mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files

victory roll so that adjacent arrows rotate in opposite directions, giving the impression that they're an interlocking field of gears. Possibly even more brain-twisting than the original version :-) [originally from svn r9384]
2466 lines
73 KiB
C
2466 lines
73 KiB
C
/*
|
|
* signpost.c: implementation of the janko game 'arrow path'
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define PREFERRED_TILE_SIZE 48
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BLITTER_SIZE TILE_SIZE
|
|
#define BORDER (TILE_SIZE / 2)
|
|
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
|
|
|
|
#define FLASH_SPIN 0.7F
|
|
|
|
#define NBACKGROUNDS 16
|
|
|
|
enum {
|
|
COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
|
|
COL_GRID, COL_CURSOR, COL_ERROR, COL_DRAG_ORIGIN,
|
|
COL_ARROW, COL_ARROW_BG_DIM,
|
|
COL_NUMBER, COL_NUMBER_SET, COL_NUMBER_SET_MID,
|
|
COL_B0, /* background colours */
|
|
COL_M0 = COL_B0 + 1*NBACKGROUNDS, /* mid arrow colours */
|
|
COL_D0 = COL_B0 + 2*NBACKGROUNDS, /* dim arrow colours */
|
|
COL_X0 = COL_B0 + 3*NBACKGROUNDS, /* dim arrow colours */
|
|
NCOLOURS = COL_B0 + 4*NBACKGROUNDS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
int force_corner_start;
|
|
};
|
|
|
|
enum { DIR_N = 0, DIR_NE, DIR_E, DIR_SE, DIR_S, DIR_SW, DIR_W, DIR_NW, DIR_MAX };
|
|
static const char *dirstrings[8] = { "N ", "NE", "E ", "SE", "S ", "SW", "W ", "NW" };
|
|
|
|
static const int dxs[DIR_MAX] = { 0, 1, 1, 1, 0, -1, -1, -1 };
|
|
static const int dys[DIR_MAX] = { -1, -1, 0, 1, 1, 1, 0, -1 };
|
|
|
|
#define DIR_OPPOSITE(d) ((d+4)%8)
|
|
|
|
struct game_state {
|
|
int w, h, n;
|
|
int completed, used_solve, impossible;
|
|
int *dirs; /* direction enums, size n */
|
|
int *nums; /* numbers, size n */
|
|
unsigned int *flags; /* flags, size n */
|
|
int *next, *prev; /* links to other cell indexes, size n (-1 absent) */
|
|
int *dsf; /* connects regions with a dsf. */
|
|
int *numsi; /* for each number, which index is it in? (-1 absent) */
|
|
};
|
|
|
|
#define FLAG_IMMUTABLE 1
|
|
#define FLAG_ERROR 2
|
|
|
|
/* --- Generally useful functions --- */
|
|
|
|
#define ISREALNUM(state, num) ((num) > 0 && (num) <= (state)->n)
|
|
|
|
static int whichdir(int fromx, int fromy, int tox, int toy)
|
|
{
|
|
int i, dx, dy;
|
|
|
|
dx = tox - fromx;
|
|
dy = toy - fromy;
|
|
|
|
if (dx && dy && abs(dx) != abs(dy)) return -1;
|
|
|
|
if (dx) dx = dx / abs(dx); /* limit to (-1, 0, 1) */
|
|
if (dy) dy = dy / abs(dy); /* ditto */
|
|
|
|
for (i = 0; i < DIR_MAX; i++) {
|
|
if (dx == dxs[i] && dy == dys[i]) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int whichdiri(game_state *state, int fromi, int toi)
|
|
{
|
|
int w = state->w;
|
|
return whichdir(fromi%w, fromi/w, toi%w, toi/w);
|
|
}
|
|
|
|
static int ispointing(game_state *state, int fromx, int fromy, int tox, int toy)
|
|
{
|
|
int w = state->w, dir = state->dirs[fromy*w+fromx];
|
|
|
|
/* (by convention) squares do not point to themselves. */
|
|
if (fromx == tox && fromy == toy) return 0;
|
|
|
|
/* the final number points to nothing. */
|
|
if (state->nums[fromy*w + fromx] == state->n) return 0;
|
|
|
|
while (1) {
|
|
if (!INGRID(state, fromx, fromy)) return 0;
|
|
if (fromx == tox && fromy == toy) return 1;
|
|
fromx += dxs[dir]; fromy += dys[dir];
|
|
}
|
|
return 0; /* not reached */
|
|
}
|
|
|
|
static int ispointingi(game_state *state, int fromi, int toi)
|
|
{
|
|
int w = state->w;
|
|
return ispointing(state, fromi%w, fromi/w, toi%w, toi/w);
|
|
}
|
|
|
|
/* Taking the number 'num', work out the gap between it and the next
|
|
* available number up or down (depending on d). Return 1 if the region
|
|
* at (x,y) will fit in that gap, or 0 otherwise. */
|
|
static int move_couldfit(game_state *state, int num, int d, int x, int y)
|
|
{
|
|
int n, gap, i = y*state->w+x, sz;
|
|
|
|
assert(d != 0);
|
|
/* The 'gap' is the number of missing numbers in the grid between
|
|
* our number and the next one in the sequence (up or down), or
|
|
* the end of the sequence (if we happen not to have 1/n present) */
|
|
for (n = num + d, gap = 0;
|
|
ISREALNUM(state, n) && state->numsi[n] == -1;
|
|
n += d, gap++) ; /* empty loop */
|
|
|
|
if (gap == 0) {
|
|
/* no gap, so the only allowable move is that that directly
|
|
* links the two numbers. */
|
|
n = state->nums[i];
|
|
return (n == num+d) ? 0 : 1;
|
|
}
|
|
if (state->prev[i] == -1 && state->next[i] == -1)
|
|
return 1; /* single unconnected square, always OK */
|
|
|
|
sz = dsf_size(state->dsf, i);
|
|
return (sz > gap) ? 0 : 1;
|
|
}
|
|
|
|
static int isvalidmove(game_state *state, int clever,
|
|
int fromx, int fromy, int tox, int toy)
|
|
{
|
|
int w = state->w, from = fromy*w+fromx, to = toy*w+tox;
|
|
int nfrom, nto;
|
|
|
|
if (!INGRID(state, fromx, fromy) || !INGRID(state, tox, toy))
|
|
return 0;
|
|
|
|
/* can only move where we point */
|
|
if (!ispointing(state, fromx, fromy, tox, toy))
|
|
return 0;
|
|
|
|
nfrom = state->nums[from]; nto = state->nums[to];
|
|
|
|
/* can't move _from_ the preset final number, or _to_ the preset 1. */
|
|
if (((nfrom == state->n) && (state->flags[from] & FLAG_IMMUTABLE)) ||
|
|
((nto == 1) && (state->flags[to] & FLAG_IMMUTABLE)))
|
|
return 0;
|
|
|
|
/* can't create a new connection between cells in the same region
|
|
* as that would create a loop. */
|
|
if (dsf_canonify(state->dsf, from) == dsf_canonify(state->dsf, to))
|
|
return 0;
|
|
|
|
/* if both cells are actual numbers, can't drag if we're not
|
|
* one digit apart. */
|
|
if (ISREALNUM(state, nfrom) && ISREALNUM(state, nto)) {
