mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files

every single peg and hole on the board, every time it did any kind of redraw at all, because I forgot to update the array in the drawstate indicating the last-drawn state of each position. And nobody's noticed until now! [originally from svn r9447]
1338 lines
34 KiB
C
1338 lines
34 KiB
C
/*
|
|
* pegs.c: the classic Peg Solitaire game.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
#define GRID_HOLE 0
|
|
#define GRID_PEG 1
|
|
#define GRID_OBST 2
|
|
|
|
#define GRID_CURSOR 10
|
|
#define GRID_JUMPING 20
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_HIGHLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_PEG,
|
|
COL_CURSOR,
|
|
NCOLOURS
|
|
};
|
|
|
|
/*
|
|
* Grid shapes. I do some macro ickery here to ensure that my enum
|
|
* and the various forms of my name list always match up.
|
|
*/
|
|
#define TYPELIST(A) \
|
|
A(CROSS,Cross,cross) \
|
|
A(OCTAGON,Octagon,octagon) \
|
|
A(RANDOM,Random,random)
|
|
#define ENUM(upper,title,lower) TYPE_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define LOWER(upper,title,lower) #lower,
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
|
|
enum { TYPELIST(ENUM) TYPECOUNT };
|
|
static char const *const pegs_titletypes[] = { TYPELIST(TITLE) };
|
|
static char const *const pegs_lowertypes[] = { TYPELIST(LOWER) };
|
|
#define TYPECONFIG TYPELIST(CONFIG)
|
|
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
int type;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h;
|
|
int completed;
|
|
unsigned char *grid;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 7;
|
|
ret->type = TYPE_CROSS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params pegs_presets[] = {
|
|
{7, 7, TYPE_CROSS},
|
|
{7, 7, TYPE_OCTAGON},
|
|
{5, 5, TYPE_RANDOM},
|
|
{7, 7, TYPE_RANDOM},
|
|
{9, 9, TYPE_RANDOM},
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(pegs_presets))
|
|
return FALSE;
|
|
|
|
ret = snew(game_params);
|
|
*ret = pegs_presets[i];
|
|
|
|
strcpy(str, pegs_titletypes[ret->type]);
|
|
if (ret->type == TYPE_RANDOM)
|
|
sprintf(str + strlen(str), " %dx%d", ret->w, ret->h);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
char const *p = string;
|
|
int i;
|
|
|
|
params->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
params->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->h = params->w;
|
|
}
|
|
|
|
for (i = 0; i < lenof(pegs_lowertypes); i++)
|
|
if (!strcmp(p, pegs_lowertypes[i]))
|
|
params->type = i;
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char str[80];
|
|
|
|
sprintf(str, "%dx%d", params->w, params->h);
|
|
if (full) {
|
|
assert(params->type >= 0 && params->type < lenof(pegs_lowertypes));
|
|
strcat(str, pegs_lowertypes[params->type]);
|
|
}
|
|
return dupstr(str);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret = snewn(4, config_item);
|
|
char buf[80];
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Board type";
|
|
ret[2].type = C_CHOICES;
|
|
ret[2].sval = TYPECONFIG;
|
|
ret[2].ival = params->type;
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->type = cfg[2].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (full && (params->w <= 3 || params->h <= 3))
|
|
return "Width and height must both be greater than three";
|
|
|
|
/*
|
|
* It might be possible to implement generalisations of Cross
|
|
* and Octagon, but only if I can find a proof that they're all
|
|
* soluble. For the moment, therefore, I'm going to disallow
|
|
* them at any size other than the standard one.
|
|
*/
|
|
if (full && (params->type == TYPE_CROSS || params->type == TYPE_OCTAGON)) {
|
|
if (params->w != 7 || params->h != 7)
|
|
return "This board type is only supported at 7x7";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Beginning of code to generate random Peg Solitaire boards.
|
|
*
|
|
* This procedure is done with no aesthetic judgment, no effort at
|
|
* symmetry, no difficulty grading and generally no finesse
|
|
* whatsoever. We simply begin with an empty board containing a
|
|
* single peg, and repeatedly make random reverse moves until it's
|
|
* plausibly full. This typically yields a scrappy haphazard mess
|
|
* with several holes, an uneven shape, and no redeeming features
|
|
* except guaranteed solubility.
|
|
*
|
|
* My only concessions to sophistication are (a) to repeat the
|
|
* generation process until I at least get a grid that touches
|
|
* every edge of the specified board size, and (b) to try when
|
|
* selecting moves to reuse existing space rather than expanding
|
|
* into new space (so that non-rectangular board shape becomes a
|
|
* factor during play).
|
|
*/
|
|
|
|
struct move {
|
|
/*
|
|
* x,y are the start point of the move during generation (hence
|
|
* its endpoint during normal play).
