mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files
2064 lines
50 KiB
C
2064 lines
50 KiB
C
/*
|
|
* map.c: Game involving four-colouring a map.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - error highlighting
|
|
* - clue marking
|
|
* - more solver brains?
|
|
* - better four-colouring algorithm?
|
|
* - pencil marks?
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/*
|
|
* I don't seriously anticipate wanting to change the number of
|
|
* colours used in this game, but it doesn't cost much to use a
|
|
* #define just in case :-)
|
|
*/
|
|
#define FOUR 4
|
|
#define THREE (FOUR-1)
|
|
#define FIVE (FOUR+1)
|
|
#define SIX (FOUR+2)
|
|
|
|
/*
|
|
* Ghastly run-time configuration option, just for Gareth (again).
|
|
*/
|
|
static int flash_type = -1;
|
|
static float flash_length;
|
|
|
|
/*
|
|
* Difficulty levels. I do some macro ickery here to ensure that my
|
|
* enum and the various forms of my name list always match up.
|
|
*/
|
|
#define DIFFLIST(A) \
|
|
A(EASY,Easy,e) \
|
|
A(NORMAL,Normal,n)
|
|
#define ENUM(upper,title,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define ENCODE(upper,title,lower) #lower
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
enum { DIFFLIST(ENUM) DIFFCOUNT };
|
|
static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
|
|
static char const map_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_GRID,
|
|
COL_0, COL_1, COL_2, COL_3,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h, n, diff;
|
|
};
|
|
|
|
struct map {
|
|
int refcount;
|
|
int *map;
|
|
int *graph;
|
|
int n;
|
|
int ngraph;
|
|
int *immutable;
|
|
};
|
|
|
|
struct game_state {
|
|
game_params p;
|
|
struct map *map;
|
|
int *colouring;
|
|
int completed, cheated;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = 20;
|
|
ret->h = 15;
|
|
ret->n = 30;
|
|
ret->diff = DIFF_NORMAL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params map_presets[] = {
|
|
{20, 15, 30, DIFF_EASY},
|
|
{20, 15, 30, DIFF_NORMAL},
|
|
{30, 25, 75, DIFF_NORMAL},
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(map_presets))
|
|
return FALSE;
|
|
|
|
ret = snew(game_params);
|
|
*ret = map_presets[i];
|
|
|
|
sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
|
|
map_diffnames[ret->diff]);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
params->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
params->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->h = params->w;
|
|
}
|
|
if (*p == 'n') {
|
|
p++;
|
|
params->n = atoi(p);
|
|
while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
|
|
} else {
|
|
params->n = params->w * params->h / 8;
|
|
}
|
|
if (*p == 'd') {
|
|
int i;
|
|
p++;
|
|
for (i = 0; i < DIFFCOUNT; i++)
|
|
if (*p == map_diffchars[i])
|
|
params->diff = i;
|
|
if (*p) p++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char ret[400];
|
|
|
|
sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
|
|
if (full)
|
|
sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Regions";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = "Difficulty";
|
|
ret[3].type = C_CHOICES;
|
|
ret[3].sval = DIFFCONFIG;
|
|
ret[3].ival = params->diff;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->n = atoi(cfg[2].sval);
|
|
ret->diff = cfg[3].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w < 2 || params->h < 2)
|
|
return "Width and height must be at least two";
|
|
if (params->n < 5)
|
|
return "Must have at least five regions";
|
|
if (params->n > params->w * params->h)
|
|
return "Too many regions to fit in grid";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Cumulative frequency table functions.
|
|
*/
|
|
|
|
/*
|
|
* Initialise a cumulative frequency table. (Hardly worth writing
|
|
* this function; all it does is to initialise everything in the
|
|
* array to zero.)
|
|
*/
|
|
static void cf_init(int *table, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
table[i] = 0;
|
|
}
|
|
|
|
/*
|
|
* Increment the count of symbol `sym' by `count'.
|
|
*/
|
|
static void cf_add(int *table, int n, int sym, int count)
|
|
{
|
|
int bit;
|
|
|
|
bit = 1;
|
|
while (sym != 0) {
|
|
if (sym & bit) {
|
|
table[sym] += count;
|
|
sym &= ~bit;
|
|
}
|
|
bit <<= 1;
|
|
}
|
|
|
|
table[0] += count;
|
|
}
|
|
|
|
/*
|
|
* Cumulative frequency lookup: return the total count of symbols
|
|
* with value less than `sym'.
|
|
*/
|
|
static int cf_clookup(int *table, int n, int sym)
|
|
{
|
|
int bit, index, limit, count;
|
|
|
|
if (sym == 0)
|
|
return 0;
|
|
|
|
assert(0 < sym && sym <= n);
|
|
|
|
count = table[0]; /* start with the whole table size */
|
|
|
|
bit = 1;
|
|
while (bit < n)
|
|
bit <<= 1;
|
|
|
|
limit = n;
|
|
|
|
while (bit > 0) {
|
|
/*
|
|
* Find the least number with its lowest set bit in this
|
|
* position which is greater than or equal to sym.
|
|
*/
|
|
index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
|
|
|
|
if (index < limit) {
|
|
count -= table[index];
|
|
limit = index;
|
|
}
|
|
|
|
bit >>= 1;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Single frequency lookup: return the count of symbol `sym'.
|
|
*/
|
|
static int cf_slookup(int *table, int n, int sym)
|
|
{
|
|
int count, bit;
|
|
|
|
assert(0 <= sym && sym < n);
|
|
|
|
count = table[sym];
|
|
|
|
for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
|
|
count -= table[sym+bit];
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Return the largest symbol index such that the cumulative
|
|
* frequency up to that symbol is less than _or equal to_ count.
|
|
*/
|
|
static int cf_whichsym(int *table, int n, int count) {
|
|
int bit, sym, top;
|
|
|
|
assert(count >= 0 && count < table[0]);
|
|
|
|
bit = 1;
|
|
while (bit < n)
|
|
bit <<= 1;
|
|
|
|
sym = 0;
|
|
top = table[0];
|
|
|
|
while (bit > 0) {
|
|
if (sym+bit < n) {
|
|
if (count >= top - table[sym+bit])
|
|
sym += bit;
|
|
else
|
|
top -= table[sym+bit];
|
|
}
|
|
|
|
bit >>= 1;
|
|
}
|
|
|
|
return sym;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Map generation.
|
|
*
|
|
* FIXME: this isn't entirely optimal at present, because it
|
|
* inherently prioritises growing the largest region since there
|
|
* are more squares adjacent to it. This acts as a destabilising
|
|
* influence leading to a few large regions and mostly small ones.
|
|
* It might be better to do it some other way.