|
|
if (nfrom != nto-1)
|
|
return 0;
|
|
} else if (clever && ISREALNUM(state, nfrom)) {
|
|
if (!move_couldfit(state, nfrom, +1, tox, toy))
|
|
return 0;
|
|
} else if (clever && ISREALNUM(state, nto)) {
|
|
if (!move_couldfit(state, nto, -1, fromx, fromy))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void makelink(game_state *state, int from, int to)
|
|
{
|
|
if (state->next[from] != -1)
|
|
state->prev[state->next[from]] = -1;
|
|
state->next[from] = to;
|
|
|
|
if (state->prev[to] != -1)
|
|
state->next[state->prev[to]] = -1;
|
|
state->prev[to] = from;
|
|
}
|
|
|
|
static int game_can_format_as_text_now(game_params *params)
|
|
{
|
|
if (params->w * params->h >= 100) return 0;
|
|
return 1;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
int len = state->h * 2 * (4*state->w + 1) + state->h + 2;
|
|
int x, y, i, num, n, set;
|
|
char *ret, *p;
|
|
|
|
p = ret = snewn(len, char);
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->h; x++) {
|
|
i = y*state->w+x;
|
|
*p++ = dirstrings[state->dirs[i]][0];
|
|
*p++ = dirstrings[state->dirs[i]][1];
|
|
*p++ = (state->flags[i] & FLAG_IMMUTABLE) ? 'I' : ' ';
|
|
*p++ = ' ';
|
|
}
|
|
*p++ = '\n';
|
|
for (x = 0; x < state->h; x++) {
|
|
i = y*state->w+x;
|
|
num = state->nums[i];
|
|
if (num == 0) {
|
|
*p++ = ' ';
|
|
*p++ = ' ';
|
|
*p++ = ' ';
|
|
} else {
|
|
n = num % (state->n+1);
|
|
set = num / (state->n+1);
|
|
|
|
assert(n <= 99); /* two digits only! */
|
|
|
|
if (set != 0)
|
|
*p++ = set+'a'-1;
|
|
|
|
*p++ = (n >= 10) ? ('0' + (n/10)) : ' ';
|
|
*p++ = '0' + (n%10);
|
|
|
|
if (set == 0)
|
|
*p++ = ' ';
|
|
}
|
|
*p++ = ' ';
|
|
}
|
|
*p++ = '\n';
|
|
*p++ = '\n';
|
|
}
|
|
*p++ = '\0';
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void debug_state(const char *desc, game_state *state)
|
|
{
|
|
#ifdef DEBUGGING
|
|
char *dbg;
|
|
if (state->n >= 100) {
|
|
debug(("[ no game_text_format for this size ]"));
|
|
return;
|
|
}
|
|
dbg = game_text_format(state);
|
|
debug(("%s\n%s", desc, dbg));
|
|
sfree(dbg);
|
|
#endif
|
|
}
|
|
|
|
|
|
static void strip_nums(game_state *state) {
|
|
int i;
|
|
for (i = 0; i < state->n; i++) {
|
|
if (!(state->flags[i] & FLAG_IMMUTABLE))
|
|
state->nums[i] = 0;
|
|
}
|
|
memset(state->next, -1, state->n*sizeof(int));
|
|
memset(state->prev, -1, state->n*sizeof(int));
|
|
memset(state->numsi, -1, (state->n+1)*sizeof(int));
|
|
dsf_init(state->dsf, state->n);
|
|
}
|
|
|
|
static int check_nums(game_state *orig, game_state *copy, int only_immutable)
|
|
{
|
|
int i, ret = 1;
|
|
assert(copy->n == orig->n);
|
|
for (i = 0; i < copy->n; i++) {
|
|
if (only_immutable && !copy->flags[i] & FLAG_IMMUTABLE) continue;
|
|
assert(copy->nums[i] >= 0);
|
|
assert(copy->nums[i] <= copy->n);
|
|
if (copy->nums[i] != orig->nums[i]) {
|
|
debug(("check_nums: (%d,%d) copy=%d, orig=%d.",
|
|
i%orig->w, i/orig->w, copy->nums[i], orig->nums[i]));
|
|
ret = 0;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* --- Game parameter/presets functions --- */
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
ret->w = ret->h = 4;
|
|
ret->force_corner_start = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params signpost_presets[] = {
|
|
{ 4, 4, 1 },
|
|
{ 4, 4, 0 },
|
|
{ 5, 5, 1 },
|
|
{ 5, 5, 0 },
|
|
{ 6, 6, 1 },
|
|
{ 7, 7, 1 }
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char buf[80];
|
|
|
|
if (i < 0 || i >= lenof(signpost_presets))
|
|
return FALSE;
|
|
|
|
ret = default_params();
|
|
*ret = signpost_presets[i];
|
|
*params = ret;
|
|
|
|
sprintf(buf, "%dx%d%s", ret->w, ret->h,
|
|
ret->force_corner_start ? "" : ", free ends");
|
|
*name = dupstr(buf);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
ret->force_corner_start = 0;
|
|
if (*string == 'c') {
|
|
string++;
|
|
ret->force_corner_start = 1;
|
|
}
|
|
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char data[256];
|
|
|
|
if (full)
|
|
sprintf(data, "%dx%d%s", params->w, params->h,
|
|
params->force_corner_start ? "c" : "");
|
|
else
|
|
sprintf(data, "%dx%d", params->w, params->h);
|
|
|
|
return dupstr(data);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(4, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Start and end in corners";
|
|
ret[2].type = C_BOOLEAN;
|
|
ret[2].sval = NULL;
|
|
ret[2].ival = params->force_corner_start;
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->force_corner_start = cfg[2].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w < 2 || params->h < 2)
|
|
return "Width and height must both be at least two";
|
|
if (params->w == 2 && params->h == 2) /* leads to generation hang */
|
|
return "Width and height cannot both be two";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* --- Game description string generation and unpicking --- */
|
|
|
|
static void blank_game_into(game_state *state)
|
|
{
|
|
memset(state->dirs, 0, state->n*sizeof(int));
|
|
memset(state->nums, 0, state->n*sizeof(int));
|
|
memset(state->flags, 0, state->n*sizeof(unsigned int));
|
|
memset(state->next, -1, state->n*sizeof(int));
|
|
memset(state->prev, -1, state->n*sizeof(int));
|
|
memset(state->numsi, -1, (state->n+1)*sizeof(int));
|
|
}
|
|
|
|
static game_state *blank_game(int w, int h)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
|
|
memset(state, 0, sizeof(game_state));
|
|
state->w = w;
|
|
state->h = h;
|
|
state->n = w*h;
|
|
|
|
state->dirs = snewn(state->n, int);
|
|
state->nums = snewn(state->n, int);
|
|
state->flags = snewn(state->n, unsigned int);
|
|
state->next = snewn(state->n, int);
|
|
state->prev = snewn(state->n, int);
|
|
state->dsf = snew_dsf(state->n);
