mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files
1291 lines
34 KiB
C
1291 lines
34 KiB
C
/*
|
|
* This program implements a breadth-first search which
|
|
* exhaustively solves the Countdown numbers game, and related
|
|
* games with slightly different rule sets such as `Flippo'.
|
|
*
|
|
* Currently it is simply a standalone command-line utility to
|
|
* which you provide a set of numbers and it tells you everything
|
|
* it can make together with how many different ways it can be
|
|
* made. I would like ultimately to turn it into the generator for
|
|
* a Puzzles puzzle, but I haven't even started on writing a
|
|
* Puzzles user interface yet.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - start thinking about difficulty ratings
|
|
* + anything involving associative operations will be flagged
|
|
* as many-paths because of the associative options (e.g.
|
|
* 2*3*4 can be (2*3)*4 or 2*(3*4), or indeed (2*4)*3). This
|
|
* is probably a _good_ thing, since those are unusually
|
|
* easy.
|
|
* + tree-structured calculations ((a*b)/(c+d)) have multiple
|
|
* paths because the independent branches of the tree can be
|
|
* evaluated in either order, whereas straight-line
|
|
* calculations with no branches will be considered easier.
|
|
* Can we do anything about this? It's certainly not clear to
|
|
* me that tree-structure calculations are _easier_, although
|
|
* I'm also not convinced they're harder.
|
|
* + I think for a realistic difficulty assessment we must also
|
|
* consider the `obviousness' of the arithmetic operations in
|
|
* some heuristic sense, and also (in Countdown) how many
|
|
* numbers ended up being used.
|
|
* - actually try some generations
|
|
* - at this point we're probably ready to start on the Puzzles
|
|
* integration.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
/*
|
|
* To search for numbers we can make, we employ a breadth-first
|
|
* search across the space of sets of input numbers. That is, for
|
|
* example, we start with the set (3,6,25,50,75,100); we apply
|
|
* moves which involve combining two numbers (e.g. adding the 50
|
|
* and the 75 takes us to the set (3,6,25,100,125); and then we see
|
|
* if we ever end up with a set containing (say) 952.
|
|
*
|
|
* If the rules are changed so that all the numbers must be used,
|
|
* this is easy to adjust to: we simply see if we end up with a set
|
|
* containing _only_ (say) 952.
|
|
*
|
|
* Obviously, we can vary the rules about permitted arithmetic
|
|
* operations simply by altering the set of valid moves in the bfs.
|
|
* However, there's one common rule in this sort of puzzle which
|
|
* takes a little more thought, and that's _concatenation_. For
|
|
* example, if you are given (say) four 4s and required to make 10,
|
|
* you are permitted to combine two of the 4s into a 44 to begin
|
|
* with, making (44-4)/4 = 10. However, you are generally not
|
|
* allowed to concatenate two numbers that _weren't_ both in the
|
|
* original input set (you couldn't multiply two 4s to get 16 and
|
|
* then concatenate a 4 on to it to make 164), so concatenation is
|
|
* not an operation which is valid in all situations.
|
|
*
|
|
* We could enforce this restriction by storing a flag alongside
|
|
* each number indicating whether or not it's an original number;
|
|
* the rules being that concatenation of two numbers is only valid
|
|
* if they both have the original flag, and that its output _also_
|
|
* has the original flag (so that you can concatenate three 4s into
|
|
* a 444), but that applying any other arithmetic operation clears
|
|
* the original flag on the output. However, we can get marginally
|
|
* simpler than that by observing that since concatenation has to
|
|
* happen to a number before any other operation, we can simply
|
|
* place all the concatenations at the start of the search. In
|
|
* other words, we have a global flag on an entire number _set_
|
|
* which indicates whether we are still permitted to perform
|
|
* concatenations; if so, we can concatenate any of the numbers in
|
|
* that set. Performing any other operation clears the flag.
|
|
*/
|
|
|
|
#define SETFLAG_CONCAT 1 /* we can do concatenation */
|
|
|
|
struct sets;
|
|
|
|
struct ancestor {
|
|
struct set *prev; /* index of ancestor set in set list */
|
|
unsigned char pa, pb, po, pr; /* operation that got here from prev */
|
|
};
|
|
|
|
struct set {
|
|
int *numbers; /* rationals stored as n,d pairs */
|
|
short nnumbers; /* # of rationals, so half # of ints */
|
|
short flags; /* SETFLAG_CONCAT only, at present */
|
|
int npaths; /* number of ways to reach this set */
|
|
struct ancestor a; /* primary ancestor */
|
|
struct ancestor *as; /* further ancestors, if we care */
|
|
int nas, assize;
|
|
};
|
|
|
|
struct output {
|
|
int number;
|
|
struct set *set;
|
|
int index; /* which number in the set is it? */
|
|
int npaths; /* number of ways to reach this */
|
|
};
|
|
|
|
#define SETLISTLEN 1024
|
|
#define NUMBERLISTLEN 32768
|
|
#define OUTPUTLISTLEN 1024
|
|
struct operation;
|
|
struct sets {
|
|
struct set **setlists;
|
|
int nsets, nsetlists, setlistsize;
|
|
tree234 *settree;
|
|
int **numberlists;
|
|
int nnumbers, nnumberlists, numberlistsize;
|
|
struct output **outputlists;
|
|
int noutputs, noutputlists, outputlistsize;
|
|
tree234 *outputtree;
|
|
const struct operation *const *ops;
|
|
};
|
|
|
|
#define OPFLAG_NEEDS_CONCAT 1
|
|
#define OPFLAG_KEEPS_CONCAT 2
|
|
#define OPFLAG_UNARY 4
|
|
#define OPFLAG_UNARYPREFIX 8
|
|
#define OPFLAG_FN 16
|
|
|
|
struct operation {
|
|
/*
|
|
* Most operations should be shown in the output working, but
|
|
* concatenation should not; we just take the result of the
|
|
* concatenation and assume that it's obvious how it was
|
|
* derived.
