mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files

as seen by the back ends from the one implemented by the front end, and shoved a piece of middleware (drawing.c) in between to permit interchange of multiple kinds of the latter. I've also added a number of functions to the drawing API to permit printing as well as on-screen drawing, and retired print.py in favour of integrated printing done by means of that API. The immediate visible change is that print.py is dead, and each puzzle now does its own printing: where you would previously have typed `print.py solo 2x3', you now type `solo --print 2x3' and it should work in much the same way. Advantages of the new mechanism available right now: - Map is now printable, because the new print function can make use of the output from the existing game ID decoder rather than me having to replicate all those fiddly algorithms in Python. - the new print functions can cope with non-initial game states, which means each puzzle supporting --print also supports --with-solutions. - there's also a --scale option permitting users to adjust the size of the printed puzzles. Advantages which will be available at some point: - the new API should permit me to implement native printing mechanisms on Windows and OS X. [originally from svn r6190]
1231 lines
32 KiB
C
1231 lines
32 KiB
C
/*
|
|
* twiddle.c: Puzzle involving rearranging a grid of squares by
|
|
* rotating subsquares. Adapted and generalised from a
|
|
* door-unlocking puzzle in Metroid Prime 2 (the one in the Main
|
|
* Gyro Chamber).
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define PREFERRED_TILE_SIZE 48
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE / 2)
|
|
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define ANIM_PER_RADIUS_UNIT 0.13F
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_TEXT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT_GENTLE,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h, n;
|
|
int rowsonly;
|
|
int orientable;
|
|
int movetarget;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h, n;
|
|
int orientable;
|
|
int *grid;
|
|
int completed;
|
|
int just_used_solve; /* used to suppress undo animation */
|
|
int used_solve; /* used to suppress completion flash */
|
|
int movecount, movetarget;
|
|
int lastx, lasty, lastr; /* coordinates of last rotation */
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 3;
|
|
ret->n = 2;
|
|
ret->rowsonly = ret->orientable = FALSE;
|
|
ret->movetarget = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
static struct {
|
|
char *title;
|
|
game_params params;
|
|
} presets[] = {
|
|
{ "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
|
|
{ "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
|
|
{ "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
|
|
{ "4x4 normal", { 4, 4, 2, FALSE } },
|
|
{ "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
|
|
{ "4x4 radius 3", { 4, 4, 3, FALSE } },
|
|
{ "5x5 radius 3", { 5, 5, 3, FALSE } },
|
|
{ "6x6 radius 4", { 6, 6, 4, FALSE } },
|
|
};
|
|
|
|
if (i < 0 || i >= lenof(presets))
|
|
return FALSE;
|
|
|
|
*name = dupstr(presets[i].title);
|
|
*params = dup_params(&presets[i].params);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
ret->n = 2;
|
|
ret->rowsonly = ret->orientable = FALSE;
|
|
ret->movetarget = 0;
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
if (*string == 'n') {
|
|
string++;
|
|
ret->n = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
while (*string) {
|
|
if (*string == 'r') {
|
|
ret->rowsonly = TRUE;
|
|
} else if (*string == 'o') {
|
|
ret->orientable = TRUE;
|
|
} else if (*string == 'm') {
|
|
string++;
|
|
ret->movetarget = atoi(string);
|
|
while (string[1] && isdigit((unsigned char)string[1])) string++;
|
|
}
|
|
string++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char buf[256];
|
|
sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
|
|
params->rowsonly ? "r" : "",
|
|
params->orientable ? "o" : "");
|
|
/* Shuffle limit is part of the limited parameters, because we have to
|
|
* supply the target move count. */
|
|
if (params->movetarget)
|
|
sprintf(buf + strlen(buf), "m%d", params->movetarget);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(7, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Rotation radius";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = "One number per row";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = params->rowsonly;
|
|
|
|
ret[4].name = "Orientation matters";
|
|
ret[4].type = C_BOOLEAN;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = params->orientable;
|
|
|
|
ret[5].name = "Number of shuffling moves";
|
|
ret[5].type = C_STRING;
|
|
sprintf(buf, "%d", params->movetarget);
|
|
ret[5].sval = dupstr(buf);
|
|
ret[5].ival = 0;
|
|
|
|
ret[6].name = NULL;
|
|
ret[6].type = C_END;
|
|
ret[6].sval = NULL;
|
|
ret[6].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->n = atoi(cfg[2].sval);
|
|
ret->rowsonly = cfg[3].ival;
|
|
ret->orientable = cfg[4].ival;
|
|
ret->movetarget = atoi(cfg[5].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->n < 2)
|
|
return "Rotation radius must be at least two";
|
|
if (params->w < params->n)
|
|
return "Width must be at least the rotation radius";
|
|
if (params->h < params->n)
|
|
return "Height must be at least the rotation radius";
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This function actually performs a rotation on a grid. The `x'
|
|
* and `y' coordinates passed in are the coordinates of the _top
|
|
* left corner_ of the rotated region. (Using the centre would have
|
|
* involved half-integers and been annoyingly fiddly. Clicking in
|
|
* the centre is good for a user interface, but too inconvenient to
|
|
* use internally.)