|
|
*/
|
|
|
|
#define WEIGHT_INCREASED 2 /* for increased perimeter */
|
|
#define WEIGHT_DECREASED 4 /* for decreased perimeter */
|
|
#define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */
|
|
|
|
/*
|
|
* Look at a square and decide which colours can be extended into
|
|
* it.
|
|
*
|
|
* If called with index < 0, it adds together one of
|
|
* WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
|
|
* colour that has a valid extension (according to the effect that
|
|
* it would have on the perimeter of the region being extended) and
|
|
* returns the overall total.
|
|
*
|
|
* If called with index >= 0, it returns one of the possible
|
|
* colours depending on the value of index, in such a way that the
|
|
* number of possible inputs which would give rise to a given
|
|
* return value correspond to the weight of that value.
|
|
*/
|
|
static int extend_options(int w, int h, int n, int *map,
|
|
int x, int y, int index)
|
|
{
|
|
int c, i, dx, dy;
|
|
int col[8];
|
|
int total = 0;
|
|
|
|
if (map[y*w+x] >= 0) {
|
|
assert(index < 0);
|
|
return 0; /* can't do this square at all */
|
|
}
|
|
|
|
/*
|
|
* Fetch the eight neighbours of this square, in order around
|
|
* the square.
|
|
*/
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++) {
|
|
int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
|
|
if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
|
|
col[index] = map[(y+dy)*w+(x+dx)];
|
|
else
|
|
col[index] = -1;
|
|
}
|
|
|
|
/*
|
|
* Iterate over each colour that might be feasible.
|
|
*
|
|
* FIXME: this routine currently has O(n) running time. We
|
|
* could turn it into O(FOUR) by only bothering to iterate over
|
|
* the colours mentioned in the four neighbouring squares.
|
|
*/
|
|
|
|
for (c = 0; c < n; c++) {
|
|
int count, neighbours, runs;
|
|
|
|
/*
|
|
* One of the even indices of col (representing the
|
|
* orthogonal neighbours of this square) must be equal to
|
|
* c, or else this square is not adjacent to region c and
|
|
* obviously cannot become an extension of it at this time.
|
|
*/
|
|
neighbours = 0;
|
|
for (i = 0; i < 8; i += 2)
|
|
if (col[i] == c)
|
|
neighbours++;
|
|
if (!neighbours)
|
|
continue;
|
|
|
|
/*
|
|
* Now we know this square is adjacent to region c. The
|
|
* next question is, would extending it cause the region to
|
|
* become non-simply-connected? If so, we mustn't do it.
|
|
*
|
|
* We determine this by looking around col to see if we can
|
|
* find more than one separate run of colour c.
|
|
*/
|
|
runs = 0;
|
|
for (i = 0; i < 8; i++)
|
|
if (col[i] == c && col[(i+1) & 7] != c)
|
|
runs++;
|
|
if (runs > 1)
|
|
continue;
|
|
|
|
assert(runs == 1);
|
|
|
|
/*
|
|
* This square is a possibility. Determine its effect on
|
|
* the region's perimeter (computed from the number of
|
|
* orthogonal neighbours - 1 means a perimeter increase, 3
|
|
* a decrease, 2 no change; 4 is impossible because the
|
|
* region would already not be simply connected) and we're
|
|
* done.
|
|
*/
|
|
assert(neighbours > 0 && neighbours < 4);
|
|
count = (neighbours == 1 ? WEIGHT_INCREASED :
|
|
neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
|
|
|
|
total += count;
|
|
if (index >= 0 && index < count)
|
|
return c;
|
|
else
|
|
index -= count;
|
|
}
|
|
|
|
assert(index < 0);
|
|
|
|
return total;
|
|
}
|
|
|
|
static void genmap(int w, int h, int n, int *map, random_state *rs)
|
|
{
|
|
int wh = w*h;
|
|
int x, y, i, k;
|
|
int *tmp;
|
|
|
|
assert(n <= wh);
|
|
tmp = snewn(wh, int);
|
|
|
|
/*
|
|
* Clear the map, and set up `tmp' as a list of grid indices.
|
|
*/
|
|
for (i = 0; i < wh; i++) {
|
|
map[i] = -1;
|
|
tmp[i] = i;
|
|
}
|
|
|
|
/*
|
|
* Place the region seeds by selecting n members from `tmp'.
|
|
*/
|
|
k = wh;
|
|
for (i = 0; i < n; i++) {
|
|
int j = random_upto(rs, k);
|
|
map[tmp[j]] = i;
|
|
tmp[j] = tmp[--k];
|
|
}
|
|
|
|
/*
|
|
* Re-initialise `tmp' as a cumulative frequency table. This
|
|
* will store the number of possible region colours we can
|
|
* extend into each square.
|
|
*/
|
|
cf_init(tmp, wh);
|
|
|
|
/*
|
|
* Go through the grid and set up the initial cumulative
|
|
* frequencies.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
cf_add(tmp, wh, y*w+x,
|
|
extend_options(w, h, n, map, x, y, -1));
|
|
|
|
/*
|
|
* Now repeatedly choose a square we can extend a region into,
|
|
* and do so.
|
|
*/
|
|
while (tmp[0] > 0) {
|
|
int k = random_upto(rs, tmp[0]);
|
|
int sq;
|
|
int colour;
|
|
int xx, yy;
|
|
|
|
sq = cf_whichsym(tmp, wh, k);
|
|
k -= cf_clookup(tmp, wh, sq);
|
|
x = sq % w;
|
|
y = sq / w;
|
|
colour = extend_options(w, h, n, map, x, y, k);
|
|
|
|
map[sq] = colour;
|
|
|
|
/*
|
|
* Re-scan the nine cells around the one we've just
|
|
* modified.
|
|
*/
|
|
for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
|
|
for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
|
|
cf_add(tmp, wh, yy*w+xx,
|
|
-cf_slookup(tmp, wh, yy*w+xx) +
|
|
extend_options(w, h, n, map, xx, yy, -1));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, go through and normalise the region labels into
|
|
* order, meaning that indistinguishable maps are actually
|
|
* identical.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
tmp[i] = -1;
|
|
k = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
assert(map[i] >= 0);
|
|
if (tmp[map[i]] < 0)
|
|
tmp[map[i]] = k++;
|
|
map[i] = tmp[map[i]];
|
|
}
|
|
|
|
sfree(tmp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Functions to handle graphs.
|
|
*/
|
|
|
|
/*
|
|
* Having got a map in a square grid, convert it into a graph
|
|
* representation.
|
|
*/
|
|
static int gengraph(int w, int h, int n, int *map, int *graph)
|
|
{
|
|
int i, j, x, y;
|
|
|
|
/*
|
|
* Start by setting the graph up as an adjacency matrix. We'll
|
|
* turn it into a list later.