|
|
*/
|
|
int display;
|
|
|
|
/*
|
|
* Text display of the operator, in expressions and for
|
|
* debugging respectively.
|
|
*/
|
|
char *text, *dbgtext;
|
|
|
|
/*
|
|
* Flags dictating when the operator can be applied.
|
|
*/
|
|
int flags;
|
|
|
|
/*
|
|
* Priority of the operator (for avoiding unnecessary
|
|
* parentheses when formatting it into a string).
|
|
*/
|
|
int priority;
|
|
|
|
/*
|
|
* Associativity of the operator. Bit 0 means we need parens
|
|
* when the left operand of one of these operators is another
|
|
* instance of it, e.g. (2^3)^4. Bit 1 means we need parens
|
|
* when the right operand is another instance of the same
|
|
* operator, e.g. 2-(3-4). Thus:
|
|
*
|
|
* - this field is 0 for a fully associative operator, since
|
|
* we never need parens.
|
|
* - it's 1 for a right-associative operator.
|
|
* - it's 2 for a left-associative operator.
|
|
* - it's 3 for a _non_-associative operator (which always
|
|
* uses parens just to be sure).
|
|
*/
|
|
int assoc;
|
|
|
|
/*
|
|
* Whether the operator is commutative. Saves time in the
|
|
* search if we don't have to try it both ways round.
|
|
*/
|
|
int commutes;
|
|
|
|
/*
|
|
* Function which implements the operator. Returns TRUE on
|
|
* success, FALSE on failure. Takes two rationals and writes
|
|
* out a third.
|
|
*/
|
|
int (*perform)(int *a, int *b, int *output);
|
|
};
|
|
|
|
struct rules {
|
|
const struct operation *const *ops;
|
|
int use_all;
|
|
};
|
|
|
|
#define MUL(r, a, b) do { \
|
|
(r) = (a) * (b); \
|
|
if ((b) && (a) && (r) / (b) != (a)) return FALSE; \
|
|
} while (0)
|
|
|
|
#define ADD(r, a, b) do { \
|
|
(r) = (a) + (b); \
|
|
if ((a) > 0 && (b) > 0 && (r) < 0) return FALSE; \
|
|
if ((a) < 0 && (b) < 0 && (r) > 0) return FALSE; \
|
|
} while (0)
|
|
|
|
#define OUT(output, n, d) do { \
|
|
int g = gcd((n),(d)); \
|
|
if (g < 0) g = -g; \
|
|
if ((d) < 0) g = -g; \
|
|
if (g == -1 && (n) < -INT_MAX) return FALSE; \
|
|
if (g == -1 && (d) < -INT_MAX) return FALSE; \
|
|
(output)[0] = (n)/g; \
|
|
(output)[1] = (d)/g; \
|
|
assert((output)[1] > 0); \
|
|
} while (0)
|
|
|
|
static int gcd(int x, int y)
|
|
{
|
|
while (x != 0 && y != 0) {
|
|
int t = x;
|
|
x = y;
|
|
y = t % y;
|
|
}
|
|
|
|
return abs(x + y); /* i.e. whichever one isn't zero */
|
|
}
|
|
|
|
static int perform_add(int *a, int *b, int *output)
|
|
{
|
|
int at, bt, tn, bn;
|
|
/*
|
|
* a0/a1 + b0/b1 = (a0*b1 + b0*a1) / (a1*b1)
|
|
*/
|
|
MUL(at, a[0], b[1]);
|
|
MUL(bt, b[0], a[1]);
|
|
ADD(tn, at, bt);
|
|
MUL(bn, a[1], b[1]);
|
|
OUT(output, tn, bn);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_sub(int *a, int *b, int *output)
|
|
{
|
|
int at, bt, tn, bn;
|
|
/*
|
|
* a0/a1 - b0/b1 = (a0*b1 - b0*a1) / (a1*b1)
|
|
*/
|
|
MUL(at, a[0], b[1]);
|
|
MUL(bt, b[0], a[1]);
|
|
ADD(tn, at, -bt);
|
|
MUL(bn, a[1], b[1]);
|
|
OUT(output, tn, bn);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_mul(int *a, int *b, int *output)
|
|
{
|
|
int tn, bn;
|
|
/*
|
|
* a0/a1 * b0/b1 = (a0*b0) / (a1*b1)
|
|
*/
|
|
MUL(tn, a[0], b[0]);
|
|
MUL(bn, a[1], b[1]);
|
|
OUT(output, tn, bn);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_div(int *a, int *b, int *output)
|
|
{
|
|
int tn, bn;
|
|
|
|
/*
|
|
* Division by zero is outlawed.
|
|
*/
|
|
if (b[0] == 0)
|
|
return FALSE;
|
|
|
|
/*
|
|
* a0/a1 / b0/b1 = (a0*b1) / (a1*b0)
|
|
*/
|
|
MUL(tn, a[0], b[1]);
|
|
MUL(bn, a[1], b[0]);
|
|
OUT(output, tn, bn);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_exact_div(int *a, int *b, int *output)
|
|
{
|
|
int tn, bn;
|
|
|
|
/*
|
|
* Division by zero is outlawed.
|
|
*/
|
|
if (b[0] == 0)
|
|
return FALSE;
|
|
|
|
/*
|
|
* a0/a1 / b0/b1 = (a0*b1) / (a1*b0)
|
|
*/
|
|
MUL(tn, a[0], b[1]);
|
|
MUL(bn, a[1], b[0]);
|
|
OUT(output, tn, bn);
|
|
|
|
/*
|
|
* Exact division means we require the result to be an integer.
|
|
*/
|
|
return (output[1] == 1);
|
|
}
|
|
|
|
static int max_p10(int n, int *p10_r)
|
|
{
|
|
/*
|
|
* Find the smallest power of ten strictly greater than n.