|
|
*/
|
|
static void do_rotate(int *grid, int w, int h, int n, int orientable,
|
|
int x, int y, int dir)
|
|
{
|
|
int i, j;
|
|
|
|
assert(x >= 0 && x+n <= w);
|
|
assert(y >= 0 && y+n <= h);
|
|
dir &= 3;
|
|
if (dir == 0)
|
|
return; /* nothing to do */
|
|
|
|
grid += y*w+x; /* translate region to top corner */
|
|
|
|
/*
|
|
* If we were leaving the result of the rotation in a separate
|
|
* grid, the simple thing to do would be to loop over each
|
|
* square within the rotated region and assign it from its
|
|
* source square. However, to do it in place without taking
|
|
* O(n^2) memory, we need to be marginally more clever. What
|
|
* I'm going to do is loop over about one _quarter_ of the
|
|
* rotated region and permute each element within that quarter
|
|
* with its rotational coset.
|
|
*
|
|
* The size of the region I need to loop over is (n+1)/2 by
|
|
* n/2, which is an obvious exact quarter for even n and is a
|
|
* rectangle for odd n. (For odd n, this technique leaves out
|
|
* one element of the square, which is of course the central
|
|
* one that never moves anyway.)
|
|
*/
|
|
for (i = 0; i < (n+1)/2; i++) {
|
|
for (j = 0; j < n/2; j++) {
|
|
int k;
|
|
int g[4];
|
|
int p[4];
|
|
|
|
p[0] = j*w+i;
|
|
p[1] = i*w+(n-j-1);
|
|
p[2] = (n-j-1)*w+(n-i-1);
|
|
p[3] = (n-i-1)*w+j;
|
|
|
|
for (k = 0; k < 4; k++)
|
|
g[k] = grid[p[k]];
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
int v = g[(k+dir) & 3];
|
|
if (orientable)
|
|
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
|
|
grid[p[k]] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't forget the orientation on the centre square, if n is
|
|
* odd.
|
|
*/
|
|
if (orientable && (n & 1)) {
|
|
int v = grid[n/2*(w+1)];
|
|
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
|
|
grid[n/2*(w+1)] = v;
|
|
}
|
|
}
|
|
|
|
static int grid_complete(int *grid, int wh, int orientable)
|
|
{
|
|
int ok = TRUE;
|
|
int i;
|
|
for (i = 1; i < wh; i++)
|
|
if (grid[i] < grid[i-1])
|
|
ok = FALSE;
|
|
if (orientable) {
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] & 3)
|
|
ok = FALSE;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int *grid;
|
|
int w = params->w, h = params->h, n = params->n, wh = w*h;
|
|
int i;
|
|
char *ret;
|
|
int retlen;
|
|
int total_moves;
|
|
|
|
/*
|
|
* Set up a solved grid.
|
|
*/
|
|
grid = snewn(wh, int);
|
|
for (i = 0; i < wh; i++)
|
|
grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
|
|
|
|
/*
|
|
* Shuffle it. This game is complex enough that I don't feel up
|
|
* to analysing its full symmetry properties (particularly at
|
|
* n=4 and above!), so I'm going to do it the pedestrian way
|
|
* and simply shuffle the grid by making a long sequence of
|
|
* randomly chosen moves.
