);
for (i = 0; i < n; i++) {
random_state *rs = random_new(seedstr, strlen(seedstr));
if (verbose) printf("%s#%s\n", pstring, seedstr);
desc = thegame.new_desc(p, rs, &aux, 0);
printf("%s:%s\n", pstring, desc);
sfree(desc);
cycle_seed(&seedstr, rs);
random_free(rs);
}
sfree(pstring);
}
thegame.free_params(p);
}
}
if (stdin_desc) {
char buf[4096];
while (fgets(buf, sizeof(buf), stdin)) {
buf[strcspn(buf, "\r\n")] = '\0';
process_desc(buf);
}
}
sfree(seedstr);
return 0;
}
#endif
/* vim: set shiftwidth=4 tabstop=8: */