|
|
*
|
|
* Special case: we must return at least 10, even if n is
|
|
* zero. (This is because this function is used for finding
|
|
* the power of ten by which to multiply a number being
|
|
* concatenated to the front of n, and concatenating 1 to 0
|
|
* should yield 10 and not 1.)
|
|
*/
|
|
int p10 = 10;
|
|
while (p10 <= (INT_MAX/10) && p10 <= n)
|
|
p10 *= 10;
|
|
if (p10 > INT_MAX/10)
|
|
return FALSE; /* integer overflow */
|
|
*p10_r = p10;
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_concat(int *a, int *b, int *output)
|
|
{
|
|
int t1, t2, p10;
|
|
|
|
/*
|
|
* We can't concatenate anything which isn't a non-negative
|
|
* integer.
|
|
*/
|
|
if (a[1] != 1 || b[1] != 1 || a[0] < 0 || b[0] < 0)
|
|
return FALSE;
|
|
|
|
/*
|
|
* For concatenation, we can safely assume leading zeroes
|
|
* aren't an issue. It isn't clear whether they `should' be
|
|
* allowed, but it turns out not to matter: concatenating a
|
|
* leading zero on to a number in order to harmlessly get rid
|
|
* of the zero is never necessary because unwanted zeroes can
|
|
* be disposed of by adding them to something instead. So we
|
|
* disallow them always.
|
|
*
|
|
* The only other possibility is that you might want to
|
|
* concatenate a leading zero on to something and then
|
|
* concatenate another non-zero digit on to _that_ (to make,
|
|
* for example, 106); but that's also unnecessary, because you
|
|
* can make 106 just as easily by concatenating the 0 on to the
|
|
* _end_ of the 1 first.
|
|
*/
|
|
if (a[0] == 0)
|
|
return FALSE;
|
|
|
|
if (!max_p10(b[0], &p10)) return FALSE;
|
|
|
|
MUL(t1, p10, a[0]);
|
|
ADD(t2, t1, b[0]);
|
|
OUT(output, t2, 1);
|
|
return TRUE;
|
|
}
|
|
|
|
#define IPOW(ret, x, y) do { \
|
|
int ipow_limit = (y); \
|
|
if ((x) == 1 || (x) == 0) ipow_limit = 1; \
|
|
else if ((x) == -1) ipow_limit &= 1; \
|
|
(ret) = 1; \
|
|
while (ipow_limit-- > 0) { \
|
|
int tmp; \
|
|
MUL(tmp, ret, x); \
|
|
ret = tmp; \
|
|
} \
|
|
} while (0)
|
|
|
|
static int perform_exp(int *a, int *b, int *output)
|
|
{
|
|
int an, ad, xn, xd;
|
|
|
|
/*
|
|
* Exponentiation is permitted if the result is rational. This
|
|
* means that:
|
|
*
|
|
* - first we see whether we can take the (denominator-of-b)th
|
|
* root of a and get a rational; if not, we give up.
|
|
*
|
|
* - then we do take that root of a
|
|
*
|
|
* - then we multiply by itself (numerator-of-b) times.
|
|
*/
|
|
if (b[1] > 1) {
|
|
an = (int)(0.5 + pow(a[0], 1.0/b[1]));
|
|
ad = (int)(0.5 + pow(a[1], 1.0/b[1]));
|
|
IPOW(xn, an, b[1]);
|
|
IPOW(xd, ad, b[1]);
|
|
if (xn != a[0] || xd != a[1])
|
|
return FALSE;
|
|
} else {
|
|
an = a[0];
|
|
ad = a[1];
|
|
}
|
|
if (b[0] >= 0) {
|
|
IPOW(xn, an, b[0]);
|
|
IPOW(xd, ad, b[0]);
|
|
} else {
|
|
IPOW(xd, an, -b[0]);
|
|
IPOW(xn, ad, -b[0]);
|
|
}
|
|
if (xd == 0)
|
|
return FALSE;
|
|
|
|
OUT(output, xn, xd);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_factorial(int *a, int *b, int *output)
|
|
{
|
|
int ret, t, i;
|
|
|
|
/*
|
|
* Factorials of non-negative integers are permitted.
|
|
*/
|
|
if (a[1] != 1 || a[0] < 0)
|
|
return FALSE;
|
|
|
|
/*
|
|
* However, a special case: we don't take a factorial of
|
|
* anything which would thereby remain the same.
|
|
*/
|
|
if (a[0] == 1 || a[0] == 2)
|
|
return FALSE;
|
|
|
|
ret = 1;
|
|
for (i = 1; i <= a[0]; i++) {
|
|
MUL(t, ret, i);
|
|
ret = t;
|
|
}
|
|
|
|
OUT(output, ret, 1);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_decimal(int *a, int *b, int *output)
|
|
{
|
|
int p10;
|
|
|
|
/*
|
|
* Add a decimal digit to the front of a number;
|
|
* fail if it's not an integer.
|
|
* So, 1 --> 0.1, 15 --> 0.15,
|
|
* or, rather, 1 --> 1/10, 15 --> 15/100,
|
|
* x --> x / (smallest power of 10 > than x)
|
|
*
|
|
*/
|
|
if (a[1] != 1) return FALSE;
|
|
|
|
if (!max_p10(a[0], &p10)) return FALSE;
|
|
|
|
OUT(output, a[0], p10);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_recur(int *a, int *b, int *output)
|
|
{
|
|
int p10, tn, bn;
|
|
|
|
/*
|
|
* This converts a number like .4 to .44444..., or .45 to .45454...
|
|
* The input number must be -1 < a < 1.
|
|
*
|
|
* Calculate the smallest power of 10 that divides the denominator exactly,
|
|
* returning if no such power of 10 exists. Then multiply the numerator
|
|
* up accordingly, and the new denominator becomes that power of 10 - 1.