|
|
*/
|
|
total_moves = params->movetarget;
|
|
if (!total_moves)
|
|
/* Add a random move to avoid parity issues. */
|
|
total_moves = w*h*n*n*2 + random_upto(rs, 2);
|
|
|
|
do {
|
|
int *prevmoves;
|
|
int rw, rh; /* w/h of rotation centre space */
|
|
|
|
rw = w - n + 1;
|
|
rh = h - n + 1;
|
|
prevmoves = snewn(rw * rh, int);
|
|
for (i = 0; i < rw * rh; i++)
|
|
prevmoves[i] = 0;
|
|
|
|
for (i = 0; i < total_moves; i++) {
|
|
int x, y, r, oldtotal, newtotal, dx, dy;
|
|
|
|
do {
|
|
x = random_upto(rs, w - n + 1);
|
|
y = random_upto(rs, h - n + 1);
|
|
r = 2 * random_upto(rs, 2) - 1;
|
|
|
|
/*
|
|
* See if any previous rotations has happened at
|
|
* this point which nothing has overlapped since.
|
|
* If so, ensure we haven't either undone a
|
|
* previous move or repeated one so many times that
|
|
* it turns into fewer moves in the inverse
|
|
* direction (i.e. three identical rotations).
|
|
*/
|
|
oldtotal = prevmoves[y*rw+x];
|
|
newtotal = oldtotal + r;
|
|
|
|
/*
|
|
* Special case here for w==h==n, in which case
|
|
* there is actually no way to _avoid_ all moves
|
|
* repeating or undoing previous ones.
|
|
*/
|
|
} while ((w != n || h != n) &&
|
|
(abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
|
|
|
|
do_rotate(grid, w, h, n, params->orientable, x, y, r);
|
|
|
|
/*
|
|
* Log the rotation we've just performed at this point,
|
|
* for inversion detection in the next move.
|
|
*
|
|
* Also zero a section of the prevmoves array, because
|
|
* any rotation area which _overlaps_ this one is now
|
|
* entirely safe to perform further moves in.
|
|
*
|
|
* Two rotation areas overlap if their top left
|
|
* coordinates differ by strictly less than n in both
|
|
* directions
|
|
*/
|
|
prevmoves[y*rw+x] += r;
|
|
for (dy = -n+1; dy <= n-1; dy++) {
|
|
if (y + dy < 0 || y + dy >= rh)
|
|
continue;
|
|
for (dx = -n+1; dx <= n-1; dx++) {
|
|
if (x + dx < 0 || x + dx >= rw)
|
|
continue;
|
|
if (dx == 0 && dy == 0)
|
|
continue;
|
|
prevmoves[(y+dy)*rw+(x+dx)] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
sfree(prevmoves);
|
|
|
|
} while (grid_complete(grid, wh, params->orientable));
|
|
|
|
/*
|
|
* Now construct the game description, by describing the grid
|
|
* as a simple sequence of integers. They're comma-separated,
|
|
* unless the puzzle is orientable in which case they're
|
|
* separated by orientation letters `u', `d', `l' and `r'.