|
|
state->numsi = snewn(state->n+1, int);
|
|
|
|
blank_game_into(state);
|
|
|
|
return state;
|
|
}
|
|
|
|
static void dup_game_to(game_state *to, game_state *from)
|
|
{
|
|
to->completed = from->completed;
|
|
to->used_solve = from->used_solve;
|
|
to->impossible = from->impossible;
|
|
|
|
memcpy(to->dirs, from->dirs, to->n*sizeof(int));
|
|
memcpy(to->flags, from->flags, to->n*sizeof(unsigned int));
|
|
memcpy(to->nums, from->nums, to->n*sizeof(int));
|
|
|
|
memcpy(to->next, from->next, to->n*sizeof(int));
|
|
memcpy(to->prev, from->prev, to->n*sizeof(int));
|
|
|
|
memcpy(to->dsf, from->dsf, to->n*sizeof(int));
|
|
memcpy(to->numsi, from->numsi, (to->n+1)*sizeof(int));
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = blank_game(state->w, state->h);
|
|
dup_game_to(ret, state);
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->dirs);
|
|
sfree(state->nums);
|
|
sfree(state->flags);
|
|
sfree(state->next);
|
|
sfree(state->prev);
|
|
sfree(state->dsf);
|
|
sfree(state->numsi);
|
|
sfree(state);
|
|
}
|
|
|
|
static void unpick_desc(game_params *params, char *desc,
|
|
game_state **sout, char **mout)
|
|
{
|
|
game_state *state = blank_game(params->w, params->h);
|
|
char *msg = NULL, c;
|
|
int num = 0, i = 0;
|
|
|
|
while (*desc) {
|
|
if (i >= state->n) {
|
|
msg = "Game description longer than expected";
|
|
goto done;
|
|
}
|
|
|
|
c = *desc;
|
|
if (isdigit((unsigned char)c)) {
|
|
num = (num*10) + (int)(c-'0');
|
|
if (num > state->n) {
|
|
msg = "Number too large";
|
|
goto done;
|
|
}
|
|
} else if ((c-'a') >= 0 && (c-'a') < DIR_MAX) {
|
|
state->nums[i] = num;
|
|
state->flags[i] = num ? FLAG_IMMUTABLE : 0;
|
|
num = 0;
|
|
|
|
state->dirs[i] = c - 'a';
|
|
i++;
|
|
} else if (!*desc) {
|
|
msg = "Game description shorter than expected";
|
|
goto done;
|
|
} else {
|
|
msg = "Game description contains unexpected characters";
|
|
goto done;
|
|
}
|
|
desc++;
|
|
}
|
|
if (i < state->n) {
|
|
msg = "Game description shorter than expected";
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
if (msg) { /* sth went wrong. */
|
|
if (mout) *mout = msg;
|
|
free_game(state);
|
|
} else {
|
|
if (mout) *mout = NULL;
|
|
if (sout) *sout = state;
|
|
else free_game(state);
|
|
}
|
|
}
|
|
|
|
static char *generate_desc(game_state *state, int issolve)
|
|
{
|
|
char *ret, buf[80];
|
|
int retlen, i, k;
|
|
|
|
ret = NULL; retlen = 0;
|
|
if (issolve) {
|
|
ret = sresize(ret, 2, char);
|
|
ret[0] = 'S'; ret[1] = '\0';
|
|
retlen += 1;
|
|
}
|
|
for (i = 0; i < state->n; i++) {
|
|
if (state->nums[i])
|
|
k = sprintf(buf, "%d%c", state->nums[i], (int)(state->dirs[i]+'a'));
|
|
else
|
|
k = sprintf(buf, "%c", (int)(state->dirs[i]+'a'));
|
|
ret = sresize(ret, retlen + k + 1, char);
|
|
strcpy(ret + retlen, buf);
|
|
retlen += k;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* --- Game generation --- */
|
|
|
|
/* Fills in preallocated arrays ai (indices) and ad (directions)
|
|
* showing all non-numbered cells adjacent to index i, returns length */
|
|
/* This function has been somewhat optimised... */
|
|
static int cell_adj(game_state *state, int i, int *ai, int *ad)
|
|
{
|
|
int n = 0, a, x, y, sx, sy, dx, dy, newi;
|
|
int w = state->w, h = state->h;
|
|
|
|
sx = i % w; sy = i / w;
|
|
|
|
for (a = 0; a < DIR_MAX; a++) {
|
|
x = sx; y = sy;
|
|
dx = dxs[a]; dy = dys[a];
|
|
while (1) {
|
|
x += dx; y += dy;
|
|
if (x < 0 || y < 0 || x >= w || y >= h) break;
|
|
|
|
newi = y*w + x;
|
|
if (state->nums[newi] == 0) {
|
|
ai[n] = newi;
|
|
ad[n] = a;
|
|
n++;
|
|
}
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int new_game_fill(game_state *state, random_state *rs,
|
|
int headi, int taili)
|
|
{
|
|
int nfilled, an, ret = 0, j;
|
|
int *aidx, *adir;
|
|
|
|
aidx = snewn(state->n, int);
|
|
adir = snewn(state->n, int);
|
|
|
|
debug(("new_game_fill: headi=%d, taili=%d.", headi, taili));
|
|
|
|
memset(state->nums, 0, state->n*sizeof(int));
|
|
|
|
state->nums[headi] = 1;
|
|
state->nums[taili] = state->n;
|
|
|
|
state->dirs[taili] = 0;
|
|
nfilled = 2;
|
|
|
|
while (nfilled < state->n) {
|
|
/* Try and expand _from_ headi; keep going if there's only one
|
|
* place to go to. */
|
|
an = cell_adj(state, headi, aidx, adir);
|
|
do {
|
|
if (an == 0) goto done;
|
|
j = random_upto(rs, an);
|
|
state->dirs[headi] = adir[j];
|
|
state->nums[aidx[j]] = state->nums[headi] + 1;
|
|
nfilled++;
|
|
headi = aidx[j];
|
|
an = cell_adj(state, headi, aidx, adir);
|
|
} while (an == 1);
|
|
|
|
/* Try and expand _to_ taili; keep going if there's only one
|
|
* place to go to. */
|
|
an = cell_adj(state, taili, aidx, adir);
|
|
do {
|
|
if (an == 0) goto done;
|
|
j = random_upto(rs, an);
|
|
state->dirs[aidx[j]] = DIR_OPPOSITE(adir[j]);
|
|
state->nums[aidx[j]] = state->nums[taili] - 1;
|
|
nfilled++;
|
|
taili = aidx[j];
|
|
an = cell_adj(state, taili, aidx, adir);
|
|
} while (an == 1);
|
|
}
|
|
/* If we get here we have headi and taili set but unconnected
|
|
* by direction: we need to set headi's direction so as to point
|
|
* at taili. */
|
|
state->dirs[headi] = whichdiri(state, headi, taili);
|
|
|
|
/* it could happen that our last two weren't in line; if that's the
|
|
* case, we have to start again. */
|
|
if (state->dirs[headi] != -1) ret = 1;
|
|
|
|
done:
|
|
sfree(aidx);
|
|
sfree(adir);
|
|
return ret;
|
|
}
|
|
|
|
/* Better generator: with the 'generate, sprinkle numbers, solve,
|
|
* repeat' algorithm we're _never_ generating anything greater than
|
|
* 6x6, and spending all of our time in new_game_fill (and very little
|
|
* in solve_state).
