Files
puzzles/twiddle.c
Simon Tatham 2534ec5d69 The game IDs for Net (and Netslide) have always been random seeds
rather than literal grid descriptions, which has always faintly
annoyed me because it makes it impossible to type in a grid from
another source. However, Gareth pointed out that short random-seed
game descriptions are useful, because you can read one out to
someone else without having to master the technology of cross-
machine cut and paste, or you can have two people enter the same
random seed simultaneously in order to race against each other to
complete the same puzzle. So both types of game ID seem to have
their uses.

Therefore, here's a reorganisation of the whole game ID concept.
There are now two types of game ID: one has a parameter string then
a hash then a piece of arbitrary random seed text, and the other has
a parameter string then a colon then a literal game description. For
most games, the latter is identical to the game IDs that were
previously valid; for Net and Netslide, old game IDs must be
translated into new ones by turning the colon into a hash, and
there's a new descriptive game ID format.

Random seed IDs are not guaranteed to be portable between software
versions (this is a major reason why I added version reporting
yesterday). Descriptive game IDs have a longer lifespan.

As an added bonus, I've removed the sections of documentation
dealing with game parameter encodings not shown in the game ID
(Rectangles expansion factor, Solo symmetry and difficulty settings
etc), because _all_ parameters must be specified in a random seed ID
and therefore users can easily find out the appropriate parameter
string for any settings they have configured.

[originally from svn r5788]
2005-05-16 18:57:09 +00:00

1110 lines
28 KiB
C

/*
* twiddle.c: Puzzle involving rearranging a grid of squares by
* rotating subsquares. Adapted and generalised from a
* door-unlocking puzzle in Metroid Prime 2 (the one in the Main
* Gyro Chamber).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define TILE_SIZE 48
#define BORDER (TILE_SIZE / 2)
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define PI 3.141592653589793238462643383279502884197169399
#define ANIM_PER_RADIUS_UNIT 0.13F
#define FLASH_FRAME 0.13F
enum {
COL_BACKGROUND,
COL_TEXT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
NCOLOURS
};
struct game_params {
int w, h, n;
int rowsonly;
int orientable;
int movetarget;
};
struct game_state {
int w, h, n;
int orientable;
int *grid;
int completed;
int just_used_solve; /* used to suppress undo animation */
int used_solve; /* used to suppress completion flash */
int movecount, movetarget;
int lastx, lasty, lastr; /* coordinates of last rotation */
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 3;
ret->n = 2;
ret->rowsonly = ret->orientable = FALSE;
ret->movetarget = 0;
return ret;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
static struct {
char *title;
game_params params;
} presets[] = {
{ "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
{ "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
{ "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
{ "4x4 normal", { 4, 4, 2, FALSE } },
{ "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
{ "4x4 radius 3", { 4, 4, 3, FALSE } },
{ "5x5 radius 3", { 5, 5, 3, FALSE } },
{ "6x6 radius 4", { 6, 6, 4, FALSE } },
};
if (i < 0 || i >= lenof(presets))
return FALSE;
*name = dupstr(presets[i].title);
*params = dup_params(&presets[i].params);
return TRUE;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
ret->n = 2;
ret->rowsonly = ret->orientable = FALSE;
ret->movetarget = 0;
while (*string && isdigit(*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit(*string)) string++;
}
if (*string == 'n') {
string++;
ret->n = atoi(string);
while (*string && isdigit(*string)) string++;
}
while (*string) {
if (*string == 'r') {
ret->rowsonly = TRUE;
} else if (*string == 'o') {
ret->orientable = TRUE;
} else if (*string == 'm') {
string++;
ret->movetarget = atoi(string);
while (string[1] && isdigit(string[1])) string++;
}
string++;
}
}
static char *encode_params(game_params *params, int full)