|
|
*/
|
|
ret = NULL;
|
|
retlen = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
char buf[80];
|
|
int k;
|
|
|
|
k = sprintf(buf, "%d%c", grid[i] / 4,
|
|
(char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
|
|
|
|
ret = sresize(ret, retlen + k + 1, char);
|
|
strcpy(ret + retlen, buf);
|
|
retlen += k;
|
|
}
|
|
if (!params->orientable)
|
|
ret[retlen-1] = '\0'; /* delete last comma */
|
|
|
|
sfree(grid);
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
char *p, *err;
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
int i;
|
|
|
|
p = desc;
|
|
err = NULL;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (*p < '0' || *p > '9')
|
|
return "Not enough numbers in string";
|
|
while (*p >= '0' && *p <= '9')
|
|
p++;
|
|
if (!params->orientable && i < wh-1) {
|
|
if (*p != ',')
|
|
return "Expected comma after number";
|
|
} else if (params->orientable && i < wh) {
|
|
if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
|
|
return "Expected orientation letter after number";
|
|
} else if (i == wh-1 && *p) {
|
|
return "Excess junk at end of string";
|
|
}
|
|
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int w = params->w, h = params->h, n = params->n, wh = w*h;
|
|
int i;
|
|
char *p;
|
|
|
|
state->w = w;
|
|
state->h = h;
|
|
state->n = n;
|
|
state->orientable = params->orientable;
|
|
state->completed = 0;
|
|
state->used_solve = state->just_used_solve = FALSE;
|
|
state->movecount = 0;
|
|
state->movetarget = params->movetarget;
|
|
state->lastx = state->lasty = state->lastr = -1;
|
|
|
|
state->grid = snewn(wh, int);
|
|
|
|
p = desc;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
state->grid[i] = 4 * atoi(p);
|
|
while (*p >= '0' && *p <= '9')
|
|
p++;
|
|
if (*p) {
|
|
if (params->orientable) {
|
|
switch (*p) {
|
|
case 'l': state->grid[i] |= 1; break;
|
|
case 'd': state->grid[i] |= 2; break;
|
|
case 'r': state->grid[i] |= 3; break;
|
|
}
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->n = state->n;
|
|
ret->orientable = state->orientable;
|
|
ret->completed = state->completed;
|
|
ret->movecount = state->movecount;
|
|
ret->movetarget = state->movetarget;
|
|
ret->lastx = state->lastx;
|
|
ret->lasty = state->lasty;
|
|
ret->lastr = state->lastr;
|
|
ret->used_solve = state->used_solve;
|
|
ret->just_used_solve = state->just_used_solve;
|
|
|
|
ret->grid = snewn(ret->w * ret->h, int);
|
|
memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
static int compare_int(const void *av, const void *bv)
|
|
{
|
|
const int *a = (const int *)av;
|
|
const int *b = (const int *)bv;
|
|
if (*a < *b)
|
|
return -1;
|
|
else if (*a > *b)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
return dupstr("S");
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
char *ret, *p, buf[80];
|
|
int i, x, y, col, o, maxlen;
|
|
|
|
/*
|
|
* First work out how many characters we need to display each
|
|
* number. We're pretty flexible on grid contents here, so we
|
|
* have to scan the entire grid.
|
|
*/
|
|
col = 0;
|
|
for (i = 0; i < state->w * state->h; i++) {
|
|
x = sprintf(buf, "%d", state->grid[i] / 4);
|
|
if (col < x) col = x;
|
|
}
|
|
o = (state->orientable ? 1 : 0);
|
|
|
|
/*
|
|
* Now we know the exact total size of the grid we're going to
|
|
* produce: it's got h rows, each containing w lots of col+o,
|
|
* w-1 spaces and a trailing newline.
|
|
*/
|
|
maxlen = state->h * state->w * (col+o+1);
|
|
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
int v = state->grid[state->w*y+x];
|
|
sprintf(buf, "%*d", col, v/4);
|
|
memcpy(p, buf, col);
|
|
p += col;
|
|
if (o)
|
|
*p++ = "^<v>"[v & 3];
|
|
if (x+1 == state->w)
|
|
*p++ = '\n';
|
|
else
|
|
*p++ = ' ';
|
|
}
|
|
}
|
|
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h, bgcolour;
|
|
int *grid;
|
|
int tilesize;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
|
|
char buf[80];
|
|
int dir;
|
|
|
|
button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
/*
|
|
* Determine the coordinates of the click. We offset by n-1
|
|
* half-blocks so that the user must click at the centre of
|
|
* a rotation region rather than at the corner.
|
|
*/
|
|
x -= (n-1) * TILE_SIZE / 2;
|
|
y -= (n-1) * TILE_SIZE / 2;
|
|
x = FROMCOORD(x);
|
|
y = FROMCOORD(y);
|
|
dir = (button == LEFT_BUTTON ? 1 : -1);
|
|
if (x < 0 || x > w-n || y < 0 || y > h-n)
|
|
return NULL;
|
|
} else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
|
|
x = y = 0;
|
|
dir = (button == 'A' ? -1 : +1);
|
|
} else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
|
|
x = w-n;
|
|
y = 0;
|
|
dir = (button == 'B' ? -1 : +1);
|
|
} else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
|
|
x = 0;
|
|
y = h-n;
|
|
dir = (button == 'C' ? -1 : +1);
|
|
} else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
|
|
x = w-n;
|
|
y = h-n;
|
|
dir = (button == 'D' ? -1 : +1);
|
|
} else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
|
|
x = (w-n) / 2;
|
|
y = 0;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
|
|
x = (w-n) / 2;
|
|
y = h-n;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
|
|
x = 0;
|
|
y = (h-n) / 2;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
|
|
x = w-n;
|
|
y = (h-n) / 2;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
|
|
x = (w-n) / 2;
|
|
y = (h-n) / 2;
|
|
dir = +1;
|
|
} else {
|
|
return NULL; /* no move to be made */
|
|
}
|
|
|
|
/*
|
|
* If we reach here, we have a valid move.