|
|
*
|
|
* dx,dy are the direction of the move during generation.
|
|
* Absolute value 1. Hence, for example, x=3,y=5,dx=1,dy=0
|
|
* means that the move during generation starts at (3,5) and
|
|
* ends at (5,5), and vice versa during normal play.
|
|
*/
|
|
int x, y, dx, dy;
|
|
/*
|
|
* cost is 0, 1 or 2, depending on how many GRID_OBSTs we must
|
|
* turn into GRID_HOLEs to play this move.
|
|
*/
|
|
int cost;
|
|
};
|
|
|
|
static int movecmp(void *av, void *bv)
|
|
{
|
|
struct move *a = (struct move *)av;
|
|
struct move *b = (struct move *)bv;
|
|
|
|
if (a->y < b->y)
|
|
return -1;
|
|
else if (a->y > b->y)
|
|
return +1;
|
|
|
|
if (a->x < b->x)
|
|
return -1;
|
|
else if (a->x > b->x)
|
|
return +1;
|
|
|
|
if (a->dy < b->dy)
|
|
return -1;
|
|
else if (a->dy > b->dy)
|
|
return +1;
|
|
|
|
if (a->dx < b->dx)
|
|
return -1;
|
|
else if (a->dx > b->dx)
|
|
return +1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int movecmpcost(void *av, void *bv)
|
|
{
|
|
struct move *a = (struct move *)av;
|
|
struct move *b = (struct move *)bv;
|
|
|
|
if (a->cost < b->cost)
|
|
return -1;
|
|
else if (a->cost > b->cost)
|
|
return +1;
|
|
|
|
return movecmp(av, bv);
|
|
}
|
|
|
|
struct movetrees {
|
|
tree234 *bymove, *bycost;
|
|
};
|
|
|
|
static void update_moves(unsigned char *grid, int w, int h, int x, int y,
|
|
struct movetrees *trees)
|
|
{
|
|
struct move move;
|
|
int dir, pos;
|
|
|
|
/*
|
|
* There are twelve moves that can include (x,y): three in each
|
|
* of four directions. Check each one to see if it's possible.
|
|
*/
|
|
for (dir = 0; dir < 4; dir++) {
|
|
int dx, dy;
|
|
|
|
if (dir & 1)
|
|
dx = 0, dy = dir - 2;
|
|
else
|
|
dy = 0, dx = dir - 1;
|
|
|
|
assert(abs(dx) + abs(dy) == 1);
|
|
|
|
for (pos = 0; pos < 3; pos++) {
|
|
int v1, v2, v3;
|
|
|
|
move.dx = dx;
|
|
move.dy = dy;
|
|
move.x = x - pos*dx;
|
|
move.y = y - pos*dy;
|
|
|
|
if (move.x < 0 || move.x >= w || move.y < 0 || move.y >= h)
|
|
continue; /* completely invalid move */
|
|
if (move.x+2*move.dx < 0 || move.x+2*move.dx >= w ||
|
|
move.y+2*move.dy < 0 || move.y+2*move.dy >= h)
|
|
continue; /* completely invalid move */
|
|
|
|
v1 = grid[move.y * w + move.x];
|
|
v2 = grid[(move.y+move.dy) * w + (move.x+move.dx)];
|
|
v3 = grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)];
|
|
if (v1 == GRID_PEG && v2 != GRID_PEG && v3 != GRID_PEG) {
|
|
struct move *m;
|
|
|
|
move.cost = (v2 == GRID_OBST) + (v3 == GRID_OBST);
|
|
|
|
/*
|
|
* This move is possible. See if it's already in
|
|
* the tree.
|
|
*/
|
|
m = find234(trees->bymove, &move, NULL);
|
|
if (m && m->cost != move.cost) {
|
|
/*
|
|
* It's in the tree but listed with the wrong
|
|
* cost. Remove the old version.
|
|
*/
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("correcting %d%+d,%d%+d at cost %d\n",
|
|
m->x, m->dx, m->y, m->dy, m->cost);
|
|
#endif
|
|
del234(trees->bymove, m);
|
|
del234(trees->bycost, m);
|
|
sfree(m);
|
|
m = NULL;
|
|
}
|
|
if (!m) {
|
|
struct move *m, *m2;
|
|
m = snew(struct move);
|
|
*m = move;
|
|
m2 = add234(trees->bymove, m);
|
|
m2 = add234(trees->bycost, m);
|
|
assert(m2 == m);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("adding %d%+d,%d%+d at cost %d\n",
|
|
move.x, move.dx, move.y, move.dy, move.cost);
|
|
#endif
|
|
} else {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("not adding %d%+d,%d%+d at cost %d\n",
|
|
move.x, move.dx, move.y, move.dy, move.cost);
|
|
#endif
|
|
}
|
|
} else {
|
|
/*
|
|
* This move is impossible. If it is already in the
|
|
* tree, delete it.