|
|
*/
|
|
if (abs(a[0]) >= abs(a[1])) return FALSE; /* -1 < a < 1 */
|
|
|
|
p10 = 10;
|
|
while (p10 <= (INT_MAX/10)) {
|
|
if ((a[1] <= p10) && (p10 % a[1]) == 0) goto found;
|
|
p10 *= 10;
|
|
}
|
|
return FALSE;
|
|
found:
|
|
tn = a[0] * (p10 / a[1]);
|
|
bn = p10 - 1;
|
|
|
|
OUT(output, tn, bn);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_root(int *a, int *b, int *output)
|
|
{
|
|
/*
|
|
* A root B is: 1 iff a == 0
|
|
* B ^ (1/A) otherwise
|
|
*/
|
|
int ainv[2], res;
|
|
|
|
if (a[0] == 0) {
|
|
OUT(output, 1, 1);
|
|
return TRUE;
|
|
}
|
|
|
|
OUT(ainv, a[1], a[0]);
|
|
res = perform_exp(b, ainv, output);
|
|
return res;
|
|
}
|
|
|
|
static int perform_perc(int *a, int *b, int *output)
|
|
{
|
|
if (a[0] == 0) return FALSE; /* 0% = 0, uninteresting. */
|
|
if (a[1] > (INT_MAX/100)) return FALSE;
|
|
|
|
OUT(output, a[0], a[1]*100);
|
|
return TRUE;
|
|
}
|
|
|
|
static int perform_gamma(int *a, int *b, int *output)
|
|
{
|
|
int asub1[2];
|
|
|
|
/*
|
|
* gamma(a) = (a-1)!
|
|
*
|
|
* special case not caught by perform_fact: gamma(1) is 1 so
|
|
* don't bother.
|
|
*/
|
|
if (a[0] == 1 && a[1] == 1) return FALSE;
|
|
|
|
OUT(asub1, a[0]-a[1], a[1]);
|
|
return perform_factorial(asub1, b, output);
|
|
}
|
|
|
|
static int perform_sqrt(int *a, int *b, int *output)
|
|
{
|
|
int half[2] = { 1, 2 };
|
|
|
|
/*
|
|
* sqrt(0) == 0, sqrt(1) == 1: don't perform unary noops.
|
|
*/
|
|
if (a[0] == 0 || (a[0] == 1 && a[1] == 1)) return FALSE;
|
|
|
|
return perform_exp(a, half, output);
|
|
}
|
|
|
|
const static struct operation op_add = {
|
|
TRUE, "+", "+", 0, 10, 0, TRUE, perform_add
|
|
};
|
|
const static struct operation op_sub = {
|
|
TRUE, "-", "-", 0, 10, 2, FALSE, perform_sub
|
|
};
|
|
const static struct operation op_mul = {
|
|
TRUE, "*", "*", 0, 20, 0, TRUE, perform_mul
|
|
};
|
|
const static struct operation op_div = {
|
|
TRUE, "/", "/", 0, 20, 2, FALSE, perform_div
|
|
};
|
|
const static struct operation op_xdiv = {
|
|
TRUE, "/", "/", 0, 20, 2, FALSE, perform_exact_div
|
|
};
|
|
const static struct operation op_concat = {
|
|
FALSE, "", "concat", OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT,
|
|
1000, 0, FALSE, perform_concat
|
|
};
|
|
const static struct operation op_exp = {
|
|
TRUE, "^", "^", 0, 30, 1, FALSE, perform_exp
|
|
};
|
|
const static struct operation op_factorial = {
|
|
TRUE, "!", "!", OPFLAG_UNARY, 40, 0, FALSE, perform_factorial
|
|
};
|
|
const static struct operation op_decimal = {
|
|
TRUE, ".", ".", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT, 50, 0, FALSE, perform_decimal
|
|
};
|
|
const static struct operation op_recur = {
|
|
TRUE, "...", "recur", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 2, FALSE, perform_recur
|
|
};
|
|
const static struct operation op_root = {
|
|
TRUE, "v~", "root", 0, 30, 1, FALSE, perform_root
|
|
};
|
|
const static struct operation op_perc = {
|
|
TRUE, "%", "%", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 1, FALSE, perform_perc
|
|
};
|
|
const static struct operation op_gamma = {
|
|
TRUE, "gamma", "gamma", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_FN, 1, 3, FALSE, perform_gamma
|
|
};
|
|
const static struct operation op_sqrt = {
|
|
TRUE, "v~", "sqrt", OPFLAG_UNARY | OPFLAG_UNARYPREFIX, 30, 1, FALSE, perform_sqrt
|
|
};
|
|
|
|
/*
|
|
* In Countdown, divisions resulting in fractions are disallowed.
|
|
* http://www.askoxford.com/wordgames/countdown/rules/
|
|
*/
|
|
const static struct operation *const ops_countdown[] = {
|
|
&op_add, &op_mul, &op_sub, &op_xdiv, NULL
|
|
};
|
|
const static struct rules rules_countdown = {
|
|
ops_countdown, FALSE
|
|
};
|
|
|
|
/*
|
|
* A slightly different rule set which handles the reasonably well
|
|
* known puzzle of making 24 using two 3s and two 8s. For this we
|
|
* need rational rather than integer division.
|
|
*/
|
|
const static struct operation *const ops_3388[] = {
|
|
&op_add, &op_mul, &op_sub, &op_div, NULL
|
|
};
|
|
const static struct rules rules_3388 = {
|
|
ops_3388, TRUE
|
|
};
|
|
|
|
/*
|
|
* A still more permissive rule set usable for the four-4s problem
|
|
* and similar things. Permits concatenation.
|
|
*/
|
|
const static struct operation *const ops_four4s[] = {
|
|
&op_add, &op_mul, &op_sub, &op_div, &op_concat, NULL
|
|
};
|
|
const static struct rules rules_four4s = {
|
|
ops_four4s, TRUE
|
|
};
|
|
|
|
/*
|
|
* The most permissive ruleset I can think of. Permits
|
|
* exponentiation, and also silly unary operators like factorials.