|
|
*/
|
|
for (i = 0; i < n*n; i++)
|
|
graph[i] = 0;
|
|
|
|
/*
|
|
* Iterate over the map looking for all adjacencies.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int v, vx, vy;
|
|
v = map[y*w+x];
|
|
if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
|
|
graph[v*n+vx] = graph[vx*n+v] = 1;
|
|
if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
|
|
graph[v*n+vy] = graph[vy*n+v] = 1;
|
|
}
|
|
|
|
/*
|
|
* Turn the matrix into a list.
|
|
*/
|
|
for (i = j = 0; i < n*n; i++)
|
|
if (graph[i])
|
|
graph[j++] = i;
|
|
|
|
return j;
|
|
}
|
|
|
|
static int graph_adjacent(int *graph, int n, int ngraph, int i, int j)
|
|
{
|
|
int v = i*n+j;
|
|
int top, bot, mid;
|
|
|
|
bot = -1;
|
|
top = ngraph;
|
|
while (top - bot > 1) {
|
|
mid = (top + bot) / 2;
|
|
if (graph[mid] == v)
|
|
return TRUE;
|
|
else if (graph[mid] < v)
|
|
bot = mid;
|
|
else
|
|
top = mid;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static int graph_vertex_start(int *graph, int n, int ngraph, int i)
|
|
{
|
|
int v = i*n;
|
|
int top, bot, mid;
|
|
|
|
bot = -1;
|
|
top = ngraph;
|
|
while (top - bot > 1) {
|
|
mid = (top + bot) / 2;
|
|
if (graph[mid] < v)
|
|
bot = mid;
|
|
else
|
|
top = mid;
|
|
}
|
|
return top;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Generate a four-colouring of a graph.
|
|
*
|
|
* FIXME: it would be nice if we could convert this recursion into
|
|
* pseudo-recursion using some sort of explicit stack array, for
|
|
* the sake of the Palm port and its limited stack.
|
|
*/
|
|
|
|
static int fourcolour_recurse(int *graph, int n, int ngraph,
|
|
int *colouring, int *scratch, random_state *rs)
|
|
{
|
|
int nfree, nvert, start, i, j, k, c, ci;
|
|
int cs[FOUR];
|
|
|
|
/*
|
|
* Find the smallest number of free colours in any uncoloured
|
|
* vertex, and count the number of such vertices.
|
|
*/
|
|
|
|
nfree = FIVE; /* start off bigger than FOUR! */
|
|
nvert = 0;
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
|
|
if (nfree > scratch[i*FIVE+FOUR]) {
|
|
nfree = scratch[i*FIVE+FOUR];
|
|
nvert = 0;
|
|
}
|
|
nvert++;
|
|
}
|
|
|
|
/*
|
|
* If there aren't any uncoloured vertices at all, we're done.
|
|
*/
|
|
if (nvert == 0)
|
|
return TRUE; /* we've got a colouring! */
|
|
|
|
/*
|
|
* Pick a random vertex in that set.
|
|
*/
|
|
j = random_upto(rs, nvert);
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
|
|
if (j-- == 0)
|
|
break;
|
|
assert(i < n);
|
|
start = graph_vertex_start(graph, n, ngraph, i);
|
|
|
|
/*
|
|
* Loop over the possible colours for i, and recurse for each
|
|
* one.
|
|
*/
|
|
ci = 0;
|
|
for (c = 0; c < FOUR; c++)
|
|
if (scratch[i*FIVE+c] == 0)
|
|
cs[ci++] = c;
|
|
shuffle(cs, ci, sizeof(*cs), rs);
|
|
|
|
while (ci-- > 0) {
|
|
c = cs[ci];
|
|
|
|
/*
|
|
* Fill in this colour.
|
|
*/
|
|
colouring[i] = c;
|
|
|
|
/*
|
|
* Update the scratch space to reflect a new neighbour
|
|
* of this colour for each neighbour of vertex i.
|
|
*/
|
|
for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
|
|
k = graph[j] - i*n;
|
|
if (scratch[k*FIVE+c] == 0)
|
|
scratch[k*FIVE+FOUR]--;
|
|
scratch[k*FIVE+c]++;
|
|
}
|
|
|
|
/*
|
|
* Recurse.
|
|
*/
|
|
if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
|
|
return TRUE; /* got one! */
|
|
|
|
/*
|
|
* If that didn't work, clean up and try again with a
|
|
* different colour.
|
|
*/
|
|
for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
|
|
k = graph[j] - i*n;
|
|
scratch[k*FIVE+c]--;
|
|
if (scratch[k*FIVE+c] == 0)
|
|
scratch[k*FIVE+FOUR]++;
|
|
}
|
|
colouring[i] = -1;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, we were unable to find a colouring at all.
|
|
* (This doesn't necessarily mean the Four Colour Theorem is
|
|
* violated; it might just mean we've gone down a dead end and
|
|
* need to back up and look somewhere else. It's only an FCT
|
|
* violation if we get all the way back up to the top level and
|
|
* still fail.)
|
|
*/
|
|
return FALSE;
|
|
}
|
|
|
|
static void fourcolour(int *graph, int n, int ngraph, int *colouring,
|
|
random_state *rs)
|
|
{
|
|
int *scratch;
|
|
int i;
|
|
|
|
/*
|
|
* For each vertex and each colour, we store the number of
|
|
* neighbours that have that colour. Also, we store the number
|
|
* of free colours for the vertex.
|
|
*/
|
|
scratch = snewn(n * FIVE, int);
|
|
for (i = 0; i < n * FIVE; i++)
|
|
scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
|
|
|
|
/*
|
|
* Clear the colouring to start with.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
colouring[i] = -1;
|
|
|
|
i = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
|
|
assert(i); /* by the Four Colour Theorem :-) */
|
|
|
|
sfree(scratch);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Non-recursive solver.
|
|
*/
|
|
|
|
struct solver_scratch {
|
|
unsigned char *possible; /* bitmap of colours for each region */
|
|
int *graph;
|
|
int n;
|
|
int ngraph;
|
|
};
|
|
|
|
static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
|
|
{
|
|
struct solver_scratch *sc;
|
|
|
|
sc = snew(struct solver_scratch);
|
|
sc->graph = graph;
|
|
sc->n = n;
|
|
sc->ngraph = ngraph;
|
|
sc->possible = snewn(n, unsigned char);
|
|
|
|
return sc;
|
|
}
|
|
|
|
static void free_scratch(struct solver_scratch *sc)
|
|
{
|
|
sfree(sc->possible);
|
|
sfree(sc);
|
|
}
|
|
|
|
static int place_colour(struct solver_scratch *sc,
|
|
int *colouring, int index, int colour)
|
|
{
|
|
int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
|
|
int j, k;
|
|
|
|
if (!(sc->possible[index] & (1 << colour)))
|
|
return FALSE; /* can't do it */
|
|
|
|
sc->possible[index] = 1 << colour;
|
|
colouring[index] = colour;
|
|
|
|
/*
|
|
* Rule out this colour from all the region's neighbours.