|
|
*
|
|
* (We make use here of the fact that del234
|
|
* doesn't have to be passed a pointer to the
|
|
* _actual_ element it's deleting: it merely needs
|
|
* one that compares equal to it, and it will
|
|
* return the one it deletes.)
|
|
*/
|
|
struct move *m = del234(trees->bymove, &move);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("%sdeleting %d%+d,%d%+d\n", m ? "" : "not ",
|
|
move.x, move.dx, move.y, move.dy);
|
|
#endif
|
|
if (m) {
|
|
del234(trees->bycost, m);
|
|
sfree(m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pegs_genmoves(unsigned char *grid, int w, int h, random_state *rs)
|
|
{
|
|
struct movetrees atrees, *trees = &atrees;
|
|
struct move *m;
|
|
int x, y, i, nmoves;
|
|
|
|
trees->bymove = newtree234(movecmp);
|
|
trees->bycost = newtree234(movecmpcost);
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (grid[y*w+x] == GRID_PEG)
|
|
update_moves(grid, w, h, x, y, trees);
|
|
|
|
nmoves = 0;
|
|
|
|
while (1) {
|
|
int limit, maxcost, index;
|
|
struct move mtmp, move, *m;
|
|
|
|
/*
|
|
* See how many moves we can make at zero cost. Make one,
|
|
* if possible. Failing that, make a one-cost move, and
|
|
* then a two-cost one.
|
|
*
|
|
* After filling at least half the input grid, we no longer
|
|
* accept cost-2 moves: if that's our only option, we give
|
|
* up and finish.
|
|
*/
|
|
mtmp.y = h+1;
|
|
maxcost = (nmoves < w*h/2 ? 2 : 1);
|
|
m = NULL; /* placate optimiser */
|
|
for (mtmp.cost = 0; mtmp.cost <= maxcost; mtmp.cost++) {
|
|
limit = -1;
|
|
m = findrelpos234(trees->bycost, &mtmp, NULL, REL234_LT, &limit);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("%d moves available with cost %d\n", limit+1, mtmp.cost);
|
|
#endif
|
|
if (m)
|
|
break;
|
|
}
|
|
if (!m)
|
|
break;
|
|
|
|
index = random_upto(rs, limit+1);
|
|
move = *(struct move *)index234(trees->bycost, index);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("selecting move %d%+d,%d%+d at cost %d\n",
|
|
move.x, move.dx, move.y, move.dy, move.cost);
|
|
#endif
|
|
|
|
grid[move.y * w + move.x] = GRID_HOLE;
|
|
grid[(move.y+move.dy) * w + (move.x+move.dx)] = GRID_PEG;
|
|
grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)] = GRID_PEG;
|
|
|
|
for (i = 0; i <= 2; i++) {
|
|
int tx = move.x + i*move.dx;
|
|
int ty = move.y + i*move.dy;
|
|
update_moves(grid, w, h, tx, ty, trees);
|
|
}
|
|
|
|
nmoves++;
|
|
}
|
|
|
|
while ((m = delpos234(trees->bymove, 0)) != NULL) {
|
|
del234(trees->bycost, m);
|
|
sfree(m);
|
|
}
|
|
freetree234(trees->bymove);
|
|
freetree234(trees->bycost);
|
|
}
|
|
|
|
static void pegs_generate(unsigned char *grid, int w, int h, random_state *rs)
|
|
{
|
|
while (1) {
|
|
int x, y, extremes;
|
|
|
|
memset(grid, GRID_OBST, w*h);
|
|
grid[(h/2) * w + (w/2)] = GRID_PEG;
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("beginning move selection\n");
|
|
#endif
|
|
pegs_genmoves(grid, w, h, rs);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("finished move selection\n");
|
|
#endif
|
|
|
|
extremes = 0;
|
|
for (y = 0; y < h; y++) {
|
|
if (grid[y*w+0] != GRID_OBST)
|
|
extremes |= 1;
|
|
if (grid[y*w+w-1] != GRID_OBST)
|
|
extremes |= 2;
|
|
}
|
|
for (x = 0; x < w; x++) {
|
|
if (grid[0*w+x] != GRID_OBST)
|
|
extremes |= 4;
|
|
if (grid[(h-1)*w+x] != GRID_OBST)
|
|
extremes |= 8;
|
|
}
|
|
|
|
if (extremes == 15)
|
|
break;
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("insufficient extent; trying again\n");
|
|
#endif
|
|
}
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
fflush(stdout);
|
|
#endif
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* End of board generation code. Now for the client code which uses
|
|
* it as part of the puzzle.