|
|
*/
|
|
sprintf(buf, "M%d,%d,%d", x, y, dir);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
game_state *ret;
|
|
int w = from->w, h = from->h, n = from->n, wh = w*h;
|
|
int x, y, dir;
|
|
|
|
if (!strcmp(move, "S")) {
|
|
int i;
|
|
ret = dup_game(from);
|
|
|
|
/*
|
|
* Simply replace the grid with a solved one. For this game,
|
|
* this isn't a useful operation for actually telling the user
|
|
* what they should have done, but it is useful for
|
|
* conveniently being able to get hold of a clean state from
|
|
* which to practise manoeuvres.
|
|
*/
|
|
qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
|
|
for (i = 0; i < ret->w*ret->h; i++)
|
|
ret->grid[i] &= ~3;
|
|
ret->used_solve = ret->just_used_solve = TRUE;
|
|
ret->completed = ret->movecount = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (move[0] != 'M' ||
|
|
sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
|
|
x < 0 || y < 0 || x > from->w - n || y > from->h - n)
|
|
return NULL; /* can't parse this move string */
|
|
|
|
ret = dup_game(from);
|
|
ret->just_used_solve = FALSE; /* zero this in a hurry */
|
|
ret->movecount++;
|
|
do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
|
|
ret->lastx = x;
|
|
ret->lasty = y;
|
|
ret->lastr = dir;
|
|
|
|
/*
|
|
* See if the game has been completed. To do this we simply
|
|
* test that the grid contents are in increasing order.
|
|
*/
|
|
if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
|
|
ret->completed = ret->movecount;
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
|
|
ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
|
|
ret[COL_TEXT * 3 + i] = 0.0;
|
|
}
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->bgcolour = COL_BACKGROUND;
|
|
ds->grid = snewn(ds->w*ds->h, int);
|
|
ds->tilesize = 0; /* haven't decided yet */
|
|
for (i = 0; i < ds->w*ds->h; i++)
|
|
ds->grid[i] = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
struct rotation {
|
|
int cx, cy, cw, ch; /* clip region */
|
|
int ox, oy; /* rotation origin */
|
|
float c, s; /* cos and sin of rotation angle */
|
|
int lc, rc, tc, bc; /* colours of tile edges */
|
|
};
|
|
|
|
static void rotate(int *xy, struct rotation *rot)
|
|
{
|
|
if (rot) {
|
|
float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
|
|
float xf2, yf2;
|
|
|
|
xf2 = rot->c * xf + rot->s * yf;
|
|
yf2 = - rot->s * xf + rot->c * yf;
|
|
|
|
xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
|
|
xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
|
|
}
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
|
|
int x, int y, int tile, int flash_colour,
|
|
struct rotation *rot)
|
|
{
|
|
int coords[8];
|
|
char str[40];
|
|
|
|
/*
|
|
* If we've been passed a rotation region but we're drawing a
|
|
* tile which is outside it, we must draw it normally. This can
|
|
* occur if we're cleaning up after a completion flash while a
|
|
* new move is also being made.
|
|
*/
|
|
if (rot && (x < rot->cx || y < rot->cy ||
|
|
x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
|
|
rot = NULL;
|
|
|
|
if (rot)
|
|
clip(dr, rot->cx, rot->cy, rot->cw, rot->ch);
|
|
|
|
/*
|
|
* We must draw each side of the tile's highlight separately,
|
|
* because in some cases (during rotation) they will all need
|
|
* to be different colours.