{
char buf[256];
sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
params->rowsonly ? "r" : "",
params->orientable ? "o" : "");
/* Shuffle limit is part of the limited parameters, because we have to
* supply the target move count. */
if (params->movetarget)
sprintf(buf + strlen(buf), "m%d", params->movetarget);
return dupstr(buf);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(7, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Rotation radius";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = "One number per row";
ret[3].type = C_BOOLEAN;
ret[3].sval = NULL;
ret[3].ival = params->rowsonly;
ret[4].name = "Orientation matters";
ret[4].type = C_BOOLEAN;
ret[4].sval = NULL;
ret[4].ival = params->orientable;
ret[5].name = "Number of shuffling moves";
ret[5].type = C_STRING;
sprintf(buf, "%d", params->movetarget);
ret[5].sval = dupstr(buf);
ret[5].ival = 0;
ret[6].name = NULL;
ret[6].type = C_END;
ret[6].sval = NULL;
ret[6].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->n = atoi(cfg[2].sval);
ret->rowsonly = cfg[3].ival;
ret->orientable = cfg[4].ival;
ret->movetarget = atoi(cfg[5].sval);
return ret;
}
static char *validate_params(game_params *params)
{
if (params->n < 2)
return "Rotation radius must be at least two";
if (params->w < params->n)
return "Width must be at least the rotation radius";
if (params->h < params->n)
return "Height must be at least the rotation radius";
return NULL;
}
/*
* This function actually performs a rotation on a grid. The `x'
* and `y' coordinates passed in are the coordinates of the _top
* left corner_ of the rotated region. (Using the centre would have
* involved half-integers and been annoyingly fiddly. Clicking in
* the centre is good for a user interface, but too inconvenient to
* use internally.)
*/
static void do_rotate(int *grid, int w, int h, int n, int orientable,
int x, int y, int dir)
{
int i, j;
assert(x >= 0 && x+n <= w);
assert(y >= 0 && y+n <= h);
dir &= 3;
if (dir == 0)
return; /* nothing to do */
grid += y*w+x; /* translate region to top corner */
/*
* If we were leaving the result of the rotation in a separate
* grid, the simple thing to do would be to loop over each
* square within the rotated region and assign it from its
* source square. However, to do it in place without taking
* O(n^2) memory, we need to be marginally more clever. What
* I'm going to do is loop over about one _quarter_ of the
* rotated region and permute each element within that quarter
* with its rotational coset.
*
* The size of the region I need to loop over is (n+1)/2 by
* n/2, which is an obvious exact quarter for even n and is a
* rectangle for odd n. (For odd n, this technique leaves out
* one element of the square, which is of course the central
* one that never moves anyway.)
*/
for (i = 0; i < (n+1)/2; i++) {
for (j = 0; j < n/2; j++) {
int k;
int g[4];
int p[4] = {
j*w+i,
i*w+(n-j-1),
(n-j-1)*w+(n-i-1),
(n-i-1)*w+j
};
for (k = 0; k < 4; k++)
g[k] = grid[p[k]];
for (k = 0; k < 4; k++) {
int v = g[(k+dir) & 3];
if (orientable)
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[p[k]] = v;
}
}
}
/*
* Don't forget the orientation on the centre square, if n is
* odd.
*/
if (orientable && (n & 1)) {
int v = grid[n/2*(w+1)];
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[n/2*(w+1)] = v;
}
}
static int grid_complete(int *grid, int wh, int orientable)
{
int ok = TRUE;
int i;
for (i = 1; i < wh; i++)
if (grid[i] < grid[i-1])
ok = FALSE;
if (orientable) {
for (i = 0; i < wh; i++)
if (grid[i] & 3)
ok = FALSE;
}
return ok;
}
static char *new_game_desc(game_params *params, random_state *rs,
game_aux_info **aux)
{
int *grid;
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *ret;
int retlen;
int total_moves;
/*
* Set up a solved grid.
*/
grid = snewn(wh, int);
for (i = 0; i < wh; i++)
grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
/*
* Shuffle it. This game is complex enough that I don't feel up
* to analysing its full symmetry properties (particularly at
* n=4 and above!), so I'm going to do it the pedestrian way
* and simply shuffle the grid by making a long sequence of
* randomly chosen moves.