|
|
*
|
|
* So, new generator steps:
|
|
* generate the grid, at random (same as now). Numbers 1 and N get
|
|
immutable flag immediately.
|
|
* squirrel that away for the solved state.
|
|
*
|
|
* (solve:) Try and solve it.
|
|
* If we solved it, we're done:
|
|
* generate the description from current immutable numbers,
|
|
* free stuff that needs freeing,
|
|
* return description + solved state.
|
|
* If we didn't solve it:
|
|
* count #tiles in state we've made deductions about.
|
|
* while (1):
|
|
* randomise a scratch array.
|
|
* for each index in scratch (in turn):
|
|
* if the cell isn't empty, continue (through scratch array)
|
|
* set number + immutable in state.
|
|
* try and solve state.
|
|
* if we've solved it, we're done.
|
|
* otherwise, count #tiles. If it's more than we had before:
|
|
* good, break from this loop and re-randomise.
|
|
* otherwise (number didn't help):
|
|
* remove number and try next in scratch array.
|
|
* if we've got to the end of the scratch array, no luck:
|
|
free everything we need to, and go back to regenerate the grid.
|
|
*/
|
|
|
|
static int solve_state(game_state *state);
|
|
|
|
static void debug_desc(const char *what, game_state *state)
|
|
{
|
|
#if DEBUGGING
|
|
{
|
|
char *desc = generate_desc(state, 0);
|
|
debug(("%s game state: %dx%d:%s", what, state->w, state->h, desc));
|
|
sfree(desc);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Expects a fully-numbered game_state on input, and makes sure
|
|
* FLAG_IMMUTABLE is only set on those numbers we need to solve
|
|
* (as for a real new-game); returns 1 if it managed
|
|
* this (such that it could solve it), or 0 if not. */
|
|
static int new_game_strip(game_state *state, random_state *rs)
|
|
{
|
|
int *scratch, i, j, ret = 1;
|
|
game_state *copy = dup_game(state);
|
|
|
|
debug(("new_game_strip."));
|
|
|
|
strip_nums(copy);
|
|
debug_desc("Stripped", copy);
|
|
|
|
if (solve_state(copy) > 0) {
|
|
debug(("new_game_strip: soluble immediately after strip."));
|
|
free_game(copy);
|
|
return 1;
|
|
}
|
|
|
|
scratch = snewn(state->n, int);
|
|
for (i = 0; i < state->n; i++) scratch[i] = i;
|
|
shuffle(scratch, state->n, sizeof(int), rs);
|
|
|
|
/* This is scungy. It might just be quick enough.
|
|
* It goes through, adding set numbers in empty squares
|
|
* until either we run out of empty squares (in the one
|
|
* we're half-solving) or else we solve it properly.
|
|
* NB that we run the entire solver each time, which
|
|
* strips the grid beforehand; we will save time if we
|
|
* avoid that. */
|
|
for (i = 0; i < state->n; i++) {
|
|
j = scratch[i];
|
|
if (copy->nums[j] > 0 && copy->nums[j] <= state->n)
|
|
continue; /* already solved to a real number here. */
|
|
assert(state->nums[j] <= state->n);
|
|
debug(("new_game_strip: testing add IMMUTABLE number %d at square (%d,%d).",
|
|
state->nums[j], j%state->w, j/state->w));
|
|
copy->nums[j] = state->nums[j];
|
|
copy->flags[j] |= FLAG_IMMUTABLE;
|
|
state->flags[j] |= FLAG_IMMUTABLE;
|
|
debug_state("Copy of state: ", copy);
|
|
strip_nums(copy);
|
|
if (solve_state(copy) > 0) goto solved;
|
|
assert(check_nums(state, copy, 1));
|
|
}
|
|
ret = 0;
|
|
goto done;
|
|
|
|
solved:
|
|
debug(("new_game_strip: now solved."));
|
|
/* Since we added basically at random, try now to remove numbers
|
|
* and see if we can still solve it; if we can (still), really
|
|
* remove the number. Make sure we don't remove the anchor numbers
|
|
* 1 and N. */
|
|
for (i = 0; i < state->n; i++) {
|
|
j = scratch[i];
|
|
if ((state->flags[j] & FLAG_IMMUTABLE) &&
|
|
(state->nums[j] != 1 && state->nums[j] != state->n)) {
|
|
debug(("new_game_strip: testing remove IMMUTABLE number %d at square (%d,%d).",
|
|
state->nums[j], j%state->w, j/state->w));
|
|
state->flags[j] &= ~FLAG_IMMUTABLE;
|
|
dup_game_to(copy, state);
|
|
strip_nums(copy);
|
|
if (solve_state(copy) > 0) {
|
|
assert(check_nums(state, copy, 0));
|
|
debug(("new_game_strip: OK, removing number"));
|
|
} else {
|
|
assert(state->nums[j] <= state->n);
|
|
debug(("new_game_strip: cannot solve, putting IMMUTABLE back."));
|
|
copy->nums[j] = state->nums[j];
|
|
state->flags[j] |= FLAG_IMMUTABLE;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
debug(("new_game_strip: %ssuccessful.", ret ? "" : "not "));
|
|
sfree(scratch);
|
|
free_game(copy);
|
|
return ret;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
game_state *state = blank_game(params->w, params->h);
|
|
char *ret;
|
|
int headi, taili;
|
|
|
|
generate:
|
|
blank_game_into(state);
|
|
|
|
/* keep trying until we fill successfully. */
|
|
do {
|
|
if (params->force_corner_start) {
|
|
headi = 0;
|
|
taili = state->n-1;
|
|
} else {
|
|
do {
|
|
headi = random_upto(rs, state->n);
|
|
taili = random_upto(rs, state->n);
|
|
} while (headi == taili);
|
|
}
|
|
} while (!new_game_fill(state, rs, headi, taili));
|
|
|
|
debug_state("Filled game:", state);
|
|
|
|
assert(state->nums[headi] <= state->n);
|
|
assert(state->nums[taili] <= state->n);
|
|
|
|
state->flags[headi] |= FLAG_IMMUTABLE;
|
|
state->flags[taili] |= FLAG_IMMUTABLE;
|
|
|
|
/* This will have filled in directions and _all_ numbers.
|
|
* Store the game definition for this, as the solved-state. */
|
|
if (!new_game_strip(state, rs)) {
|
|
goto generate;
|
|
}
|
|
strip_nums(state);
|
|
{
|
|
game_state *tosolve = dup_game(state);
|
|
assert(solve_state(tosolve) > 0);
|
|
free_game(tosolve);
|
|
}
|
|
ret = generate_desc(state, 0);
|
|
free_game(state);
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
char *ret = NULL;
|
|
|
|
unpick_desc(params, desc, NULL, &ret);
|
|
return ret;
|
|
}
|
|
|
|
/* --- Linked-list and numbers array --- */
|
|
|
|
/* Assuming numbers are always up-to-date, there are only four possibilities
|
|
* for regions changing after a single valid move:
|
|
*
|
|
* 1) two differently-coloured regions being combined (the resulting colouring
|
|
* should be based on the larger of the two regions)
|
|
* 2) a numbered region having a single number added to the start (the
|
|
* region's colour will remain, and the numbers will shift by 1)
|
|
* 3) a numbered region having a single number added to the end (the
|
|
* region's colour and numbering remains as-is)
|
|
* 4) two unnumbered squares being joined (will pick the smallest unused set
|
|
* of colours to use for the new region).