|
|
*/
|
|
|
|
/* The centre point is common to all sides. */
|
|
coords[4] = x + TILE_SIZE / 2;
|
|
coords[5] = y + TILE_SIZE / 2;
|
|
rotate(coords+4, rot);
|
|
|
|
/* Right side. */
|
|
coords[0] = x + TILE_SIZE - 1;
|
|
coords[1] = y + TILE_SIZE - 1;
|
|
rotate(coords+0, rot);
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
rotate(coords+2, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
|
|
rot ? rot->rc : COL_LOWLIGHT);
|
|
|
|
/* Bottom side. */
|
|
coords[2] = x;
|
|
coords[3] = y + TILE_SIZE - 1;
|
|
rotate(coords+2, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
|
|
rot ? rot->bc : COL_LOWLIGHT);
|
|
|
|
/* Left side. */
|
|
coords[0] = x;
|
|
coords[1] = y;
|
|
rotate(coords+0, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
|
|
rot ? rot->lc : COL_HIGHLIGHT);
|
|
|
|
/* Top side. */
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
rotate(coords+2, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
|
|
rot ? rot->tc : COL_HIGHLIGHT);
|
|
|
|
/*
|
|
* Now the main blank area in the centre of the tile.
|
|
*/
|
|
if (rot) {
|
|
coords[0] = x + HIGHLIGHT_WIDTH;
|
|
coords[1] = y + HIGHLIGHT_WIDTH;
|
|
rotate(coords+0, rot);
|
|
coords[2] = x + HIGHLIGHT_WIDTH;
|
|
coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
rotate(coords+2, rot);
|
|
coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
rotate(coords+4, rot);
|
|
coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
coords[7] = y + HIGHLIGHT_WIDTH;
|
|
rotate(coords+6, rot);
|
|
draw_polygon(dr, coords, 4, flash_colour, flash_colour);
|
|
} else {
|
|
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
|
|
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
|
|
flash_colour);
|
|
}
|
|
|
|
/*
|
|
* Next, the triangles for orientation.
|
|
*/
|
|
if (state->orientable) {
|
|
int xdx, xdy, ydx, ydy;
|
|
int cx, cy, displ, displ2;
|
|
switch (tile & 3) {
|
|
case 0:
|
|
xdx = 1, xdy = 0;
|
|
ydx = 0, ydy = 1;
|
|
break;
|
|
case 1:
|
|
xdx = 0, xdy = -1;
|
|
ydx = 1, ydy = 0;
|
|
break;
|
|
case 2:
|
|
xdx = -1, xdy = 0;
|
|
ydx = 0, ydy = -1;
|
|
break;
|
|
default /* case 3 */:
|
|
xdx = 0, xdy = 1;
|
|
ydx = -1, ydy = 0;
|
|
break;
|
|
}
|
|
|
|
cx = x + TILE_SIZE / 2;
|
|
cy = y + TILE_SIZE / 2;
|
|
displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
|
|
displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
|
|
|
|
coords[0] = cx - displ * xdx + displ2 * ydx;
|
|
coords[1] = cy - displ * xdy + displ2 * ydy;
|
|
rotate(coords+0, rot);
|
|
coords[2] = cx + displ * xdx + displ2 * ydx;
|
|
coords[3] = cy + displ * xdy + displ2 * ydy;
|
|
rotate(coords+2, rot);
|
|
coords[4] = cx - displ * ydx;
|
|
coords[5] = cy - displ * ydy;
|
|
rotate(coords+4, rot);
|
|
draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
|
|
}
|
|
|
|
coords[0] = x + TILE_SIZE/2;
|
|
coords[1] = y + TILE_SIZE/2;
|
|
rotate(coords+0, rot);
|
|
sprintf(str, "%d", tile / 4);
|
|
draw_text(dr, coords[0], coords[1],
|
|
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_TEXT, str);
|
|
|
|
if (rot)
|
|
unclip(dr);
|
|
|
|
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static int highlight_colour(float angle)
|
|
{
|
|
int colours[32] = {
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
};
|
|
|
|
return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if ((dir > 0 && newstate->just_used_solve) ||
|
|
(dir < 0 && oldstate->just_used_solve))
|
|
return 0.0F;
|
|
else
|
|
return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve)
|
|
return 2 * FLASH_FRAME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, bgcolour;
|
|
struct rotation srot, *rot;
|
|
int lastx = -1, lasty = -1, lastr = -1;
|
|
|
|
if (flashtime > 0) {
|
|
int frame = (int)(flashtime / FLASH_FRAME);
|
|
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
|
|
} else
|
|
bgcolour = COL_BACKGROUND;
|
|
|
|
if (!ds->started) {
|
|
int coords[10];
|
|
|
|
draw_rect(dr, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
|
|
draw_update(dr, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER);
|
|
|
|
/*
|
|
* Recessed area containing the whole puzzle.