|
|
*/
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int w = params->w, h = params->h;
|
|
unsigned char *grid;
|
|
char *ret;
|
|
int i;
|
|
|
|
grid = snewn(w*h, unsigned char);
|
|
if (params->type == TYPE_RANDOM) {
|
|
pegs_generate(grid, w, h, rs);
|
|
} else {
|
|
int x, y, cx, cy, v;
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
v = GRID_OBST; /* placate optimiser */
|
|
switch (params->type) {
|
|
case TYPE_CROSS:
|
|
cx = abs(x - w/2);
|
|
cy = abs(y - h/2);
|
|
if (cx == 0 && cy == 0)
|
|
v = GRID_HOLE;
|
|
else if (cx > 1 && cy > 1)
|
|
v = GRID_OBST;
|
|
else
|
|
v = GRID_PEG;
|
|
break;
|
|
case TYPE_OCTAGON:
|
|
cx = abs(x - w/2);
|
|
cy = abs(y - h/2);
|
|
if (cx + cy > 1 + max(w,h)/2)
|
|
v = GRID_OBST;
|
|
else
|
|
v = GRID_PEG;
|
|
break;
|
|
}
|
|
grid[y*w+x] = v;
|
|
}
|
|
|
|
if (params->type == TYPE_OCTAGON) {
|
|
/*
|
|
* The octagonal (European) solitaire layout is
|
|
* actually _insoluble_ with the starting hole at the
|
|
* centre. Here's a proof:
|
|
*
|
|
* Colour the squares of the board diagonally in
|
|
* stripes of three different colours, which I'll call
|
|
* A, B and C. So the board looks like this:
|
|
*
|
|
* A B C
|
|
* A B C A B
|
|
* A B C A B C A
|
|
* B C A B C A B
|
|
* C A B C A B C
|
|
* B C A B C
|
|
* A B C
|
|
*
|
|
* Suppose we keep running track of the number of pegs
|
|
* occuping each colour of square. This colouring has
|
|
* the property that any valid move whatsoever changes
|
|
* all three of those counts by one (two of them go
|
|
* down and one goes up), which means that the _parity_
|
|
* of every count flips on every move.
|
|
*
|
|
* If the centre square starts off unoccupied, then
|
|
* there are twelve pegs on each colour and all three
|
|
* counts start off even; therefore, after 35 moves all
|
|
* three counts would have to be odd, which isn't
|
|
* possible if there's only one peg left. []
|
|
*
|
|
* This proof works just as well if the starting hole
|
|
* is _any_ of the thirteen positions labelled B. Also,
|
|
* we can stripe the board in the opposite direction
|
|
* and rule out any square labelled B in that colouring
|
|
* as well. This leaves:
|
|
*
|
|
* Y n Y
|
|
* n n Y n n
|
|
* Y n n Y n n Y
|
|
* n Y Y n Y Y n
|
|
* Y n n Y n n Y
|
|
* n n Y n n
|
|
* Y n Y
|
|
*
|
|
* where the ns are squares we've proved insoluble, and
|
|
* the Ys are the ones remaining.
|
|
*
|
|
* That doesn't prove all those starting positions to
|
|
* be soluble, of course; they're merely the ones we
|
|
* _haven't_ proved to be impossible. Nevertheless, it
|
|
* turns out that they are all soluble, so when the
|
|
* user requests an Octagon board the simplest thing is
|
|
* to pick one of these at random.
|
|
*
|
|
* Rather than picking equiprobably from those twelve
|
|
* positions, we'll pick equiprobably from the three
|
|
* equivalence classes
|
|
*/
|
|
switch (random_upto(rs, 3)) {
|
|
case 0:
|
|
/* Remove a random corner piece. */
|
|
{
|
|
int dx, dy;
|
|
|
|
dx = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
|
|
dy = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
|
|
if (random_upto(rs, 2))
|
|
dy *= 3;
|
|
else
|
|
dx *= 3;
|
|
grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
|
|
}
|
|
break;
|
|
case 1:
|
|
/* Remove a random piece two from the centre. */
|
|
{
|
|
int dx, dy;
|
|
dx = 2 * (random_upto(rs, 2) * 2 - 1);
|
|
if (random_upto(rs, 2))
|
|
dy = 0;
|
|
else
|
|
dy = dx, dx = 0;
|
|
grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
|
|
}
|
|
break;
|
|
default /* case 2 */:
|
|
/* Remove a random piece one from the centre. */
|
|
{
|
|
int dx, dy;
|
|
dx = random_upto(rs, 2) * 2 - 1;
|
|
if (random_upto(rs, 2))
|
|
dy = 0;
|
|
else
|
|
dy = dx, dx = 0;
|
|
grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Encode a game description which is simply a long list of P
|
|
* for peg, H for hole or O for obstacle.