|
|
*
|
|
* There should never be any complications with regions containing 3 colours
|
|
* being combined, since two of those colours should have been merged on a
|
|
* previous move.
|
|
*
|
|
* Most of the complications are in ensuring we don't accidentally set two
|
|
* regions with the same colour (e.g. if a region was split). If this happens
|
|
* we always try and give the largest original portion the original colour.
|
|
*/
|
|
|
|
#define COLOUR(a) ((a) / (state->n+1))
|
|
#define START(c) ((c) * (state->n+1))
|
|
|
|
struct head_meta {
|
|
int i; /* position */
|
|
int sz; /* size of region */
|
|
int start; /* region start number preferred, or 0 if !preference */
|
|
int preference; /* 0 if we have no preference (and should just pick one) */
|
|
const char *why;
|
|
};
|
|
|
|
static void head_number(game_state *state, int i, struct head_meta *head)
|
|
{
|
|
int off = 0, ss, j = i, c, n, sz;
|
|
|
|
/* Insist we really were passed the head of a chain. */
|
|
assert(state->prev[i] == -1 && state->next[i] != -1);
|
|
|
|
head->i = i;
|
|
head->sz = dsf_size(state->dsf, i);
|
|
head->why = NULL;
|
|
|
|
/* Search through this chain looking for real numbers, checking that
|
|
* they match up (if there are more than one). */
|
|
head->preference = 0;
|
|
while (j != -1) {
|
|
if (state->flags[j] & FLAG_IMMUTABLE) {
|
|
ss = state->nums[j] - off;
|
|
if (!head->preference) {
|
|
head->start = ss;
|
|
head->preference = 1;
|
|
head->why = "contains cell with immutable number";
|
|
} else if (head->start != ss) {
|
|
debug(("head_number: chain with non-sequential numbers!"));
|
|
state->impossible = 1;
|
|
}
|
|
}
|
|
off++;
|
|
j = state->next[j];
|
|
assert(j != i); /* we have created a loop, obviously wrong */
|
|
}
|
|
if (head->preference) goto done;
|
|
|
|
if (state->nums[i] == 0 && state->nums[state->next[i]] > state->n) {
|
|
/* (probably) empty cell onto the head of a coloured region:
|
|
* make sure we start at a 0 offset. */
|
|
head->start = START(COLOUR(state->nums[state->next[i]]));
|
|
head->preference = 1;
|
|
head->why = "adding blank cell to head of numbered region";
|
|
} else if (state->nums[i] <= state->n) {
|
|
/* if we're 0 we're probably just blank -- but even if we're a
|
|
* (real) numbered region, we don't have an immutable number
|
|
* in it (any more) otherwise it'd have been caught above, so
|
|
* reassign the colour. */
|
|
head->start = 0;
|
|
head->preference = 0;
|
|
head->why = "lowest available colour group";
|
|
} else {
|
|
c = COLOUR(state->nums[i]);
|
|
n = 1;
|
|
sz = dsf_size(state->dsf, i);
|
|
j = i;
|
|
while (state->next[j] != -1) {
|
|
j = state->next[j];
|
|
if (state->nums[j] == 0 && state->next[j] == -1) {
|
|
head->start = START(c);
|
|
head->preference = 1;
|
|
head->why = "adding blank cell to end of numbered region";
|
|
goto done;
|
|
}
|
|
if (COLOUR(state->nums[j]) == c)
|
|
n++;
|
|
else {
|
|
int start_alternate = START(COLOUR(state->nums[j]));
|
|
if (n < (sz - n)) {
|
|
head->start = start_alternate;
|
|
head->preference = 1;
|
|
head->why = "joining two coloured regions, swapping to larger colour";
|
|
} else {
|
|
head->start = START(c);
|
|
head->preference = 1;
|
|
head->why = "joining two coloured regions, taking largest";
|
|
}
|
|
goto done;
|
|
}
|
|
}
|
|
/* If we got here then we may have split a region into
|
|
* two; make sure we don't assign a colour we've already used. */
|
|
if (c == 0) {
|
|
/* not convinced this shouldn't be an assertion failure here. */
|
|
head->start = 0;
|
|
head->preference = 0;
|
|
} else {
|
|
head->start = START(c);
|
|
head->preference = 1;
|
|
}
|
|
head->why = "got to end of coloured region";
|
|
}
|
|
|
|
done:
|
|
assert(head->why != NULL);
|
|
if (head->preference)
|
|
debug(("Chain at (%d,%d) numbered for preference at %d (colour %d): %s.",
|
|
head->i%state->w, head->i/state->w,
|
|
head->start, COLOUR(head->start), head->why));
|
|
else
|
|
debug(("Chain at (%d,%d) using next available colour: %s.",
|
|
head->i%state->w, head->i/state->w,
|
|
head->why));
|
|
}
|
|
|
|
#if 0
|
|
static void debug_numbers(game_state *state)
|
|
{
|
|
int i, w=state->w;
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
debug(("(%d,%d) --> (%d,%d) --> (%d,%d)",
|
|
state->prev[i]==-1 ? -1 : state->prev[i]%w,
|
|
state->prev[i]==-1 ? -1 : state->prev[i]/w,
|
|
i%w, i/w,
|
|
state->next[i]==-1 ? -1 : state->next[i]%w,
|
|
state->next[i]==-1 ? -1 : state->next[i]/w));
|
|
}
|
|
w = w+1;
|
|
}
|
|
#endif
|
|
|
|
static void connect_numbers(game_state *state)
|
|
{
|
|
int i, di, dni;
|
|
|
|
dsf_init(state->dsf, state->n);
|
|
for (i = 0; i < state->n; i++) {
|
|
if (state->next[i] != -1) {
|
|
assert(state->prev[state->next[i]] == i);
|
|
di = dsf_canonify(state->dsf, i);
|
|
dni = dsf_canonify(state->dsf, state->next[i]);
|
|
if (di == dni) {
|
|
debug(("connect_numbers: chain forms a loop."));
|
|
state->impossible = 1;
|
|
}
|
|
dsf_merge(state->dsf, di, dni);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int compare_heads(const void *a, const void *b)
|
|
{
|
|
struct head_meta *ha = (struct head_meta *)a;
|
|
struct head_meta *hb = (struct head_meta *)b;
|
|
|
|
/* Heads with preferred colours first... */
|
|
if (ha->preference && !hb->preference) return -1;
|
|
if (hb->preference && !ha->preference) return 1;
|
|
|
|
/* ...then heads with low colours first... */
|
|
if (ha->start < hb->start) return -1;
|
|
if (ha->start > hb->start) return 1;
|
|
|
|
/* ... then large regions first... */
|
|
if (ha->sz > hb->sz) return -1;
|
|
if (ha->sz < hb->sz) return 1;
|
|