|
|
*/
|
|
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[4] = coords[2] - TILE_SIZE;
|
|
coords[5] = coords[3] + TILE_SIZE;
|
|
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[6] = coords[8] + TILE_SIZE;
|
|
coords[7] = coords[9] - TILE_SIZE;
|
|
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
/*
|
|
* If we're drawing any rotated tiles, sort out the rotation
|
|
* parameters, and also zap the rotation region to the
|
|
* background colour before doing anything else.
|
|
*/
|
|
if (oldstate) {
|
|
float angle;
|
|
float anim_max = game_anim_length(oldstate, state, dir, ui);
|
|
|
|
if (dir > 0) {
|
|
lastx = state->lastx;
|
|
lasty = state->lasty;
|
|
lastr = state->lastr;
|
|
} else {
|
|
lastx = oldstate->lastx;
|
|
lasty = oldstate->lasty;
|
|
lastr = -oldstate->lastr;
|
|
}
|
|
|
|
rot = &srot;
|
|
rot->cx = COORD(lastx);
|
|
rot->cy = COORD(lasty);
|
|
rot->cw = rot->ch = TILE_SIZE * state->n;
|
|
rot->ox = rot->cx + rot->cw/2;
|
|
rot->oy = rot->cy + rot->ch/2;
|
|
angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
|
|
rot->c = cos(angle);
|
|
rot->s = sin(angle);
|
|
|
|
/*
|
|
* Sort out the colours of the various sides of the tile.
|
|
*/
|
|
rot->lc = highlight_colour(PI + angle);
|
|
rot->rc = highlight_colour(angle);
|
|
rot->tc = highlight_colour(PI/2 + angle);
|
|
rot->bc = highlight_colour(-PI/2 + angle);
|
|
|
|
draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
|
|
} else
|
|
rot = NULL;
|
|
|
|
/*
|
|
* Now draw each tile.
|
|
*/
|
|
for (i = 0; i < state->w * state->h; i++) {
|
|
int t;
|
|
int tx = i % state->w, ty = i / state->w;
|
|
|
|
/*
|
|
* Figure out what should be displayed at this location.
|
|
* Usually it will be state->grid[i], unless we're in the
|
|
* middle of animating an actual rotation and this cell is
|
|
* within the rotation region, in which case we set -1
|
|
* (always display).
|
|
*/
|
|
if (oldstate && lastx >= 0 && lasty >= 0 &&
|
|
tx >= lastx && tx < lastx + state->n &&
|
|
ty >= lasty && ty < lasty + state->n)
|
|
t = -1;
|
|
else
|
|
t = state->grid[i];
|
|
|
|
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
|
|
ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
|
|
int x = COORD(tx), y = COORD(ty);
|
|
|
|
draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot);
|
|
ds->grid[i] = t;
|
|
}
|
|
}
|
|
ds->bgcolour = bgcolour;
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbuf[256];
|
|
|
|
/*
|
|
* Don't show the new status until we're also showing the
|
|
* new _state_ - after the game animation is complete.
|
|
*/
|
|
if (oldstate)
|
|
state = oldstate;
|
|
|
|
if (state->used_solve)
|
|
sprintf(statusbuf, "Moves since auto-solve: %d",
|
|
state->movecount - state->completed);
|
|
else {
|
|
sprintf(statusbuf, "%sMoves: %d",
|
|
(state->completed ? "COMPLETED! " : ""),
|
|
(state->completed ? state->completed : state->movecount));
|
|
if (state->movetarget)
|
|
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
|
|
state->movetarget);
|
|
}
|
|
|
|
status_bar(dr, statusbuf);
|
|
}
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame twiddle
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Twiddle", "games.twiddle",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
FALSE, FALSE, game_print_size, game_print,
|
|
game_wants_statusbar,
|
|
FALSE, game_timing_state,
|
|
0, /* mouse_priorities */
|
|
};
|