|
|
*/
|
|
for (j = graph_vertex_start(graph, n, ngraph, index);
|
|
j < ngraph && graph[j] < n*(index+1); j++) {
|
|
k = graph[j] - index*n;
|
|
sc->possible[k] &= ~(1 << colour);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Returns 0 for impossible, 1 for success, 2 for failure to
|
|
* converge (i.e. puzzle is either ambiguous or just too
|
|
* difficult).
|
|
*/
|
|
static int map_solver(struct solver_scratch *sc,
|
|
int *graph, int n, int ngraph, int *colouring,
|
|
int difficulty)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Initialise scratch space.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
sc->possible[i] = (1 << FOUR) - 1;
|
|
|
|
/*
|
|
* Place clues.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] >= 0) {
|
|
if (!place_colour(sc, colouring, i, colouring[i]))
|
|
return 0; /* the clues aren't even consistent! */
|
|
}
|
|
|
|
/*
|
|
* Now repeatedly loop until we find nothing further to do.
|
|
*/
|
|
while (1) {
|
|
int done_something = FALSE;
|
|
|
|
if (difficulty < DIFF_EASY)
|
|
break; /* can't do anything at all! */
|
|
|
|
/*
|
|
* Simplest possible deduction: find a region with only one
|
|
* possible colour.
|
|
*/
|
|
for (i = 0; i < n; i++) if (colouring[i] < 0) {
|
|
int p = sc->possible[i];
|
|
|
|
if (p == 0)
|
|
return 0; /* puzzle is inconsistent */
|
|
|
|
if ((p & (p-1)) == 0) { /* p is a power of two */
|
|
int c;
|
|
for (c = 0; c < FOUR; c++)
|
|
if (p == (1 << c))
|
|
break;
|
|
assert(c < FOUR);
|
|
if (!place_colour(sc, colouring, i, c))
|
|
return 0; /* found puzzle to be inconsistent */
|
|
done_something = TRUE;
|
|
}
|
|
}
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
if (difficulty < DIFF_NORMAL)
|
|
break; /* can't do anything harder */
|
|
|
|
/*
|
|
* Failing that, go up one level. Look for pairs of regions
|
|
* which (a) both have the same pair of possible colours,
|
|
* (b) are adjacent to one another, (c) are adjacent to the
|
|
* same region, and (d) that region still thinks it has one
|
|
* or both of those possible colours.
|
|
*
|
|
* Simplest way to do this is by going through the graph
|
|
* edge by edge, so that we start with property (b) and
|
|
* then look for (a) and finally (c) and (d).
|
|
*/
|
|
for (i = 0; i < ngraph; i++) {
|
|
int j1 = graph[i] / n, j2 = graph[i] % n;
|
|
int j, k, v, v2;
|
|
|
|
if (j1 > j2)
|
|
continue; /* done it already, other way round */
|
|
|
|
if (colouring[j1] >= 0 || colouring[j2] >= 0)
|
|
continue; /* they're not undecided */
|
|
|
|
if (sc->possible[j1] != sc->possible[j2])
|
|
continue; /* they don't have the same possibles */
|
|
|
|
v = sc->possible[j1];
|
|
/*
|
|
* See if v contains exactly two set bits.
|
|
*/
|
|
v2 = v & -v; /* find lowest set bit */
|
|
v2 = v & ~v2; /* clear it */
|
|
if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */
|
|
continue;
|
|
|
|
/*
|
|
* We've found regions j1 and j2 satisfying properties
|
|
* (a) and (b): they have two possible colours between
|
|
* them, and since they're adjacent to one another they
|
|
* must use _both_ those colours between them.
|
|
* Therefore, if they are both adjacent to any other
|
|
* region then that region cannot be either colour.
|
|
*
|
|
* Go through the neighbours of j1 and see if any are
|
|
* shared with j2.
|
|
*/
|
|
for (j = graph_vertex_start(graph, n, ngraph, j1);
|
|
j < ngraph && graph[j] < n*(j1+1); j++) {
|
|
k = graph[j] - j1*n;
|
|
if (graph_adjacent(graph, n, ngraph, k, j2) &&
|
|
(sc->possible[k] & v)) {
|
|
sc->possible[k] &= ~v;
|
|
done_something = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!done_something)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We've run out of things to deduce. See if we've got the lot.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] < 0)
|
|
return 2;
|
|
|
|
return 1; /* success! */
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Game generation main function.
|
|
*/
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
struct solver_scratch *sc = NULL;
|
|
int *map, *graph, ngraph, *colouring, *colouring2, *regions;
|
|
int i, j, w, h, n, solveret, cfreq[FOUR];
|
|
int wh;
|
|
int mindiff, tries;
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
int x, y;
|
|
#endif
|
|
char *ret, buf[80];
|
|
int retlen, retsize;
|
|
|
|
w = params->w;
|
|
h = params->h;
|
|
n = params->n;
|
|
wh = w*h;
|
|
|
|
*aux = NULL;
|
|
|
|
map = snewn(wh, int);
|
|
graph = snewn(n*n, int);
|
|
colouring = snewn(n, int);
|
|
colouring2 = snewn(n, int);
|
|
regions = snewn(n, int);
|
|
|
|
/*
|
|
* This is the minimum difficulty below which we'll completely
|
|
* reject a map design. Normally we set this to one below the
|
|
* requested difficulty, ensuring that we have the right
|
|
* result. However, for particularly dense maps or maps with
|
|
* particularly few regions it might not be possible to get the
|
|
* desired difficulty, so we will eventually drop this down to
|
|
* -1 to indicate that any old map will do.
|
|
*/
|
|
mindiff = params->diff;
|
|
tries = 50;
|
|
|
|
while (1) {
|
|
|
|
/*
|
|
* Create the map.
|
|
*/
|
|
genmap(w, h, n, map, rs);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = map[y*w+x];
|
|
if (v >= 62)
|
|
putchar('!');
|
|
else if (v >= 36)
|
|
putchar('a' + v-36);
|
|
else if (v >= 10)
|
|
putchar('A' + v-10);
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Convert the map into a graph.
|
|
*/
|
|
ngraph = gengraph(w, h, n, map, graph);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (i = 0; i < ngraph; i++)
|
|
printf("%d-%d\n", graph[i]/n, graph[i]%n);
|
|
#endif
|
|
|
|
/*
|
|
* Colour the map.