|
|
/* ... then position. */
|
|
if (ha->i > hb->i) return -1;
|
|
if (ha->i < hb->i) return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lowest_start(game_state *state, struct head_meta *heads, int nheads)
|
|
{
|
|
int n, c;
|
|
|
|
/* NB start at 1: colour 0 is real numbers */
|
|
for (c = 1; c < state->n; c++) {
|
|
for (n = 0; n < nheads; n++) {
|
|
if (COLOUR(heads[n].start) == c)
|
|
goto used;
|
|
}
|
|
return c;
|
|
used:
|
|
;
|
|
}
|
|
assert(!"No available colours!");
|
|
return 0;
|
|
}
|
|
|
|
static void update_numbers(game_state *state)
|
|
{
|
|
int i, j, n, nnum, nheads;
|
|
struct head_meta *heads = snewn(state->n, struct head_meta);
|
|
|
|
for (n = 0; n < state->n; n++)
|
|
state->numsi[n] = -1;
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
if (state->flags[i] & FLAG_IMMUTABLE) {
|
|
assert(state->nums[i] > 0);
|
|
assert(state->nums[i] <= state->n);
|
|
state->numsi[state->nums[i]] = i;
|
|
}
|
|
else if (state->prev[i] == -1 && state->next[i] == -1)
|
|
state->nums[i] = 0;
|
|
}
|
|
connect_numbers(state);
|
|
|
|
/* Construct an array of the heads of all current regions, together
|
|
* with their preferred colours. */
|
|
nheads = 0;
|
|
for (i = 0; i < state->n; i++) {
|
|
/* Look for a cell that is the start of a chain
|
|
* (has a next but no prev). */
|
|
if (state->prev[i] != -1 || state->next[i] == -1) continue;
|
|
|
|
head_number(state, i, &heads[nheads++]);
|
|
}
|
|
|
|
/* Sort that array:
|
|
* - heads with preferred colours first, then
|
|
* - heads with low colours first, then
|
|
* - large regions first
|
|
*/
|
|
qsort(heads, nheads, sizeof(struct head_meta), compare_heads);
|
|
|
|
/* Remove duplicate-coloured regions. */
|
|
for (n = nheads-1; n >= 0; n--) { /* order is important! */
|
|
if ((n != 0) && (heads[n].start == heads[n-1].start)) {
|
|
/* We have a duplicate-coloured region: since we're
|
|
* sorted in size order and this is not the first
|
|
* of its colour it's not the largest: recolour it. */
|
|
heads[n].start = START(lowest_start(state, heads, nheads));
|
|
heads[n].preference = -1; /* '-1' means 'was duplicate' */
|
|
}
|
|
else if (!heads[n].preference) {
|
|
assert(heads[n].start == 0);
|
|
heads[n].start = START(lowest_start(state, heads, nheads));
|
|
}
|
|
}
|
|
|
|
debug(("Region colouring after duplicate removal:"));
|
|
|
|
for (n = 0; n < nheads; n++) {
|
|
debug((" Chain at (%d,%d) sz %d numbered at %d (colour %d): %s%s",
|
|
heads[n].i % state->w, heads[n].i / state->w, heads[n].sz,
|
|
heads[n].start, COLOUR(heads[n].start), heads[n].why,
|
|
heads[n].preference == 0 ? " (next available)" :
|
|
heads[n].preference < 0 ? " (duplicate, next available)" : ""));
|
|
|
|
nnum = heads[n].start;
|
|
j = heads[n].i;
|
|
while (j != -1) {
|
|
if (!(state->flags[j] & FLAG_IMMUTABLE)) {
|
|
if (nnum > 0 && nnum <= state->n)
|
|
state->numsi[nnum] = j;
|
|
state->nums[j] = nnum;
|
|
}
|
|
nnum++;
|
|
j = state->next[j];
|
|
assert(j != heads[n].i); /* loop?! */
|
|
}
|
|
}
|
|
/*debug_numbers(state);*/
|
|
sfree(heads);
|
|
}
|
|
|
|
static int check_completion(game_state *state, int mark_errors)
|
|
{
|
|
int n, j, k, error = 0, complete;
|
|
|
|
/* NB This only marks errors that are possible to perpetrate with
|
|
* the current UI in interpret_move. Things like forming loops in
|
|
* linked sections and having numbers not add up should be forbidden
|
|
* by the code elsewhere, so we don't bother marking those (because
|
|
* it would add lots of tricky drawing code for very little gain). */
|
|
if (mark_errors) {
|
|
for (j = 0; j < state->n; j++)
|
|
state->flags[j] &= ~FLAG_ERROR;
|
|
}
|
|
|
|
/* Search for repeated numbers. */
|
|
for (j = 0; j < state->n; j++) {
|
|
if (state->nums[j] > 0 && state->nums[j] <= state->n) {
|
|
for (k = j+1; k < state->n; k++) {
|
|
if (state->nums[k] == state->nums[j]) {
|
|
if (mark_errors) {
|
|
state->flags[j] |= FLAG_ERROR;
|
|
state->flags[k] |= FLAG_ERROR;
|
|
}
|
|
error = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Search and mark numbers n not pointing to n+1; if any numbers
|
|
* are missing we know we've not completed. */
|
|
complete = 1;
|
|
for (n = 1; n < state->n; n++) {
|
|
if (state->numsi[n] == -1 || state->numsi[n+1] == -1)
|
|
complete = 0;
|
|
else if (!ispointingi(state, state->numsi[n], state->numsi[n+1])) {
|
|
if (mark_errors) {
|
|
state->flags[state->numsi[n]] |= FLAG_ERROR;
|
|
state->flags[state->numsi[n+1]] |= FLAG_ERROR;
|
|
}
|
|
error = 1;
|
|
} else {
|
|
/* make sure the link is explicitly made here; for instance, this
|
|
* is nice if the user drags from 2 out (making 3) and a 4 is also
|
|
* visible; this ensures that the link from 3 to 4 is also made. */
|
|
if (mark_errors)
|
|
makelink(state, state->numsi[n], state->numsi[n+1]);
|
|
}
|
|
}
|
|
|
|
/* Search and mark numbers less than 0, or 0 with links. */
|
|
for (n = 1; n < state->n; n++) {
|
|
if ((state->nums[n] < 0) ||
|
|
(state->nums[n] == 0 &&
|
|
(state->next[n] != -1 || state->prev[n] != -1))) {
|
|
error = 1;
|
|
if (mark_errors)
|
|
state->flags[n] |= FLAG_ERROR;
|
|
}
|
|
}
|
|
|
|
if (error) return 0;
|
|
return complete;
|
|
}
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
game_state *state = NULL;
|
|
|
|
unpick_desc(params, desc, &state, NULL);
|
|
if (!state) assert(!"new_game failed to unpick");
|
|
|
|
update_numbers(state);
|
|
check_completion(state, 1); /* update any auto-links */
|
|
|
|
return state;
|
|
}
|
|
|
|
/* --- Solver --- */
|
|
|
|
/* If a tile has a single tile it can link _to_, or there's only a single
|
|