*/
total_moves = params->movetarget;
if (!total_moves)
total_moves = w*h*n*n*2 + random_upto(rs, 2);
do {
int oldx = -1, oldy = -1, oldr = -1;
for (i = 0; i < total_moves; i++) {
int x, y, r;
do {
x = random_upto(rs, w - n + 1);
y = random_upto(rs, h - n + 1);
r = 1 + 2 * random_upto(rs, 2);
} while (x == oldx && y == oldy && (oldr == 0 || r == oldr));
do_rotate(grid, w, h, n, params->orientable,
x, y, r);
/*
* Prevent immediate reversal of a previous move, or
* execution of three consecutive identical moves
* adding up to a single inverse move. One exception is
* when we only _have_ one x,y setting.
*/
if (w != n || h != n) {
if (oldx == x && oldy == y)
oldr = 0; /* now avoid _any_ move in this x,y */
else
oldr = -r & 3; /* only prohibit the exact inverse */
oldx = x;
oldy = y;
}
}
} while (grid_complete(grid, wh, params->orientable));
/*
* Now construct the game description, by describing the grid
* as a simple sequence of integers. They're comma-separated,
* unless the puzzle is orientable in which case they're
* separated by orientation letters `u', `d', `l' and `r'.
*/
ret = NULL;
retlen = 0;
for (i = 0; i < wh; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d%c", grid[i] / 4,
params->orientable ? "uldr"[grid[i] & 3] : ',');
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
if (!params->orientable)
ret[retlen-1] = '\0'; /* delete last comma */
sfree(grid);
return ret;
}
static void game_free_aux_info(game_aux_info *aux)
{
assert(!"Shouldn't happen");
}
static char *validate_desc(game_params *params, char *desc)
{
char *p, *err;
int w = params->w, h = params->h, wh = w*h;
int i;
p = desc;
err = NULL;
for (i = 0; i < wh; i++) {
if (*p < '0' || *p > '9')
return "Not enough numbers in string";
while (*p >= '0' && *p <= '9')
p++;
if (!params->orientable && i < wh-1) {
if (*p != ',')
return "Expected comma after number";
} else if (params->orientable && i < wh) {
if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
return "Expected orientation letter after number";
} else if (i == wh-1 && *p) {
return "Excess junk at end of string";
}
if (*p) p++; /* eat comma */
}
return NULL;
}
static game_state *new_game(game_params *params, char *desc)
{
game_state *state = snew(game_state);
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *p;
state->w = w;
state->h = h;
state->n = n;
state->orientable = params->orientable;
state->completed = 0;
state->used_solve = state->just_used_solve = FALSE;
state->movecount = 0;
state->movetarget = params->movetarget;
state->lastx = state->lasty = state->lastr = -1;
state->grid = snewn(wh, int);
p = desc;
for (i = 0; i < wh; i++) {
state->grid[i] = 4 * atoi(p);
while (*p >= '0' && *p <= '9')
p++;
if (*p) {
if (params->orientable) {
switch (*p) {
case 'l': state->grid[i] |= 1; break;
case 'd': state->grid[i] |= 2; break;
case 'r': state->grid[i] |= 3; break;
}
}
p++;
}
}
return state;
}
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->n = state->n;
ret->orientable = state->orientable;
ret->completed = state->completed;
ret->movecount = state->movecount;
ret->movetarget = state->movetarget;
ret->lastx = state->lastx;
ret->lasty = state->lasty;
ret->lastr = state->lastr;
ret->used_solve = state->used_solve;
ret->just_used_solve = state->just_used_solve;
ret->grid = snewn(ret->w * ret->h, int);
memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
sfree(state);
}
static int compare_int(const void *av, const void *bv)
{
const int *a = (const int *)av;
const int *b = (const int *)bv;
if (*a < *b)
return -1;
else if (*a > *b)
return +1;
else
return 0;
}
static game_state *solve_game(game_state *state, game_aux_info *aux,
char **error)
{
game_state *ret = dup_game(state);
int i;
/*
* Simply replace the grid with a solved one. For this game,
* this isn't a useful operation for actually telling the user
* what they should have done, but it is useful for
* conveniently being able to get hold of a clean state from
* which to practise manoeuvres.