|
|
*/
|
|
fourcolour(graph, n, ngraph, colouring, rs);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (i = 0; i < n; i++)
|
|
printf("%d: %d\n", i, colouring[i]);
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = colouring[map[y*w+x]];
|
|
if (v >= 36)
|
|
putchar('a' + v-36);
|
|
else if (v >= 10)
|
|
putchar('A' + v-10);
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Encode the solution as an aux string.
|
|
*/
|
|
if (*aux) /* in case we've come round again */
|
|
sfree(*aux);
|
|
retlen = retsize = 0;
|
|
ret = NULL;
|
|
for (i = 0; i < n; i++) {
|
|
int len;
|
|
|
|
if (colouring[i] < 0)
|
|
continue;
|
|
|
|
len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
|
|
if (retlen + len >= retsize) {
|
|
retsize = retlen + len + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += len;
|
|
}
|
|
*aux = ret;
|
|
|
|
/*
|
|
* Remove the region colours one by one, keeping
|
|
* solubility. Also ensure that there always remains at
|
|
* least one region of every colour, so that the user can
|
|
* drag from somewhere.
|
|
*/
|
|
for (i = 0; i < FOUR; i++)
|
|
cfreq[i] = 0;
|
|
for (i = 0; i < n; i++) {
|
|
regions[i] = i;
|
|
cfreq[colouring[i]]++;
|
|
}
|
|
for (i = 0; i < FOUR; i++)
|
|
if (cfreq[i] == 0)
|
|
continue;
|
|
|
|
shuffle(regions, n, sizeof(*regions), rs);
|
|
|
|
if (sc) free_scratch(sc);
|
|
sc = new_scratch(graph, n, ngraph);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
j = regions[i];
|
|
|
|
if (cfreq[colouring[j]] == 1)
|
|
continue; /* can't remove last region of colour */
|
|
|
|
memcpy(colouring2, colouring, n*sizeof(int));
|
|
colouring2[j] = -1;
|
|
solveret = map_solver(sc, graph, n, ngraph, colouring2,
|
|
params->diff);
|
|
assert(solveret >= 0); /* mustn't be impossible! */
|
|
if (solveret == 1) {
|
|
cfreq[colouring[j]]--;
|
|
colouring[j] = -1;
|
|
}
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] >= 0) {
|
|
if (i >= 62)
|
|
putchar('!');
|
|
else if (i >= 36)
|
|
putchar('a' + i-36);
|
|
else if (i >= 10)
|
|
putchar('A' + i-10);
|
|
else
|
|
putchar('0' + i);
|
|
printf(": %d\n", colouring[i]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Finally, check that the puzzle is _at least_ as hard as
|
|
* required, and indeed that it isn't already solved.
|
|
* (Calling map_solver with negative difficulty ensures the
|
|
* latter - if a solver which _does nothing_ can't solve
|
|
* it, it's too easy!)
|
|
*/
|
|
memcpy(colouring2, colouring, n*sizeof(int));
|
|
if (map_solver(sc, graph, n, ngraph, colouring2,
|
|
mindiff - 1) == 1) {
|
|
/*
|
|
* Drop minimum difficulty if necessary.
|
|
*/
|
|
if (mindiff > 0 && (n < 9 || n > 3*wh/2)) {
|
|
if (tries-- <= 0)
|
|
mindiff = 0; /* give up and go for Easy */
|
|
}
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Encode as a game ID. We do this by:
|
|
*
|
|
* - first going along the horizontal edges row by row, and
|
|
* then the vertical edges column by column
|
|
* - encoding the lengths of runs of edges and runs of
|
|
* non-edges
|
|
* - the decoder will reconstitute the region boundaries from
|
|
* this and automatically number them the same way we did
|
|
* - then we encode the initial region colours in a Slant-like
|
|
* fashion (digits 0-3 interspersed with letters giving
|
|
* lengths of runs of empty spaces).
|
|
*/
|
|
retlen = retsize = 0;
|
|
ret = NULL;
|
|
|
|
{
|
|
int run, pv;
|
|
|
|
/*
|
|
* Start with a notional non-edge, so that there'll be an
|
|
* explicit `a' to distinguish the case where we start with
|
|
* an edge.
|
|
*/
|
|
run = 1;
|
|
pv = 0;
|
|
|
|
for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
|
|
int x, y, dx, dy, v;
|
|
|
|
if (i < w*(h-1)) {
|
|
/* Horizontal edge. */
|
|
y = i / w;
|
|
x = i % w;
|
|
dx = 0;
|
|
dy = 1;
|
|
} else {
|
|
/* Vertical edge. */
|
|
x = (i - w*(h-1)) / h;
|
|
y = (i - w*(h-1)) % h;
|
|
dx = 1;
|
|
dy = 0;
|
|
}
|
|
|
|
if (retlen + 10 >= retsize) {
|
|
retsize = retlen + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
|
|
v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
|
|
|
|
if (pv != v) {
|
|
ret[retlen++] = 'a'-1 + run;
|
|
run = 1;
|
|
pv = v;
|
|
} else {
|
|
/*
|
|
* 'z' is a special case in this encoding. Rather
|
|
* than meaning a run of 26 and a state switch, it
|
|
* means a run of 25 and _no_ state switch, because
|
|
* otherwise there'd be no way to encode runs of
|
|
* more than 26.
|
|
*/
|
|
if (run == 25) {
|
|
ret[retlen++] = 'z';
|
|
run = 0;
|
|
}
|
|
run++;
|
|
}
|
|
}
|
|
|
|
ret[retlen++] = 'a'-1 + run;
|
|
ret[retlen++] = ',';
|
|
|
|
run = 0;
|
|
for (i = 0; i < n; i++) {
|
|
if (retlen + 10 >= retsize) {
|
|
retsize = retlen + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
|
|
if (colouring[i] < 0) {
|
|
/*
|
|
* In _this_ encoding, 'z' is a run of 26, since
|
|
* there's no implicit state switch after each run.
|
|
* Confusingly different, but more compact.
|
|
*/
|
|
if (run == 26) {
|
|
ret[retlen++] = 'z';
|
|
run = 0;
|
|
}
|
|
run++;
|
|
} else {
|
|
if (run > 0)
|
|
ret[retlen++] = 'a'-1 + run;
|
|
ret[retlen++] = '0' + colouring[i];
|
|
run = 0;
|
|
}
|
|
}
|
|
if (run > 0)
|
|
ret[retlen++] = 'a'-1 + run;
|
|
ret[retlen] = '\0';
|
|
|
|
assert(retlen < retsize);
|
|
}
|
|
|
|
free_scratch(sc);
|
|
sfree(regions);
|
|
sfree(colouring2);
|
|
sfree(colouring);
|
|
sfree(graph);
|
|
sfree(map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *parse_edge_list(game_params *params, char **desc, int *map)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, n = params->n;
|
|
int i, k, pos, state;
|
|
char *p = *desc;
|
|
|
|
for (i = 0; i < wh; i++)
|
|
map[wh+i] = i;
|
|
|
|
pos = -1;
|
|
state = 0;
|
|
|
|
/*
|
|
* Parse the game description to get the list of edges, and
|
|
* build up a disjoint set forest as we go (by identifying
|
|
* pairs of squares whenever the edge list shows a non-edge).