|
|
*/
|
|
const static struct operation *const ops_anythinggoes[] = {
|
|
&op_add, &op_mul, &op_sub, &op_div, &op_concat, &op_exp, &op_factorial,
|
|
&op_decimal, &op_recur, &op_root, &op_perc, &op_gamma, &op_sqrt, NULL
|
|
};
|
|
const static struct rules rules_anythinggoes = {
|
|
ops_anythinggoes, TRUE
|
|
};
|
|
|
|
#define ratcmp(a,op,b) ( (long long)(a)[0] * (b)[1] op \
|
|
(long long)(b)[0] * (a)[1] )
|
|
|
|
static int addtoset(struct set *set, int newnumber[2])
|
|
{
|
|
int i, j;
|
|
|
|
/* Find where we want to insert the new number */
|
|
for (i = 0; i < set->nnumbers &&
|
|
ratcmp(set->numbers+2*i, <, newnumber); i++);
|
|
|
|
/* Move everything else up */
|
|
for (j = set->nnumbers; j > i; j--) {
|
|
set->numbers[2*j] = set->numbers[2*j-2];
|
|
set->numbers[2*j+1] = set->numbers[2*j-1];
|
|
}
|
|
|
|
/* Insert the new number */
|
|
set->numbers[2*i] = newnumber[0];
|
|
set->numbers[2*i+1] = newnumber[1];
|
|
|
|
set->nnumbers++;
|
|
|
|
return i;
|
|
}
|
|
|
|
#define ensure(array, size, newlen, type) do { \
|
|
if ((newlen) > (size)) { \
|
|
(size) = (newlen) + 512; \
|
|
(array) = sresize((array), (size), type); \
|
|
} \
|
|
} while (0)
|
|
|
|
static int setcmp(void *av, void *bv)
|
|
{
|
|
struct set *a = (struct set *)av;
|
|
struct set *b = (struct set *)bv;
|
|
int i;
|
|
|
|
if (a->nnumbers < b->nnumbers)
|
|
return -1;
|
|
else if (a->nnumbers > b->nnumbers)
|
|
return +1;
|
|
|
|
if (a->flags < b->flags)
|
|
return -1;
|
|
else if (a->flags > b->flags)
|
|
return +1;
|
|
|
|
for (i = 0; i < a->nnumbers; i++) {
|
|
if (ratcmp(a->numbers+2*i, <, b->numbers+2*i))
|
|
return -1;
|
|
else if (ratcmp(a->numbers+2*i, >, b->numbers+2*i))
|
|
return +1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int outputcmp(void *av, void *bv)
|
|
{
|
|
struct output *a = (struct output *)av;
|
|
struct output *b = (struct output *)bv;
|
|
|
|
if (a->number < b->number)
|
|
return -1;
|
|
else if (a->number > b->number)
|
|
return +1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int outputfindcmp(void *av, void *bv)
|
|
{
|
|
int *a = (int *)av;
|
|
struct output *b = (struct output *)bv;
|
|
|
|
if (*a < b->number)
|
|
return -1;
|
|
else if (*a > b->number)
|
|
return +1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void addset(struct sets *s, struct set *set, int multiple,
|
|
struct set *prev, int pa, int po, int pb, int pr)
|
|
{
|
|
struct set *s2;
|
|
int npaths = (prev ? prev->npaths : 1);
|
|
|
|
assert(set == s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN);
|
|
s2 = add234(s->settree, set);
|
|
if (s2 == set) {
|
|
/*
|
|
* New set added to the tree.
|
|
*/
|
|
set->a.prev = prev;
|
|
set->a.pa = pa;
|
|
set->a.po = po;
|
|
set->a.pb = pb;
|
|
set->a.pr = pr;
|
|
set->npaths = npaths;
|
|
s->nsets++;
|
|
s->nnumbers += 2 * set->nnumbers;
|
|
set->as = NULL;
|
|
set->nas = set->assize = 0;
|
|
} else {
|
|
/*
|
|
* Rediscovered an existing set. Update its npaths.
|
|
*/
|
|
s2->npaths += npaths;
|
|
/*
|
|
* And optionally enter it as an additional ancestor.
|
|
*/
|
|
if (multiple) {
|
|
if (s2->nas >= s2->assize) {
|
|
s2->assize = s2->nas * 3 / 2 + 4;
|
|
s2->as = sresize(s2->as, s2->assize, struct ancestor);
|
|
}
|
|
s2->as[s2->nas].prev = prev;
|
|
s2->as[s2->nas].pa = pa;
|
|
s2->as[s2->nas].po = po;
|
|
s2->as[s2->nas].pb = pb;
|
|
s2->as[s2->nas].pr = pr;
|
|
s2->nas++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct set *newset(struct sets *s, int nnumbers, int flags)
|
|
{
|
|
struct set *sn;
|
|
|
|
ensure(s->setlists, s->setlistsize, s->nsets/SETLISTLEN+1, struct set *);
|
|
while (s->nsetlists <= s->nsets / SETLISTLEN)
|
|
s->setlists[s->nsetlists++] = snewn(SETLISTLEN, struct set);
|
|
sn = s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN;
|
|
|
|
if (s->nnumbers + nnumbers * 2 > s->nnumberlists * NUMBERLISTLEN)
|
|
s->nnumbers = s->nnumberlists * NUMBERLISTLEN;
|
|
ensure(s->numberlists, s->numberlistsize,
|
|
s->nnumbers/NUMBERLISTLEN+1, int *);
|
|
while (s->nnumberlists <= s->nnumbers / NUMBERLISTLEN)
|
|
s->numberlists[s->nnumberlists++] = snewn(NUMBERLISTLEN, int);
|
|
sn->numbers = s->numberlists[s->nnumbers / NUMBERLISTLEN] +
|
|
s->nnumbers % NUMBERLISTLEN;
|
|
|
|
/*
|
|
* Start the set off empty.