*/
qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
for (i = 0; i < ret->w*ret->h; i++)
ret->grid[i] &= ~3;
ret->used_solve = ret->just_used_solve = TRUE;
ret->completed = ret->movecount = 1;
return ret;
}
static char *game_text_format(game_state *state)
{
char *ret, *p, buf[80];
int i, x, y, col, o, maxlen;
/*
* First work out how many characters we need to display each
* number. We're pretty flexible on grid contents here, so we
* have to scan the entire grid.
*/
col = 0;
for (i = 0; i < state->w * state->h; i++) {
x = sprintf(buf, "%d", state->grid[i] / 4);
if (col < x) col = x;
}
o = (state->orientable ? 1 : 0);
/*
* Now we know the exact total size of the grid we're going to
* produce: it's got h rows, each containing w lots of col+o,
* w-1 spaces and a trailing newline.
*/
maxlen = state->h * state->w * (col+o+1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
int v = state->grid[state->w*y+x];
sprintf(buf, "%*d", col, v/4);
memcpy(p, buf, col);
p += col;
if (o)
*p++ = "^<v>"[v & 3];
if (x+1 == state->w)
*p++ = '\n';
else
*p++ = ' ';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
static game_ui *new_ui(game_state *state)
{
return NULL;
}
static void free_ui(game_ui *ui)
{
}
static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
int button)
{
int w = from->w, h = from->h, n = from->n, wh = w*h;
game_state *ret;
int dir;
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
/*
* Determine the coordinates of the click. We offset by n-1
* half-blocks so that the user must click at the centre of
* a rotation region rather than at the corner.
*/
x -= (n-1) * TILE_SIZE / 2;
y -= (n-1) * TILE_SIZE / 2;
x = FROMCOORD(x);
y = FROMCOORD(y);
if (x < 0 || x > w-n || y < 0 || y > w-n)
return NULL;
/*
* This is a valid move. Make it.
*/
ret = dup_game(from);
ret->just_used_solve = FALSE; /* zero this in a hurry */
ret->movecount++;
dir = (button == LEFT_BUTTON ? 1 : -1);
do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
ret->lastx = x;
ret->lasty = y;
ret->lastr = dir;
/*
* See if the game has been completed. To do this we simply
* test that the grid contents are in increasing order.
*/
if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
ret->completed = ret->movecount;
return ret;
}
return NULL;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
struct game_drawstate {
int started;
int w, h, bgcolour;
int *grid;
};
static void game_size(game_params *params, int *x, int *y)
{
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
float max;
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
/*
* Drop the background colour so that the highlight is
* noticeably brighter than it while still being under 1.
*/
max = ret[COL_BACKGROUND*3];
for (i = 1; i < 3; i++)
if (ret[COL_BACKGROUND*3+i] > max)
max = ret[COL_BACKGROUND*3+i];
if (max * 1.2F > 1.0F) {
for (i = 0; i < 3; i++)
ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
}
for (i = 0; i < 3; i++) {
ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
ret[COL_TEXT * 3 + i] = 0.0;
}
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = FALSE;
ds->w = state->w;
ds->h = state->h;
ds->bgcolour = COL_BACKGROUND;
ds->grid = snewn(ds->w*ds->h, int);
for (i = 0; i < ds->w*ds->h; i++)
ds->grid[i] = -1;
return ds;
}
static void game_free_drawstate(game_drawstate *ds)
{
sfree(ds);
}
struct rotation {
int cx, cy, cw, ch; /* clip region */
int ox, oy; /* rotation origin */
float c, s; /* cos and sin of rotation angle */
int lc, rc, tc, bc; /* colours of tile edges */
};
static void rotate(int *xy, struct rotation *rot)
{
if (rot) {
float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
float xf2, yf2;
xf2 = rot->c * xf + rot->s * yf;
yf2 = - rot->s * xf + rot->c * yf;
xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
}
}
static void draw_tile(frontend *fe, game_state *state, int x, int y,
int tile, int flash_colour, struct rotation *rot)
{
int coords[8];
char str[40];
/*
* If we've been passed a rotation region but we're drawing a
* tile which is outside it, we must draw it normally. This can
* occur if we're cleaning up after a completion flash while a
* new move is also being made.