|
|
*/
|
|
while (*p && *p != ',') {
|
|
if (*p < 'a' || *p > 'z')
|
|
return "Unexpected character in edge list";
|
|
if (*p == 'z')
|
|
k = 25;
|
|
else
|
|
k = *p - 'a' + 1;
|
|
while (k-- > 0) {
|
|
int x, y, dx, dy;
|
|
|
|
if (pos < 0) {
|
|
pos++;
|
|
continue;
|
|
} else if (pos < w*(h-1)) {
|
|
/* Horizontal edge. */
|
|
y = pos / w;
|
|
x = pos % w;
|
|
dx = 0;
|
|
dy = 1;
|
|
} else if (pos < 2*wh-w-h) {
|
|
/* Vertical edge. */
|
|
x = (pos - w*(h-1)) / h;
|
|
y = (pos - w*(h-1)) % h;
|
|
dx = 1;
|
|
dy = 0;
|
|
} else
|
|
return "Too much data in edge list";
|
|
if (!state)
|
|
dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
|
|
|
|
pos++;
|
|
}
|
|
if (*p != 'z')
|
|
state = !state;
|
|
p++;
|
|
}
|
|
assert(pos <= 2*wh-w-h);
|
|
if (pos < 2*wh-w-h)
|
|
return "Too little data in edge list";
|
|
|
|
/*
|
|
* Now go through again and allocate region numbers.
|
|
*/
|
|
pos = 0;
|
|
for (i = 0; i < wh; i++)
|
|
map[i] = -1;
|
|
for (i = 0; i < wh; i++) {
|
|
k = dsf_canonify(map+wh, i);
|
|
if (map[k] < 0)
|
|
map[k] = pos++;
|
|
map[i] = map[k];
|
|
}
|
|
if (pos != n)
|
|
return "Edge list defines the wrong number of regions";
|
|
|
|
*desc = p;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, n = params->n;
|
|
int area;
|
|
int *map;
|
|
char *ret;
|
|
|
|
map = snewn(2*wh, int);
|
|
ret = parse_edge_list(params, &desc, map);
|
|
if (ret)
|
|
return ret;
|
|
sfree(map);
|
|
|
|
if (*desc != ',')
|
|
return "Expected comma before clue list";
|
|
desc++; /* eat comma */
|
|
|
|
area = 0;
|
|
while (*desc) {
|
|
if (*desc >= '0' && *desc < '0'+FOUR)
|
|
area++;
|
|
else if (*desc >= 'a' && *desc <= 'z')
|
|
area += *desc - 'a' + 1;
|
|
else
|
|
return "Unexpected character in clue list";
|
|
desc++;
|
|
}
|
|
if (area < n)
|
|
return "Too little data in clue list";
|
|
else if (area > n)
|
|
return "Too much data in clue list";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend_data *me, game_params *params, char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, n = params->n;
|
|
int i, pos;
|
|
char *p;
|
|
game_state *state = snew(game_state);
|
|
|
|
state->p = *params;
|
|
state->colouring = snewn(n, int);
|
|
for (i = 0; i < n; i++)
|
|
state->colouring[i] = -1;
|
|
|
|
state->completed = state->cheated = FALSE;
|
|
|
|
state->map = snew(struct map);
|
|
state->map->refcount = 1;
|
|
state->map->map = snewn(wh*4, int);
|
|
state->map->graph = snewn(n*n, int);
|
|
state->map->n = n;
|
|
state->map->immutable = snewn(n, int);
|
|
for (i = 0; i < n; i++)
|
|
state->map->immutable[i] = FALSE;
|
|
|
|
p = desc;
|
|
|
|
{
|
|
char *ret;
|
|
ret = parse_edge_list(params, &p, state->map->map);
|
|
assert(!ret);
|
|
}
|
|
|
|
/*
|
|
* Set up the other three quadrants in `map'.
|
|
*/
|
|
for (i = wh; i < 4*wh; i++)
|
|
state->map->map[i] = state->map->map[i % wh];
|
|
|
|
assert(*p == ',');
|
|
p++;
|
|
|
|
/*
|
|
* Now process the clue list.
|
|
*/
|
|
pos = 0;
|
|
while (*p) {
|
|
if (*p >= '0' && *p < '0'+FOUR) {
|
|
state->colouring[pos] = *p - '0';
|
|
state->map->immutable[pos] = TRUE;
|
|
pos++;
|
|
} else {
|
|
assert(*p >= 'a' && *p <= 'z');
|
|
pos += *p - 'a' + 1;
|
|
}
|
|
p++;
|
|
}
|
|
assert(pos == n);
|
|
|
|
state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
|
|
|
|
/*
|
|
* Attempt to smooth out some of the more jagged region
|
|
* outlines by the judicious use of diagonally divided squares.
|
|
*/
|
|
{
|
|
random_state *rs = random_init(desc, strlen(desc));
|
|
int *squares = snewn(wh, int);
|
|
int done_something;
|
|
|
|
for (i = 0; i < wh; i++)
|
|
squares[i] = i;
|
|
shuffle(squares, wh, sizeof(*squares), rs);
|
|
|
|
do {
|
|
done_something = FALSE;
|
|
for (i = 0; i < wh; i++) {
|
|
int y = squares[i] / w, x = squares[i] % w;
|
|
int c = state->map->map[y*w+x];
|
|
int tc, bc, lc, rc;
|
|
|
|
if (x == 0 || x == w-1 || y == 0 || y == h-1)
|
|
continue;
|
|
|
|
if (state->map->map[TE * wh + y*w+x] !=
|
|
state->map->map[BE * wh + y*w+x])
|
|
continue;
|
|
|
|
tc = state->map->map[BE * wh + (y-1)*w+x];
|
|
bc = state->map->map[TE * wh + (y+1)*w+x];
|
|
lc = state->map->map[RE * wh + y*w+(x-1)];
|
|
rc = state->map->map[LE * wh + y*w+(x+1)];
|
|
|
|
/*
|
|
* If this square is adjacent on two sides to one
|
|
* region and on the other two sides to the other
|
|
* region, and is itself one of the two regions, we can
|
|
* adjust it so that it's a diagonal.