|
|
*/
|
|
sn->nnumbers = 0;
|
|
|
|
sn->flags = flags;
|
|
|
|
return sn;
|
|
}
|
|
|
|
static int addoutput(struct sets *s, struct set *ss, int index, int *n)
|
|
{
|
|
struct output *o, *o2;
|
|
|
|
/*
|
|
* Target numbers are always integers.
|
|
*/
|
|
if (ss->numbers[2*index+1] != 1)
|
|
return FALSE;
|
|
|
|
ensure(s->outputlists, s->outputlistsize, s->noutputs/OUTPUTLISTLEN+1,
|
|
struct output *);
|
|
while (s->noutputlists <= s->noutputs / OUTPUTLISTLEN)
|
|
s->outputlists[s->noutputlists++] = snewn(OUTPUTLISTLEN,
|
|
struct output);
|
|
o = s->outputlists[s->noutputs / OUTPUTLISTLEN] +
|
|
s->noutputs % OUTPUTLISTLEN;
|
|
|
|
o->number = ss->numbers[2*index];
|
|
o->set = ss;
|
|
o->index = index;
|
|
o->npaths = ss->npaths;
|
|
o2 = add234(s->outputtree, o);
|
|
if (o2 != o) {
|
|
o2->npaths += o->npaths;
|
|
} else {
|
|
s->noutputs++;
|
|
}
|
|
*n = o->number;
|
|
return TRUE;
|
|
}
|
|
|
|
static struct sets *do_search(int ninputs, int *inputs,
|
|
const struct rules *rules, int *target,
|
|
int debug, int multiple)
|
|
{
|
|
struct sets *s;
|
|
struct set *sn;
|
|
int qpos, i;
|
|
const struct operation *const *ops = rules->ops;
|
|
|
|
s = snew(struct sets);
|
|
s->setlists = NULL;
|
|
s->nsets = s->nsetlists = s->setlistsize = 0;
|
|
s->numberlists = NULL;
|
|
s->nnumbers = s->nnumberlists = s->numberlistsize = 0;
|
|
s->outputlists = NULL;
|
|
s->noutputs = s->noutputlists = s->outputlistsize = 0;
|
|
s->settree = newtree234(setcmp);
|
|
s->outputtree = newtree234(outputcmp);
|
|
s->ops = ops;
|
|
|
|
/*
|
|
* Start with the input set.
|
|
*/
|
|
sn = newset(s, ninputs, SETFLAG_CONCAT);
|
|
for (i = 0; i < ninputs; i++) {
|
|
int newnumber[2];
|
|
newnumber[0] = inputs[i];
|
|
newnumber[1] = 1;
|
|
addtoset(sn, newnumber);
|
|
}
|
|
addset(s, sn, multiple, NULL, 0, 0, 0, 0);
|
|
|
|
/*
|
|
* Now perform the breadth-first search: keep looping over sets
|
|
* until we run out of steam.
|
|
*/
|
|
qpos = 0;
|
|
while (qpos < s->nsets) {
|
|
struct set *ss = s->setlists[qpos / SETLISTLEN] + qpos % SETLISTLEN;
|
|
struct set *sn;
|
|
int i, j, k, m;
|
|
|
|
if (debug) {
|
|
int i;
|
|
printf("processing set:");
|
|
for (i = 0; i < ss->nnumbers; i++) {
|
|
printf(" %d", ss->numbers[2*i]);
|
|
if (ss->numbers[2*i+1] != 1)
|
|
printf("/%d", ss->numbers[2*i+1]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
/*
|
|
* Record all the valid output numbers in this state. We
|
|
* can always do this if there's only one number in the
|
|
* state; otherwise, we can only do it if we aren't
|
|
* required to use all the numbers in coming to our answer.
|
|
*/
|
|
if (ss->nnumbers == 1 || !rules->use_all) {
|
|
for (i = 0; i < ss->nnumbers; i++) {
|
|
int n;
|
|
|
|
if (addoutput(s, ss, i, &n) && target && n == *target)
|
|
return s;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try every possible operation from this state.
|
|
*/
|
|
for (k = 0; ops[k] && ops[k]->perform; k++) {
|
|
if ((ops[k]->flags & OPFLAG_NEEDS_CONCAT) &&
|
|
!(ss->flags & SETFLAG_CONCAT))
|
|
continue; /* can't use this operation here */
|
|
for (i = 0; i < ss->nnumbers; i++) {
|
|
int jlimit = (ops[k]->flags & OPFLAG_UNARY ? 1 : ss->nnumbers);
|
|
for (j = 0; j < jlimit; j++) {
|
|
int n[2], newnn = ss->nnumbers;
|
|
int pa, po, pb, pr;
|
|
|
|
if (!(ops[k]->flags & OPFLAG_UNARY)) {
|
|
if (i == j)
|
|
continue; /* can't combine a number with itself */
|
|
if (i > j && ops[k]->commutes)
|
|
continue; /* no need to do this both ways round */
|
|
newnn--;
|
|
}
|
|
if (!ops[k]->perform(ss->numbers+2*i, ss->numbers+2*j, n))
|
|
continue; /* operation failed */
|
|
|
|
sn = newset(s, newnn, ss->flags);
|
|
|
|
if (!(ops[k]->flags & OPFLAG_KEEPS_CONCAT))
|
|
sn->flags &= ~SETFLAG_CONCAT;
|
|
|
|
for (m = 0; m < ss->nnumbers; m++) {
|
|
if (m == i || (!(ops[k]->flags & OPFLAG_UNARY) &&
|
|
m == j))
|
|
continue;
|
|
sn->numbers[2*sn->nnumbers] = ss->numbers[2*m];
|
|
sn->numbers[2*sn->nnumbers + 1] = ss->numbers[2*m + 1];
|
|
sn->nnumbers++;
|
|
}
|
|
pa = i;
|
|
if (ops[k]->flags & OPFLAG_UNARY)
|
|
pb = sn->nnumbers+10;
|
|
else
|
|
pb = j;
|
|
po = k;
|
|
pr = addtoset(sn, n);
|
|
addset(s, sn, multiple, ss, pa, po, pb, pr);
|
|
if (debug) {
|
|
int i;
|
|
if (ops[k]->flags & OPFLAG_UNARYPREFIX)
|
|
printf(" %s %d ->", ops[po]->dbgtext, pa);
|
|
else if (ops[k]->flags & OPFLAG_UNARY)
|
|
printf(" %d %s ->", pa, ops[po]->dbgtext);
|
|
else
|
|
printf(" %d %s %d ->", pa, ops[po]->dbgtext, pb);
|
|
for (i = 0; i < sn->nnumbers; i++) {
|
|
printf(" %d", sn->numbers[2*i]);
|
|
if (sn->numbers[2*i+1] != 1)
|
|
printf("/%d", sn->numbers[2*i+1]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
qpos++;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
static void free_sets(struct sets *s)
|
|
{
|
|
int i;
|
|
|
|
freetree234(s->settree);
|
|
freetree234(s->outputtree);
|
|
for (i = 0; i < s->nsetlists; i++)
|
|
sfree(s->setlists[i]);
|
|
sfree(s->setlists);
|
|
for (i = 0; i < s->nnumberlists; i++)
|
|
sfree(s->numberlists[i]);
|
|
sfree(s->numberlists);
|
|
for (i = 0; i < s->noutputlists; i++)
|
|
sfree(s->outputlists[i]);
|
|
sfree(s->outputlists);
|
|
sfree(s);
|
|
}
|
|
|
|
/*
|
|
* Print a text formula for producing a given output.