|
|
*/
|
|
ret = snewn(w*h+1, char);
|
|
for (i = 0; i < w*h; i++)
|
|
ret[i] = (grid[i] == GRID_PEG ? 'P' :
|
|
grid[i] == GRID_HOLE ? 'H' : 'O');
|
|
ret[w*h] = '\0';
|
|
|
|
sfree(grid);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int len = params->w * params->h;
|
|
|
|
if (len != strlen(desc))
|
|
return "Game description is wrong length";
|
|
if (len != strspn(desc, "PHO"))
|
|
return "Invalid character in game description";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
int w = params->w, h = params->h;
|
|
game_state *state = snew(game_state);
|
|
int i;
|
|
|
|
state->w = w;
|
|
state->h = h;
|
|
state->completed = 0;
|
|
state->grid = snewn(w*h, unsigned char);
|
|
for (i = 0; i < w*h; i++)
|
|
state->grid[i] = (desc[i] == 'P' ? GRID_PEG :
|
|
desc[i] == 'H' ? GRID_HOLE : GRID_OBST);
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->completed = state->completed;
|
|
ret->grid = snewn(w*h, unsigned char);
|
|
memcpy(ret->grid, state->grid, w*h);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static int game_can_format_as_text_now(game_params *params)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int x, y;
|
|
char *ret;
|
|
|
|
ret = snewn((w+1)*h + 1, char);
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++)
|
|
ret[y*(w+1)+x] = (state->grid[y*w+x] == GRID_HOLE ? '-' :
|
|
state->grid[y*w+x] == GRID_PEG ? '*' : ' ');
|
|
ret[y*(w+1)+w] = '\n';
|
|
}
|
|
ret[h*(w+1)] = '\0';
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
int dragging; /* boolean: is a drag in progress? */
|
|
int sx, sy; /* grid coords of drag start cell */
|
|
int dx, dy; /* pixel coords of current drag posn */
|
|
int cur_x, cur_y, cur_visible, cur_jumping;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
int x, y, v;
|
|
|
|
ui->sx = ui->sy = ui->dx = ui->dy = 0;
|
|
ui->dragging = FALSE;
|
|
ui->cur_visible = ui->cur_jumping = 0;
|
|
|
|
/* make sure we start the cursor somewhere on the grid. */
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
v = state->grid[y*state->w+x];
|
|
if (v == GRID_PEG || v == GRID_HOLE) {
|
|
ui->cur_x = x; ui->cur_y = y;
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
assert(!"new_ui found nowhere for cursor");
|
|
found:
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
/*
|
|
* Cancel a drag, in case the source square has become
|
|
* unoccupied.
|
|
*/
|
|
ui->dragging = FALSE;
|
|
}
|
|
|
|
#define PREFERRED_TILE_SIZE 33
|
|
#define TILESIZE (ds->tilesize)
|
|
#define BORDER (TILESIZE / 2)
|
|
|
|
#define HIGHLIGHT_WIDTH (TILESIZE / 16)
|
|
|
|
#define COORD(x) ( BORDER + (x) * TILESIZE )
|
|
#define FROMCOORD(x) ( ((x) + TILESIZE - BORDER) / TILESIZE - 1 )
|
|
|
|
struct game_drawstate {
|
|
int tilesize;
|
|
blitter *drag_background;
|
|
int dragging, dragx, dragy;
|
|
int w, h;
|
|
unsigned char *grid;
|
|
int started;
|
|
int bgcolour;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
char buf[80];
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
int tx, ty;
|
|
|
|
/*
|
|
* Left button down: we attempt to start a drag.
|
|
*/
|
|
|
|
/*
|
|
* There certainly shouldn't be a current drag in progress,
|
|
* unless the midend failed to send us button events in
|
|
* order; it has a responsibility to always get that right,
|
|
* so we can legitimately punish it by failing an
|
|
* assertion.
|
|
*/
|
|
assert(!ui->dragging);
|
|
|
|
tx = FROMCOORD(x);
|
|
ty = FROMCOORD(y);
|
|
if (tx >= 0 && tx < w && ty >= 0 && ty < h &&
|
|
state->grid[ty*w+tx] == GRID_PEG) {
|
|
ui->dragging = TRUE;
|
|
ui->sx = tx;
|
|
ui->sy = ty;
|
|
ui->dx = x;
|
|
ui->dy = y;
|
|
ui->cur_visible = ui->cur_jumping = 0;
|
|
return ""; /* ui modified */
|
|
}
|
|
} else if (button == LEFT_DRAG && ui->dragging) {
|
|
/*
|
|
* Mouse moved; just move the peg being dragged.