|
|
*/
|
|
if (tc != bc && (tc == c || bc == c)) {
|
|
if ((lc == tc && rc == bc) ||
|
|
(lc == bc && rc == tc)) {
|
|
state->map->map[TE * wh + y*w+x] = tc;
|
|
state->map->map[BE * wh + y*w+x] = bc;
|
|
state->map->map[LE * wh + y*w+x] = lc;
|
|
state->map->map[RE * wh + y*w+x] = rc;
|
|
done_something = TRUE;
|
|
}
|
|
}
|
|
}
|
|
} while (done_something);
|
|
sfree(squares);
|
|
random_free(rs);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->p = state->p;
|
|
ret->colouring = snewn(state->p.n, int);
|
|
memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
|
|
ret->map = state->map;
|
|
ret->map->refcount++;
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->map->refcount <= 0) {
|
|
sfree(state->map->map);
|
|
sfree(state->map->graph);
|
|
sfree(state->map->immutable);
|
|
sfree(state->map);
|
|
}
|
|
sfree(state->colouring);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
if (!aux) {
|
|
/*
|
|
* Use the solver.
|
|
*/
|
|
int *colouring;
|
|
struct solver_scratch *sc;
|
|
int sret;
|
|
int i;
|
|
char *ret, buf[80];
|
|
int retlen, retsize;
|
|
|
|
colouring = snewn(state->map->n, int);
|
|
memcpy(colouring, state->colouring, state->map->n * sizeof(int));
|
|
|
|
sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
|
|
sret = map_solver(sc, state->map->graph, state->map->n,
|
|
state->map->ngraph, colouring, DIFFCOUNT-1);
|
|
free_scratch(sc);
|
|
|
|
if (sret != 1) {
|
|
sfree(colouring);
|
|
if (sret == 0)
|
|
*error = "Puzzle is inconsistent";
|
|
else
|
|
*error = "Unable to find a unique solution for this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
retlen = retsize = 0;
|
|
ret = NULL;
|
|
|
|
for (i = 0; i < state->map->n; i++) {
|
|
int len;
|
|
|
|
assert(colouring[i] >= 0);
|
|
if (colouring[i] == currstate->colouring[i])
|
|
continue;
|
|
assert(!state->map->immutable[i]);
|
|
|
|
len = sprintf(buf, "%s%d:%d", retlen ? ";" : "S;",
|
|
colouring[i], i);
|
|
if (retlen + len >= retsize) {
|
|
retsize = retlen + len + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += len;
|
|
}
|
|
|
|
sfree(colouring);
|
|
|
|
return ret;
|
|
}
|
|
return dupstr(aux);
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct game_ui {
|
|
int drag_colour; /* -1 means no drag active */
|
|
int dragx, dragy;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->dragx = ui->dragy = -1;
|
|
ui->drag_colour = -2;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int tilesize;
|
|
unsigned char *drawn;
|
|
int started;
|
|
int dragx, dragy, drag_visible;
|
|
blitter *bl;
|
|
};
|
|
|
|
#define TILESIZE (ds->tilesize)
|
|
#define BORDER (TILESIZE)
|
|
#define COORD(x) ( (x) * TILESIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
|
|
|
|
static int region_from_coords(game_state *state, game_drawstate *ds,
|
|
int x, int y)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
|
|
int tx = FROMCOORD(x), ty = FROMCOORD(y);
|
|
int dx = x - COORD(tx), dy = y - COORD(ty);
|
|
int quadrant;
|
|
|
|
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
|
|
return -1; /* border */
|
|
|
|
quadrant = 2 * (dx > dy) + (TILESIZE - dx > dy);
|
|
quadrant = (quadrant == 0 ? BE :
|
|
quadrant == 1 ? LE :
|
|
quadrant == 2 ? RE : TE);
|
|
|
|
return state->map->map[quadrant * wh + ty*w+tx];
|
|
}
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
char buf[80];
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
int r = region_from_coords(state, ds, x, y);
|
|
|
|
if (r >= 0)
|
|
ui->drag_colour = state->colouring[r];
|
|
else
|
|
ui->drag_colour = -1;
|
|
ui->dragx = x;
|
|
ui->dragy = y;
|
|
return "";
|
|
}
|
|
|
|
if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
|
|
ui->drag_colour > -2) {
|
|
ui->dragx = x;
|
|
ui->dragy = y;
|
|
return "";
|
|
}
|
|
|
|
if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
|
|
ui->drag_colour > -2) {
|
|
int r = region_from_coords(state, ds, x, y);
|
|
int c = ui->drag_colour;
|
|
|
|
/*
|
|
* Cancel the drag, whatever happens.
|
|
*/
|
|
ui->drag_colour = -2;
|
|
ui->dragx = ui->dragy = -1;
|
|
|
|
if (r < 0)
|
|
return ""; /* drag into border; do nothing else */
|
|
|
|
if (state->map->immutable[r])
|
|
return ""; /* can't change this region */
|
|
|
|
if (state->colouring[r] == c)
|
|
return ""; /* don't _need_ to change this region */
|
|
|
|
sprintf(buf, "%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
int n = state->p.n;
|
|
game_state *ret = dup_game(state);
|
|
int c, k, adv, i;
|
|
|
|
while (*move) {
|
|
c = *move;
|
|
if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
|
|
sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
|
|
k >= 0 && k < state->p.n) {
|
|
move += 1 + adv;
|
|
ret->colouring[k] = (c == 'C' ? -1 : c - '0');
|
|
} else if (*move == 'S') {
|
|
move++;
|
|
ret->cheated = TRUE;
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
if (*move && *move != ';') {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
if (*move)
|
|
move++;
|
|
}
|
|
|
|
/*
|
|
* Check for completion.