|
|
*/
|
|
void print_recurse(struct sets *s, struct set *ss, int pathindex, int index,
|
|
int priority, int assoc, int child);
|
|
void print_recurse_inner(struct sets *s, struct set *ss,
|
|
struct ancestor *a, int pathindex, int index,
|
|
int priority, int assoc, int child)
|
|
{
|
|
if (a->prev && index != a->pr) {
|
|
int pi;
|
|
|
|
/*
|
|
* This number was passed straight down from this set's
|
|
* predecessor. Find its index in the previous set and
|
|
* recurse to there.
|
|
*/
|
|
pi = index;
|
|
assert(pi != a->pr);
|
|
if (pi > a->pr)
|
|
pi--;
|
|
if (pi >= min(a->pa, a->pb)) {
|
|
pi++;
|
|
if (pi >= max(a->pa, a->pb))
|
|
pi++;
|
|
}
|
|
print_recurse(s, a->prev, pathindex, pi, priority, assoc, child);
|
|
} else if (a->prev && index == a->pr &&
|
|
s->ops[a->po]->display) {
|
|
/*
|
|
* This number was created by a displayed operator in the
|
|
* transition from this set to its predecessor. Hence we
|
|
* write an open paren, then recurse into the first
|
|
* operand, then write the operator, then the second
|
|
* operand, and finally close the paren.
|
|
*/
|
|
char *op;
|
|
int parens, thispri, thisassoc;
|
|
|
|
/*
|
|
* Determine whether we need parentheses.
|
|
*/
|
|
thispri = s->ops[a->po]->priority;
|
|
thisassoc = s->ops[a->po]->assoc;
|
|
parens = (thispri < priority ||
|
|
(thispri == priority && (assoc & child)));
|
|
|
|
if (parens)
|
|
putchar('(');
|
|
|
|
if (s->ops[a->po]->flags & OPFLAG_UNARYPREFIX)
|
|
for (op = s->ops[a->po]->text; *op; op++)
|
|
putchar(*op);
|
|
|
|
if (s->ops[a->po]->flags & OPFLAG_FN)
|
|
putchar('(');
|
|
|
|
print_recurse(s, a->prev, pathindex, a->pa, thispri, thisassoc, 1);
|
|
|
|
if (s->ops[a->po]->flags & OPFLAG_FN)
|
|
putchar(')');
|
|
|
|
if (!(s->ops[a->po]->flags & OPFLAG_UNARYPREFIX))
|
|
for (op = s->ops[a->po]->text; *op; op++)
|
|
putchar(*op);
|
|
|
|
if (!(s->ops[a->po]->flags & OPFLAG_UNARY))
|
|
print_recurse(s, a->prev, pathindex, a->pb, thispri, thisassoc, 2);
|
|
|
|
if (parens)
|
|
putchar(')');
|
|
} else {
|
|
/*
|
|
* This number is either an original, or something formed
|
|
* by a non-displayed operator (concatenation). Either way,
|
|
* we display it as is.