*/
if (rot && (x < rot->cx || y < rot->cy ||
x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
rot = NULL;
if (rot)
clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
/*
* We must draw each side of the tile's highlight separately,
* because in some cases (during rotation) they will all need
* to be different colours.
*/
/* The centre point is common to all sides. */
coords[4] = x + TILE_SIZE / 2;
coords[5] = y + TILE_SIZE / 2;
rotate(coords+4, rot);
/* Right side. */
coords[0] = x + TILE_SIZE - 1;
coords[1] = y + TILE_SIZE - 1;
rotate(coords+0, rot);
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(fe, coords, 3, TRUE, rot ? rot->rc : COL_LOWLIGHT);
draw_polygon(fe, coords, 3, FALSE, rot ? rot->rc : COL_LOWLIGHT);
/* Bottom side. */
coords[2] = x;
coords[3] = y + TILE_SIZE - 1;
rotate(coords+2, rot);
draw_polygon(fe, coords, 3, TRUE, rot ? rot->bc : COL_LOWLIGHT);
draw_polygon(fe, coords, 3, FALSE, rot ? rot->bc : COL_LOWLIGHT);
/* Left side. */
coords[0] = x;
coords[1] = y;
rotate(coords+0, rot);
draw_polygon(fe, coords, 3, TRUE, rot ? rot->lc : COL_HIGHLIGHT);
draw_polygon(fe, coords, 3, FALSE, rot ? rot->lc : COL_HIGHLIGHT);
/* Top side. */
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(fe, coords, 3, TRUE, rot ? rot->tc : COL_HIGHLIGHT);
draw_polygon(fe, coords, 3, FALSE, rot ? rot->tc : COL_HIGHLIGHT);
/*
* Now the main blank area in the centre of the tile.
*/
if (rot) {
coords[0] = x + HIGHLIGHT_WIDTH;
coords[1] = y + HIGHLIGHT_WIDTH;
rotate(coords+0, rot);
coords[2] = x + HIGHLIGHT_WIDTH;
coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+2, rot);
coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+4, rot);
coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[7] = y + HIGHLIGHT_WIDTH;
rotate(coords+6, rot);
draw_polygon(fe, coords, 4, TRUE, flash_colour);
draw_polygon(fe, coords, 4, FALSE, flash_colour);
} else {
draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
flash_colour);
}
/*
* Next, the triangles for orientation.
*/
if (state->orientable) {
int xdx, xdy, ydx, ydy;
int cx, cy, displ, displ2;
switch (tile & 3) {
case 0:
xdx = 1, xdy = 0;
ydx = 0, ydy = 1;
break;
case 1:
xdx = 0, xdy = -1;
ydx = 1, ydy = 0;
break;
case 2:
xdx = -1, xdy = 0;
ydx = 0, ydy = -1;
break;
default /* case 3 */:
xdx = 0, xdy = 1;
ydx = -1, ydy = 0;
break;
}
cx = x + TILE_SIZE / 2;
cy = y + TILE_SIZE / 2;
displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
coords[0] = cx - displ * xdx + displ2 * ydx;
coords[1] = cy - displ * xdy + displ2 * ydy;
rotate(coords+0, rot);
coords[2] = cx + displ * xdx + displ2 * ydx;
coords[3] = cy + displ * xdy + displ2 * ydy;
rotate(coords+2, rot);
coords[4] = cx - displ * ydx;
coords[5] = cy - displ * ydy;
rotate(coords+4, rot);
draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT_GENTLE);
draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT_GENTLE);
}
coords[0] = x + TILE_SIZE/2;
coords[1] = y + TILE_SIZE/2;
rotate(coords+0, rot);
sprintf(str, "%d", tile / 4);
draw_text(fe, coords[0], coords[1],
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
COL_TEXT, str);
if (rot)
unclip(fe);
draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
}
static int highlight_colour(float angle)
{
int colours[32] = {
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
};
return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir)
{
if ((dir > 0 && newstate->just_used_solve) ||
(dir < 0 && oldstate->just_used_solve))
return 0.0F;
else