|
|
*/
|
|
if (!ret->completed) {
|
|
int ok = TRUE;
|
|
|
|
for (i = 0; i < n; i++)
|
|
if (ret->colouring[i] < 0) {
|
|
ok = FALSE;
|
|
break;
|
|
}
|
|
|
|
if (ok) {
|
|
for (i = 0; i < ret->map->ngraph; i++) {
|
|
int j = ret->map->graph[i] / n;
|
|
int k = ret->map->graph[i] % n;
|
|
if (ret->colouring[j] == ret->colouring[k]) {
|
|
ok = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ok)
|
|
ret->completed = TRUE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = params->w * TILESIZE + 2 * BORDER + 1;
|
|
*y = params->h * TILESIZE + 2 * BORDER + 1;
|
|
}
|
|
|
|
static void game_set_size(game_drawstate *ds, game_params *params,
|
|
int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
|
|
if (ds->bl)
|
|
blitter_free(ds->bl);
|
|
ds->bl = blitter_new(TILESIZE+3, TILESIZE+3);
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_GRID * 3 + 0] = 0.0F;
|
|
ret[COL_GRID * 3 + 1] = 0.0F;
|
|
ret[COL_GRID * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_0 * 3 + 0] = 0.7F;
|
|
ret[COL_0 * 3 + 1] = 0.5F;
|
|
ret[COL_0 * 3 + 2] = 0.4F;
|
|
|
|
ret[COL_1 * 3 + 0] = 0.8F;
|
|
ret[COL_1 * 3 + 1] = 0.7F;
|
|
ret[COL_1 * 3 + 2] = 0.4F;
|
|
|
|
ret[COL_2 * 3 + 0] = 0.5F;
|
|
ret[COL_2 * 3 + 1] = 0.6F;
|
|
ret[COL_2 * 3 + 2] = 0.4F;
|
|
|
|
ret[COL_3 * 3 + 0] = 0.55F;
|
|
ret[COL_3 * 3 + 1] = 0.45F;
|
|
ret[COL_3 * 3 + 2] = 0.35F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->tilesize = 0;
|
|
ds->drawn = snewn(state->p.w * state->p.h, unsigned char);
|
|
memset(ds->drawn, 0xFF, state->p.w * state->p.h);
|
|
ds->started = FALSE;
|
|
ds->bl = NULL;
|
|
ds->drag_visible = FALSE;
|
|
ds->dragx = ds->dragy = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(game_drawstate *ds)
|
|
{
|
|
sfree(ds->drawn);
|
|
if (ds->bl)
|
|
blitter_free(ds->bl);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_square(frontend *fe, game_drawstate *ds,
|
|
game_params *params, struct map *map,
|
|
int x, int y, int v)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
int tv = v / FIVE, bv = v % FIVE;
|
|
|
|
clip(fe, COORD(x), COORD(y), TILESIZE, TILESIZE);
|
|
|
|
/*
|
|
* Draw the region colour.
|
|
*/
|
|
draw_rect(fe, COORD(x), COORD(y), TILESIZE, TILESIZE,
|
|
(tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
|
|
/*
|
|
* Draw the second region colour, if this is a diagonally
|
|
* divided square.
|
|
*/
|
|
if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
|
|
int coords[6];
|
|
coords[0] = COORD(x)-1;
|
|
coords[1] = COORD(y+1)+1;
|
|
if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
|
|
coords[2] = COORD(x+1)+1;
|
|
else
|
|
coords[2] = COORD(x)-1;
|
|
coords[3] = COORD(y)-1;
|
|
coords[4] = COORD(x+1)+1;
|
|
coords[5] = COORD(y+1)+1;
|
|
draw_polygon(fe, coords, 3,
|
|
(bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
|
|
}
|
|
|
|
/*
|
|
* Draw the grid lines, if required.
|
|
*/
|
|
if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
|
|
draw_rect(fe, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
|
|
if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
|
|
draw_rect(fe, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
|
|
if (x <= 0 || y <= 0 ||
|
|
map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
|
|
map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
|
|
draw_rect(fe, COORD(x), COORD(y), 1, 1, COL_GRID);
|
|
|
|
unclip(fe);
|
|
draw_update(fe, COORD(x), COORD(y), TILESIZE, TILESIZE);
|
|
}
|
|
|
|
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
|
|
int x, y;
|
|
int flash;
|
|
|
|
if (ds->drag_visible) {
|
|
blitter_load(fe, ds->bl, ds->dragx, ds->dragy);
|
|
draw_update(fe, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
|
|
ds->drag_visible = FALSE;
|
|
}
|
|
|
|
/*
|
|
* The initial contents of the window are not guaranteed and
|
|
* can vary with front ends. To be on the safe side, all games
|
|
* should start by drawing a big background-colour rectangle
|
|
* covering the whole window.
|
|
*/
|
|
if (!ds->started) {
|
|
int ww, wh;
|
|
|
|
game_compute_size(&state->p, TILESIZE, &ww, &wh);
|
|
draw_rect(fe, 0, 0, ww, wh, COL_BACKGROUND);
|
|
draw_rect(fe, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
|
|
COL_GRID);
|
|
|
|
draw_update(fe, 0, 0, ww, wh);
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
if (flashtime) {
|
|
if (flash_type == 1)
|
|
flash = (int)(flashtime * FOUR / flash_length);
|
|
else
|
|
flash = 1 + (int)(flashtime * THREE / flash_length);
|
|
} else
|
|
flash = -1;
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
|
|
int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
|
|
int v;
|
|
|
|
if (tv < 0)
|
|
tv = FOUR;
|
|
if (bv < 0)
|
|
bv = FOUR;
|
|
|
|
if (flash >= 0) {
|
|
if (flash_type == 1) {
|
|
if (tv == flash)
|
|
tv = FOUR;
|
|
if (bv == flash)
|
|
bv = FOUR;
|
|
} else if (flash_type == 2) {
|
|
if (flash % 2)
|
|
tv = bv = FOUR;
|
|
} else {
|
|
if (tv != FOUR)
|
|
tv = (tv + flash) % FOUR;
|
|
if (bv != FOUR)
|
|
bv = (bv + flash) % FOUR;
|
|
}
|
|
}
|
|
|
|
v = tv * FIVE + bv;
|
|
|
|
if (ds->drawn[y*w+x] != v) {
|
|
draw_square(fe, ds, &state->p, state->map, x, y, v);
|
|
ds->drawn[y*w+x] = v;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the dragged colour blob if any.
|
|
*/
|
|
if (ui->drag_colour > -2) {
|
|
ds->dragx = ui->dragx - TILESIZE/2 - 2;
|
|
ds->dragy = ui->dragy - TILESIZE/2 - 2;
|
|
blitter_save(fe, ds->bl, ds->dragx, ds->dragy);
|
|
draw_circle(fe, ui->dragx, ui->dragy, TILESIZE/2,
|
|
(ui->drag_colour < 0 ? COL_BACKGROUND :
|
|
COL_0 + ui->drag_colour), COL_GRID);
|
|
draw_update(fe, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
|
|
ds->drag_visible = TRUE;
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated) {
|
|
if (flash_type < 0) {
|
|
char *env = getenv("MAP_ALTERNATIVE_FLASH");
|
|
if (env)
|
|
flash_type = atoi(env);
|
|
else
|
|
flash_type = 0;
|
|
flash_length = (flash_type == 1 ? 0.50 : 0.30);
|
|
}
|
|
return flash_length;
|
|
} else
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame map
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Map", "games.map",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
20, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_wants_statusbar,
|
|
FALSE, game_timing_state,
|
|
0, /* mouse_priorities */
|
|
};
|