|
|
*/
|
|
ui->dx = x;
|
|
ui->dy = y;
|
|
return ""; /* ui modified */
|
|
} else if (button == LEFT_RELEASE && ui->dragging) {
|
|
int tx, ty, dx, dy;
|
|
|
|
/*
|
|
* Button released. Identify the target square of the drag,
|
|
* see if it represents a valid move, and if so make it.
|
|
*/
|
|
ui->dragging = FALSE; /* cancel the drag no matter what */
|
|
tx = FROMCOORD(x);
|
|
ty = FROMCOORD(y);
|
|
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
|
|
return ""; /* target out of range */
|
|
dx = tx - ui->sx;
|
|
dy = ty - ui->sy;
|
|
if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
|
|
return ""; /* move length was wrong */
|
|
dx /= 2;
|
|
dy /= 2;
|
|
|
|
if (state->grid[ty*w+tx] != GRID_HOLE ||
|
|
state->grid[(ty-dy)*w+(tx-dx)] != GRID_PEG ||
|
|
state->grid[ui->sy*w+ui->sx] != GRID_PEG)
|
|
return ""; /* grid contents were invalid */
|
|
|
|
/*
|
|
* We have a valid move. Encode it simply as source and
|
|
* destination coordinate pairs.
|
|
*/
|
|
sprintf(buf, "%d,%d-%d,%d", ui->sx, ui->sy, tx, ty);
|
|
return dupstr(buf);
|
|
} else if (IS_CURSOR_MOVE(button)) {
|
|
if (!ui->cur_jumping) {
|
|
/* Not jumping; move cursor as usual, making sure we don't
|
|
* leave the gameboard (which may be an irregular shape) */
|
|
int cx = ui->cur_x, cy = ui->cur_y;
|
|
move_cursor(button, &cx, &cy, w, h, 0);
|
|
ui->cur_visible = 1;
|
|
if (state->grid[cy*w+cx] == GRID_HOLE ||
|
|
state->grid[cy*w+cx] == GRID_PEG) {
|
|
ui->cur_x = cx;
|
|
ui->cur_y = cy;
|
|
}
|
|
return "";
|
|
} else {
|
|
int dx, dy, mx, my, jx, jy;
|
|
|
|
/* We're jumping; if the requested direction has a hole, and
|
|
* there's a peg in the way, */
|
|
assert(state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG);
|
|
dx = (button == CURSOR_RIGHT) ? 1 : (button == CURSOR_LEFT) ? -1 : 0;
|
|
dy = (button == CURSOR_DOWN) ? 1 : (button == CURSOR_UP) ? -1 : 0;
|
|
|
|
mx = ui->cur_x+dx; my = ui->cur_y+dy;
|
|
jx = mx+dx; jy = my+dy;
|
|
|
|
ui->cur_jumping = 0; /* reset, whatever. */
|
|
if (jx >= 0 && jy >= 0 && jx < w && jy < h &&
|
|
state->grid[my*w+mx] == GRID_PEG &&
|
|
state->grid[jy*w+jx] == GRID_HOLE) {
|
|
/* Move cursor to the jumped-to location (this felt more
|
|
* natural while playtesting) */
|
|
sprintf(buf, "%d,%d-%d,%d", ui->cur_x, ui->cur_y, jx, jy);
|
|
ui->cur_x = jx; ui->cur_y = jy;
|
|
return dupstr(buf);
|
|
}
|
|
return "";
|
|
}
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
}
|
|
if (ui->cur_jumping) {
|
|
ui->cur_jumping = 0;
|
|
return "";
|
|
}
|
|
if (state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG) {
|
|
/* cursor is on peg: next arrow-move wil jump. */
|
|
ui->cur_jumping = 1;
|
|
return "";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int sx, sy, tx, ty;
|
|
game_state *ret;
|
|
|
|
if (sscanf(move, "%d,%d-%d,%d", &sx, &sy, &tx, &ty) == 4) {
|
|
int mx, my, dx, dy;
|
|
|
|
if (sx < 0 || sx >= w || sy < 0 || sy >= h)
|
|
return NULL; /* source out of range */
|
|
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
|
|
return NULL; /* target out of range */
|
|
|
|
dx = tx - sx;
|
|
dy = ty - sy;
|
|
if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
|
|
return NULL; /* move length was wrong */
|
|
mx = sx + dx/2;
|
|
my = sy + dy/2;
|
|
|
|
if (state->grid[sy*w+sx] != GRID_PEG ||
|
|
state->grid[my*w+mx] != GRID_PEG ||
|
|
state->grid[ty*w+tx] != GRID_HOLE)
|
|
return NULL; /* grid contents were invalid */
|
|
|
|
ret = dup_game(state);
|
|
ret->grid[sy*w+sx] = GRID_HOLE;
|
|
ret->grid[my*w+mx] = GRID_HOLE;
|
|
ret->grid[ty*w+tx] = GRID_PEG;
|
|
|
|
/*
|
|
* Opinion varies on whether getting to a single peg counts as
|
|
* completing the game, or whether that peg has to be at a
|
|
* specific location (central in the classic cross game, for
|
|
* instance). For now we take the former, rather lax position.