* location that can link to a given tile, fill that link in. */
|
|
static int solve_single(game_state *state, game_state *copy, int *from)
|
|
{
|
|
int i, j, sx, sy, x, y, d, poss, w=state->w, nlinks = 0;
|
|
|
|
/* The from array is a list of 'which square can link _to_ us';
|
|
* we start off with from as '-1' (meaning 'not found'); if we find
|
|
* something that can link to us it is set to that index, and then if
|
|
* we find another we set it to -2. */
|
|
|
|
memset(from, -1, state->n*sizeof(int));
|
|
|
|
/* poss is 'can I link to anything' with the same meanings. */
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
if (state->next[i] != -1) continue;
|
|
if (state->nums[i] == state->n) continue; /* no next from last no. */
|
|
|
|
d = state->dirs[i];
|
|
poss = -1;
|
|
sx = x = i%w; sy = y = i/w;
|
|
while (1) {
|
|
x += dxs[d]; y += dys[d];
|
|
if (!INGRID(state, x, y)) break;
|
|
if (!isvalidmove(state, 1, sx, sy, x, y)) continue;
|
|
|
|
/* can't link to somewhere with a back-link we would have to
|
|
* break (the solver just doesn't work like this). */
|
|
j = y*w+x;
|
|
if (state->prev[j] != -1) continue;
|
|
|
|
if (state->nums[i] > 0 && state->nums[j] > 0 &&
|
|
state->nums[i] <= state->n && state->nums[j] <= state->n &&
|
|
state->nums[j] == state->nums[i]+1) {
|
|
debug(("Solver: forcing link through existing consecutive numbers."));
|
|
poss = j;
|
|
from[j] = i;
|
|
break;
|
|
}
|
|
|
|
/* if there's been a valid move already, we have to move on;
|
|
* we can't make any deductions here. */
|
|
poss = (poss == -1) ? j : -2;
|
|
|
|
/* Modify the from array as described above (which is enumerating
|
|
* what points to 'j' in a similar way). */
|
|
from[j] = (from[j] == -1) ? i : -2;
|
|
}
|
|
if (poss == -2) {
|
|
/*debug(("Solver: (%d,%d) has multiple possible next squares.", sx, sy));*/
|
|
;
|
|
} else if (poss == -1) {
|
|
debug(("Solver: nowhere possible for (%d,%d) to link to.", sx, sy));
|
|
copy->impossible = 1;
|
|
return -1;
|
|
} else {
|
|
debug(("Solver: linking (%d,%d) to only possible next (%d,%d).",
|
|
sx, sy, poss%w, poss/w));
|
|
makelink(copy, i, poss);
|
|
nlinks++;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
if (state->prev[i] != -1) continue;
|
|
if (state->nums[i] == 1) continue; /* no prev from 1st no. */
|
|
|
|
x = i%w; y = i/w;
|
|
if (from[i] == -1) {
|
|
debug(("Solver: nowhere possible to link to (%d,%d)", x, y));
|
|
copy->impossible = 1;
|
|
return -1;
|
|
} else if (from[i] == -2) {
|
|
/*debug(("Solver: (%d,%d) has multiple possible prev squares.", x, y));*/
|
|
;
|
|
} else {
|
|
debug(("Solver: linking only possible prev (%d,%d) to (%d,%d).",
|
|
from[i]%w, from[i]/w, x, y));
|
|
makelink(copy, from[i], i);
|
|
nlinks++;
|
|
}
|
|
}
|
|
|
|
return nlinks;
|
|
}
|
|
|
|
/* Returns 1 if we managed to solve it, 0 otherwise. */
|
|
static int solve_state(game_state *state)
|
|
{
|
|
game_state *copy = dup_game(state);
|
|
int *scratch = snewn(state->n, int), ret;
|
|
|
|
debug_state("Before solver: ", state);
|
|
|
|
while (1) {
|
|
update_numbers(state);
|
|
|
|
if (solve_single(state, copy, scratch)) {
|
|
dup_game_to(state, copy);
|
|
if (state->impossible) break; else continue;
|
|
}
|
|
break;
|
|
}
|
|
free_game(copy);
|
|
sfree(scratch);
|
|
|
|
update_numbers(state);
|
|
ret = state->impossible ? -1 : check_completion(state, 0);
|
|
debug(("Solver finished: %s",
|
|
ret < 0 ? "impossible" : ret > 0 ? "solved" : "not solved"));
|
|
debug_state("After solver: ", state);
|
|
return ret;
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
game_state *tosolve;
|
|
char *ret = NULL;
|
|
int result;
|
|
|
|
tosolve = dup_game(currstate);
|
|
result = solve_state(tosolve);
|
|
if (result > 0)
|
|
ret = generate_desc(tosolve, 1);
|
|
free_game(tosolve);
|
|
if (ret) return ret;
|
|
|
|
tosolve = dup_game(state);
|
|
result = solve_state(tosolve);
|
|
if (result < 0)
|
|
*error = "Puzzle is impossible.";
|
|
else if (result == 0)
|
|
*error = "Unable to solve puzzle.";
|
|
else
|
|
ret = generate_desc(tosolve, 1);
|
|
|
|
free_game(tosolve);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* --- UI and move routines. --- */
|
|
|
|
|
|
struct game_ui {
|
|
int cx, cy, cshow;
|
|
|
|
int dragging, drag_is_from;
|
|
int sx, sy; /* grid coords of start cell */
|
|
int dx, dy; /* pixel coords of drag posn */
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
|
|
/* NB: if this is ever changed to as to require more than a structure
|
|
* copy to clone, there's code that needs fixing in game_redraw too. */
|
|
|
|
ui->cx = ui->cy = ui->cshow = 0;
|
|
|
|
ui->dragging = 0;
|
|
ui->sx = ui->sy = ui->dx = ui->dy = 0;
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
if (!oldstate->completed && newstate->completed)
|
|
ui->cshow = ui->dragging = 0;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int tilesize, started, solved;
|
|
int w, h, n;
|
|
int *nums, *dirp;
|
|
unsigned int *f;
|
|
double angle_offset;
|
|
|
|
int dragging, dx, dy;
|
|
blitter *dragb;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int mx, int my, int button)
|
|
{
|
|
int x = FROMCOORD(mx), y = FROMCOORD(my), w = state->w;
|
|
char buf[80];
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
move_cursor(button, &ui->cx, &ui->cy, state->w, state->h, 0);
|
|
ui->cshow = 1;
|
|
if (ui->dragging) {
|
|
ui->dx = COORD(ui->cx) + TILE_SIZE/2;
|
|
ui->dy = COORD(ui->cy) + TILE_SIZE/2;
|
|
}
|
|
return "";
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cshow)
|
|
ui->cshow = 1;
|
|
else if (ui->dragging) {
|
|
ui->dragging = FALSE;
|
|