|
|
*/
|
|
printf("%d", ss->numbers[2*index]);
|
|
if (ss->numbers[2*index+1] != 1)
|
|
printf("/%d", ss->numbers[2*index+1]);
|
|
}
|
|
}
|
|
void print_recurse(struct sets *s, struct set *ss, int pathindex, int index,
|
|
int priority, int assoc, int child)
|
|
{
|
|
if (!ss->a.prev || pathindex < ss->a.prev->npaths) {
|
|
print_recurse_inner(s, ss, &ss->a, pathindex,
|
|
index, priority, assoc, child);
|
|
} else {
|
|
int i;
|
|
pathindex -= ss->a.prev->npaths;
|
|
for (i = 0; i < ss->nas; i++) {
|
|
if (pathindex < ss->as[i].prev->npaths) {
|
|
print_recurse_inner(s, ss, &ss->as[i], pathindex,
|
|
index, priority, assoc, child);
|
|
break;
|
|
}
|
|
pathindex -= ss->as[i].prev->npaths;
|
|
}
|
|
}
|
|
}
|
|
void print(int pathindex, struct sets *s, struct output *o)
|
|
{
|
|
print_recurse(s, o->set, pathindex, o->index, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* gcc -g -O0 -o numgame numgame.c -I.. ../{malloc,tree234,nullfe}.c -lm
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
int doing_opts = TRUE;
|
|
const struct rules *rules = NULL;
|
|
char *pname = argv[0];
|
|
int got_target = FALSE, target = 0;
|
|
int numbers[10], nnumbers = 0;
|
|
int verbose = FALSE;
|
|
int pathcounts = FALSE;
|
|
int multiple = FALSE;
|
|
int debug_bfs = FALSE;
|
|
int got_range = FALSE, rangemin = 0, rangemax = 0;
|
|
|
|
struct output *o;
|
|
struct sets *s;
|
|
int i, start, limit;
|
|
|
|
while (--argc) {
|
|
char *p = *++argv;
|
|
int c;
|
|
|
|
if (doing_opts && *p == '-') {
|
|
p++;
|
|
|
|
if (!strcmp(p, "-")) {
|
|
doing_opts = FALSE;
|
|
continue;
|
|
} else if (*p == '-') {
|
|
p++;
|
|
if (!strcmp(p, "debug-bfs")) {
|
|
debug_bfs = TRUE;
|
|
} else {
|
|
fprintf(stderr, "%s: option '--%s' not recognised\n",
|
|
pname, p);
|
|
}
|
|
} else while (p && *p) switch (c = *p++) {
|
|
case 'C':
|
|
rules = &rules_countdown;
|
|
break;
|
|
case 'B':
|
|
rules = &rules_3388;
|
|
break;
|
|
case 'D':
|
|
rules = &rules_four4s;
|
|
break;
|
|
case 'A':
|
|
rules = &rules_anythinggoes;
|
|
break;
|
|
case 'v':
|
|
verbose = TRUE;
|
|
break;
|
|
case 'p':
|
|
pathcounts = TRUE;
|
|
break;
|
|
case 'm':
|
|
multiple = TRUE;
|
|
break;
|
|
case 't':
|
|
case 'r':
|
|
{
|
|
char *v;
|
|
if (*p) {
|
|
v = p;
|
|
p = NULL;
|
|
} else if (--argc) {
|
|
v = *++argv;
|
|
} else {
|
|
fprintf(stderr, "%s: option '-%c' expects an"
|
|
" argument\n", pname, c);
|
|
return 1;
|
|
}
|
|
switch (c) {
|
|
case 't':
|
|
got_target = TRUE;
|
|
target = atoi(v);
|
|
break;
|
|
case 'r':
|
|
{
|
|
char *sep = strchr(v, '-');
|
|
got_range = TRUE;
|
|
if (sep) {
|
|
rangemin = atoi(v);
|
|
rangemax = atoi(sep+1);
|
|
} else {
|
|
rangemin = 0;
|
|
rangemax = atoi(v);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
fprintf(stderr, "%s: option '-%c' not"
|
|
" recognised\n", pname, c);
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (nnumbers >= lenof(numbers)) {
|
|
fprintf(stderr, "%s: internal limit of %d numbers exceeded\n",
|
|
pname, lenof(numbers));
|
|
return 1;
|
|
} else {
|
|
numbers[nnumbers++] = atoi(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!rules) {
|
|
fprintf(stderr, "%s: no rule set specified; use -C,-B,-D,-A\n", pname);
|
|
return 1;
|
|
}
|
|
|
|
if (!nnumbers) {
|
|
fprintf(stderr, "%s: no input numbers specified\n", pname);
|
|
return 1;
|
|
}
|
|
|
|
if (got_range) {
|
|
if (got_target) {
|
|
fprintf(stderr, "%s: only one of -t and -r may be specified\n", pname);
|
|
return 1;
|
|
}
|
|
if (rangemin >= rangemax) {
|
|
fprintf(stderr, "%s: range not sensible (%d - %d)\n", pname, rangemin, rangemax);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
s = do_search(nnumbers, numbers, rules, (got_target ? &target : NULL),
|
|
debug_bfs, multiple);
|
|
|
|
if (got_target) {
|
|
o = findrelpos234(s->outputtree, &target, outputfindcmp,
|
|
REL234_LE, &start);
|
|
if (!o)
|
|
start = -1;
|
|
o = findrelpos234(s->outputtree, &target, outputfindcmp,
|
|
REL234_GE, &limit);
|
|
if (!o)
|
|
limit = -1;
|
|
assert(start != -1 || limit != -1);
|
|
if (start == -1)
|
|
start = limit;
|
|
else if (limit == -1)
|
|
limit = start;
|
|
limit++;
|
|
} else if (got_range) {
|
|
if (!findrelpos234(s->outputtree, &rangemin, outputfindcmp,
|
|
REL234_GE, &start) ||
|
|
!findrelpos234(s->outputtree, &rangemax, outputfindcmp,
|
|
REL234_LE, &limit)) {
|
|
printf("No solutions available in specified range %d-%d\n", rangemin, rangemax);
|
|
return 1;
|
|
}
|
|
limit++;
|
|
} else {
|
|
start = 0;
|
|
limit = count234(s->outputtree);
|
|
}
|
|
|
|
for (i = start; i < limit; i++) {
|
|
char buf[256];
|
|
|
|
o = index234(s->outputtree, i);
|
|
|
|
sprintf(buf, "%d", o->number);
|
|
|
|
if (pathcounts)
|
|
sprintf(buf + strlen(buf), " [%d]", o->npaths);
|
|
|
|
if (got_target || verbose) {
|
|
int j, npaths;
|
|
|
|
if (multiple)
|
|
npaths = o->npaths;
|
|
else
|
|
npaths = 1;
|
|
|
|
for (j = 0; j < npaths; j++) {
|
|
printf("%s = ", buf);
|
|
print(j, s, o);
|
|
putchar('\n');
|
|
}
|
|
} else {
|
|
printf("%s\n", buf);
|
|
}
|
|
}
|
|
|
|
free_sets(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|