|
|
*/
|
|
if (!ret->completed) {
|
|
int count = 0, i;
|
|
for (i = 0; i < w*h; i++)
|
|
if (ret->grid[i] == GRID_PEG)
|
|
count++;
|
|
if (count == 1)
|
|
ret->completed = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILESIZE * params->w + 2 * BORDER;
|
|
*y = TILESIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
|
|
assert(TILESIZE > 0);
|
|
|
|
assert(!ds->drag_background); /* set_size is never called twice */
|
|
ds->drag_background = blitter_new(dr, TILESIZE, TILESIZE);
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
ret[COL_PEG * 3 + 0] = 0.0F;
|
|
ret[COL_PEG * 3 + 1] = 0.0F;
|
|
ret[COL_PEG * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_CURSOR * 3 + 0] = 0.5F;
|
|
ret[COL_CURSOR * 3 + 1] = 0.5F;
|
|
ret[COL_CURSOR * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->tilesize = 0; /* not decided yet */
|
|
|
|
/* We can't allocate the blitter rectangle for the drag background
|
|
* until we know what size to make it. */
|
|
ds->drag_background = NULL;
|
|
ds->dragging = FALSE;
|
|
|
|
ds->w = w;
|
|
ds->h = h;
|
|
ds->grid = snewn(w*h, unsigned char);
|
|
memset(ds->grid, 255, w*h);
|
|
|
|
ds->started = FALSE;
|
|
ds->bgcolour = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
if (ds->drag_background)
|
|
blitter_free(dr, ds->drag_background);
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int v, int bgcolour)
|
|
{
|
|
int cursor = 0, jumping = 0, bg;
|
|
|
|
if (bgcolour >= 0) {
|
|
draw_rect(dr, x, y, TILESIZE, TILESIZE, bgcolour);
|
|
}
|
|
if (v >= GRID_JUMPING) {
|
|
jumping = 1; v -= GRID_JUMPING;
|
|
}
|
|
if (v >= GRID_CURSOR) {
|
|
cursor = 1; v -= GRID_CURSOR;
|
|
}
|
|
|
|
if (v == GRID_HOLE) {
|
|
bg = cursor ? COL_HIGHLIGHT : COL_LOWLIGHT;
|
|
assert(!jumping); /* can't jump from a hole! */
|
|
draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
|
|
bg, bg);
|
|
} else if (v == GRID_PEG) {
|
|
bg = (cursor || jumping) ? COL_CURSOR : COL_PEG;
|
|
draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/3,
|
|
bg, bg);
|
|
bg = (!cursor || jumping) ? COL_PEG : COL_CURSOR;
|
|
draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
|
|
bg, bg);
|
|
}
|
|
|
|
draw_update(dr, x, y, TILESIZE, TILESIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int x, y;
|
|
int bgcolour;
|
|
|
|
if (flashtime > 0) {
|
|
int frame = (int)(flashtime / FLASH_FRAME);
|
|
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
|
|
} else
|
|
bgcolour = COL_BACKGROUND;
|
|
|
|
/*
|
|
* Erase the sprite currently being dragged, if any.
|
|
*/
|
|
if (ds->dragging) {
|
|
assert(ds->drag_background);
|
|
blitter_load(dr, ds->drag_background, ds->dragx, ds->dragy);
|
|
draw_update(dr, ds->dragx, ds->dragy, TILESIZE, TILESIZE);
|
|
ds->dragging = FALSE;
|
|
}
|
|
|
|
if (!ds->started) {
|
|
draw_rect(dr, 0, 0,
|
|
TILESIZE * state->w + 2 * BORDER,
|
|
TILESIZE * state->h + 2 * BORDER, COL_BACKGROUND);
|
|
|
|
/*
|
|
* Draw relief marks around all the squares that aren't
|
|
* GRID_OBST.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (state->grid[y*w+x] != GRID_OBST) {
|
|
/*
|
|
* First pass: draw the full relief square.
|
|
*/
|
|
int coords[6];
|
|
coords[0] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
|
|
coords[1] = COORD(y) - HIGHLIGHT_WIDTH;
|
|
coords[2] = COORD(x) - HIGHLIGHT_WIDTH;
|
|
coords[3] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
|
|
coords[4] = COORD(x) - HIGHLIGHT_WIDTH;
|
|
coords[5] = COORD(y) - HIGHLIGHT_WIDTH;
|
|
draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
coords[4] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
|
|
coords[5] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
|
|
draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
}
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (state->grid[y*w+x] != GRID_OBST) {
|
|
/*
|
|
* Second pass: draw everything but the two
|
|
* diagonal corners.