return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve)
return 2 * FLASH_FRAME;
else
return 0.0F;
}
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int i, bgcolour;
struct rotation srot, *rot;
int lastx = -1, lasty = -1, lastr = -1;
if (flashtime > 0) {
int frame = (int)(flashtime / FLASH_FRAME);
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
} else
bgcolour = COL_BACKGROUND;
if (!ds->started) {
int coords[6];
draw_rect(fe, 0, 0,
TILE_SIZE * state->w + 2 * BORDER,
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
draw_update(fe, 0, 0,
TILE_SIZE * state->w + 2 * BORDER,
TILE_SIZE * state->h + 2 * BORDER);
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = COORD(0) - HIGHLIGHT_WIDTH;
coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
ds->started = TRUE;
}
/*
* If we're drawing any rotated tiles, sort out the rotation
* parameters, and also zap the rotation region to the
* background colour before doing anything else.
*/
if (oldstate) {
float angle;
float anim_max = game_anim_length(oldstate, state, dir);
if (dir > 0) {
lastx = state->lastx;
lasty = state->lasty;
lastr = state->lastr;
} else {
lastx = oldstate->lastx;
lasty = oldstate->lasty;
lastr = -oldstate->lastr;
}
rot = &srot;
rot->cx = COORD(lastx);
rot->cy = COORD(lasty);
rot->cw = rot->ch = TILE_SIZE * state->n;
rot->ox = rot->cx + rot->cw/2;
rot->oy = rot->cy + rot->ch/2;
angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
rot->c = cos(angle);
rot->s = sin(angle);
/*
* Sort out the colours of the various sides of the tile.
*/
rot->lc = highlight_colour(PI + angle);
rot->rc = highlight_colour(angle);
rot->tc = highlight_colour(PI/2 + angle);
rot->bc = highlight_colour(-PI/2 + angle);
draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
} else
rot = NULL;
/*
* Now draw each tile.
*/
for (i = 0; i < state->w * state->h; i++) {
int t;
int tx = i % state->w, ty = i / state->w;
/*
* Figure out what should be displayed at this location.
* Usually it will be state->grid[i], unless we're in the
* middle of animating an actual rotation and this cell is
* within the rotation region, in which case we set -1
* (always display).
*/
if (oldstate && lastx >= 0 && lasty >= 0 &&
tx >= lastx && tx < lastx + state->n &&
ty >= lasty && ty < lasty + state->n)
t = -1;
else
t = state->grid[i];
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
int x = COORD(tx), y = COORD(ty);
draw_tile(fe, state, x, y, state->grid[i], bgcolour, rot);
ds->grid[i] = t;
}
}
ds->bgcolour = bgcolour;
/*
* Update the status bar.
*/
{
char statusbuf[256];
/*
* Don't show the new status until we're also showing the
* new _state_ - after the game animation is complete.
*/
if (oldstate)
state = oldstate;
if (state->used_solve)
sprintf(statusbuf, "Moves since auto-solve: %d",
state->movecount - state->completed);
else {
sprintf(statusbuf, "%sMoves: %d",
(state->completed ? "COMPLETED! " : ""),
(state->completed ? state->completed : state->movecount));
if (state->movetarget)
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
state->movetarget);
}
status_bar(fe, statusbuf);
}
}
static int game_wants_statusbar(void)
{
return TRUE;
}
#ifdef COMBINED
#define thegame twiddle
#endif
const struct game thegame = {
"Twiddle", "games.twiddle",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
game_free_aux_info,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_text_format,
new_ui,
free_ui,
make_move,
game_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_wants_statusbar,
};