|
|
*/
|
|
draw_rect(dr, COORD(x) - HIGHLIGHT_WIDTH,
|
|
COORD(y) - HIGHLIGHT_WIDTH,
|
|
TILESIZE + HIGHLIGHT_WIDTH,
|
|
TILESIZE + HIGHLIGHT_WIDTH, COL_HIGHLIGHT);
|
|
draw_rect(dr, COORD(x),
|
|
COORD(y),
|
|
TILESIZE + HIGHLIGHT_WIDTH,
|
|
TILESIZE + HIGHLIGHT_WIDTH, COL_LOWLIGHT);
|
|
}
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (state->grid[y*w+x] != GRID_OBST) {
|
|
/*
|
|
* Third pass: draw a trapezium on each edge.
|
|
*/
|
|
int coords[8];
|
|
int dx, dy, s, sn, c;
|
|
|
|
for (dx = 0; dx < 2; dx++) {
|
|
dy = 1 - dx;
|
|
for (s = 0; s < 2; s++) {
|
|
sn = 2*s - 1;
|
|
c = s ? COL_LOWLIGHT : COL_HIGHLIGHT;
|
|
|
|
coords[0] = COORD(x) + (s*dx)*(TILESIZE-1);
|
|
coords[1] = COORD(y) + (s*dy)*(TILESIZE-1);
|
|
coords[2] = COORD(x) + (s*dx+dy)*(TILESIZE-1);
|
|
coords[3] = COORD(y) + (s*dy+dx)*(TILESIZE-1);
|
|
coords[4] = coords[2] - HIGHLIGHT_WIDTH * (dy-sn*dx);
|
|
coords[5] = coords[3] - HIGHLIGHT_WIDTH * (dx-sn*dy);
|
|
coords[6] = coords[0] + HIGHLIGHT_WIDTH * (dy+sn*dx);
|
|
coords[7] = coords[1] + HIGHLIGHT_WIDTH * (dx+sn*dy);
|
|
draw_polygon(dr, coords, 4, c, c);
|
|
}
|
|
}
|
|
}
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (state->grid[y*w+x] != GRID_OBST) {
|
|
/*
|
|
* Second pass: draw everything but the two
|
|
* diagonal corners.
|
|
*/
|
|
draw_rect(dr, COORD(x),
|
|
COORD(y),
|
|
TILESIZE,
|
|
TILESIZE, COL_BACKGROUND);
|
|
}
|
|
|
|
ds->started = TRUE;
|
|
|
|
draw_update(dr, 0, 0,
|
|
TILESIZE * state->w + 2 * BORDER,
|
|
TILESIZE * state->h + 2 * BORDER);
|
|
}
|
|
|
|
/*
|
|
* Loop over the grid redrawing anything that looks as if it
|
|
* needs it.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int v;
|
|
|
|
v = state->grid[y*w+x];
|
|
/*
|
|
* Blank the source of a drag so it looks as if the
|
|
* user picked the peg up physically.
|
|
*/
|
|
if (ui->dragging && ui->sx == x && ui->sy == y && v == GRID_PEG)
|
|
v = GRID_HOLE;
|
|
|
|
if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
|
|
v += ui->cur_jumping ? GRID_JUMPING : GRID_CURSOR;
|
|
|
|
if (v != GRID_OBST &&
|
|
(bgcolour != ds->bgcolour || /* always redraw when flashing */
|
|
v != ds->grid[y*w+x])) {
|
|
draw_tile(dr, ds, COORD(x), COORD(y), v, bgcolour);
|
|
ds->grid[y*w+x] = v;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the dragging sprite if any.
|
|
*/
|
|
if (ui->dragging) {
|
|
ds->dragging = TRUE;
|
|
ds->dragx = ui->dx - TILESIZE/2;
|
|
ds->dragy = ui->dy - TILESIZE/2;
|
|
blitter_save(dr, ds->drag_background, ds->dragx, ds->dragy);
|
|
draw_tile(dr, ds, ds->dragx, ds->dragy, GRID_PEG, -1);
|
|
}
|
|
|
|
ds->bgcolour = bgcolour;
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed)
|
|
return 2 * FLASH_FRAME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(game_state *state)
|
|
{
|
|
/*
|
|
* Dead-end situations are assumed to be rescuable by Undo, so we
|
|
* don't bother to identify them and return -1.
|
|
*/
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame pegs
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Pegs", "games.pegs", "pegs",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
FALSE, solve_game,
|
|
TRUE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_status,
|
|
FALSE, FALSE, game_print_size, game_print,
|
|
FALSE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
0, /* flags */
|
|
};
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|