if (ui->sx == ui->cx && ui->sy == ui->cy) return "";
|
|
if (ui->drag_is_from) {
|
|
if (!isvalidmove(state, 0, ui->sx, ui->sy, ui->cx, ui->cy)) return "";
|
|
sprintf(buf, "L%d,%d-%d,%d", ui->sx, ui->sy, ui->cx, ui->cy);
|
|
} else {
|
|
if (!isvalidmove(state, 0, ui->cx, ui->cy, ui->sx, ui->sy)) return "";
|
|
sprintf(buf, "L%d,%d-%d,%d", ui->cx, ui->cy, ui->sx, ui->sy);
|
|
}
|
|
return dupstr(buf);
|
|
} else {
|
|
ui->dragging = TRUE;
|
|
ui->sx = ui->cx;
|
|
ui->sy = ui->cy;
|
|
ui->dx = COORD(ui->cx) + TILE_SIZE/2;
|
|
ui->dy = COORD(ui->cy) + TILE_SIZE/2;
|
|
ui->drag_is_from = (button == CURSOR_SELECT) ? 1 : 0;
|
|
}
|
|
return "";
|
|
}
|
|
if (IS_MOUSE_DOWN(button)) {
|
|
if (ui->cshow) {
|
|
ui->cshow = ui->dragging = 0;
|
|
}
|
|
assert(!ui->dragging);
|
|
if (!INGRID(state, x, y)) return NULL;
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
/* disallow dragging from the final number. */
|
|
if ((state->nums[y*w+x] == state->n) &&
|
|
(state->flags[y*w+x] & FLAG_IMMUTABLE))
|
|
return NULL;
|
|
} else if (button == RIGHT_BUTTON) {
|
|
/* disallow dragging to the first number. */
|
|
if ((state->nums[y*w+x] == 1) &&
|
|
(state->flags[y*w+x] & FLAG_IMMUTABLE))
|
|
return NULL;
|
|
}
|
|
|
|
ui->dragging = TRUE;
|
|
ui->drag_is_from = (button == LEFT_BUTTON) ? 1 : 0;
|
|
ui->sx = x;
|
|
ui->sy = y;
|
|
ui->dx = mx;
|
|
ui->dy = my;
|
|
ui->cshow = 0;
|
|
return "";
|
|
} else if (IS_MOUSE_DRAG(button) && ui->dragging) {
|
|
ui->dx = mx;
|
|
ui->dy = my;
|
|
return "";
|
|
} else if (IS_MOUSE_RELEASE(button) && ui->dragging) {
|
|
ui->dragging = FALSE;
|
|
if (ui->sx == x && ui->sy == y) return ""; /* single click */
|
|
|
|
if (!INGRID(state, x, y)) {
|
|
int si = ui->sy*w+ui->sx;
|
|
if (state->prev[si] == -1 && state->next[si] == -1)
|
|
return "";
|
|
sprintf(buf, "%c%d,%d",
|
|
(int)(ui->drag_is_from ? 'C' : 'X'), ui->sx, ui->sy);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
if (ui->drag_is_from) {
|
|
if (!isvalidmove(state, 0, ui->sx, ui->sy, x, y)) return "";
|
|
sprintf(buf, "L%d,%d-%d,%d", ui->sx, ui->sy, x, y);
|
|
} else {
|
|
if (!isvalidmove(state, 0, x, y, ui->sx, ui->sy)) return "";
|
|
sprintf(buf, "L%d,%d-%d,%d", x, y, ui->sx, ui->sy);
|
|
}
|
|
return dupstr(buf);
|
|
} /* else if (button == 'H' || button == 'h')
|
|
return dupstr("H"); */
|
|
else if ((button == 'x' || button == 'X') && ui->cshow) {
|
|
int si = ui->cy*w + ui->cx;
|
|
if (state->prev[si] == -1 && state->next[si] == -1)
|
|
return "";
|
|
sprintf(buf, "%c%d,%d",
|
|
(int)((button == 'x') ? 'C' : 'X'), ui->cx, ui->cy);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void unlink_cell(game_state *state, int si)
|
|
{
|
|
debug(("Unlinking (%d,%d).", si%state->w, si/state->w));
|
|
if (state->prev[si] != -1) {
|
|
debug((" ... removing prev link from (%d,%d).",
|
|
state->prev[si]%state->w, state->prev[si]/state->w));
|
|
state->next[state->prev[si]] = -1;
|
|
state->prev[si] = -1;
|
|
}
|
|
if (state->next[si] != -1) {
|
|
debug((" ... removing next link to (%d,%d).",
|
|
state->next[si]%state->w, state->next[si]/state->w));
|
|
state->prev[state->next[si]] = -1;
|
|
state->next[si] = -1;
|
|
}
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
game_state *ret = NULL;
|
|
int sx, sy, ex, ey, si, ei, w = state->w;
|
|
char c;
|
|
|
|
debug(("move: %s", move));
|
|
|
|
if (move[0] == 'S') {
|
|
game_params p;
|
|
game_state *tmp;
|
|
char *valid;
|
|
int i;
|
|
|
|
p.w = state->w; p.h = state->h;
|
|
valid = validate_desc(&p, move+1);
|
|
if (valid) {
|
|
debug(("execute_move: move not valid: %s", valid));
|
|
return NULL;
|
|
}
|
|
ret = dup_game(state);
|
|
tmp = new_game(NULL, &p, move+1);
|
|
for (i = 0; i < state->n; i++) {
|
|
ret->prev[i] = tmp->prev[i];
|
|
ret->next[i] = tmp->next[i];
|
|
}
|
|
free_game(tmp);
|
|
ret->used_solve = 1;
|
|
} else if (sscanf(move, "L%d,%d-%d,%d", &sx, &sy, &ex, &ey) == 4) {
|
|
if (!isvalidmove(state, 0, sx, sy, ex, ey)) return NULL;
|
|
|
|
ret = dup_game(state);
|
|
|
|
si = sy*w+sx; ei = ey*w+ex;
|
|
makelink(ret, si, ei);
|
|
} else if (sscanf(move, "%c%d,%d", &c, &sx, &sy) == 3) {
|
|
if (c != 'C' && c != 'X') return NULL;
|
|
if (!INGRID(state, sx, sy)) return NULL;
|
|
si = sy*w+sx;
|
|
if (state->prev[si] == -1 && state->next[si] == -1)
|
|
return NULL;
|
|
|
|
ret = dup_game(state);
|
|
|
|
if (c == 'C') {
|
|
/* Unlink the single cell we dragged from the board. */
|
|
unlink_cell(ret, si);
|
|
} else {
|
|
int i, set, sset = state->nums[si] / (state->n+1);
|
|
for (i = 0; i < state->n; i++) {
|
|
/* Unlink all cells in the same set as the one we dragged
|
|
* from the board. */
|
|
|
|
if (state->nums[i] == 0) continue;
|
|
set = state->nums[i] / (state->n+1);
|
|
if (set != sset) continue;
|
|
|
|
unlink_cell(ret, i);
|
|
}
|
|
}
|
|
} else if (strcmp(move, "H") == 0) {
|
|
ret = dup_game(state);
|
|
solve_state(ret);
|
|
}
|
|
if (ret) {
|
|
update_numbers(ret);
|
|
if (check_completion(ret, 1)) ret->completed = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize, order; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
assert(TILE_SIZE > 0);
|
|
|
|
assert(!ds->dragb);
|
|
ds->dragb = blitter_new(dr, BLITTER_SIZE, BLITTER_SIZE);
|
|
}
|
|
|
|
/* Colours chosen from the webby palette to work as a background to black text,
|
|
* W then some plausible approximation to pastelly ROYGBIV; we then interpolate
|
|
* between consecutive pairs to give another 8 (and then the drawing routine
|
|
* will reuse backgrounds). */
|
|
static const unsigned long bgcols[8] = {
|
|
0xffffff, /* white */
|
|
0xffa07a, /* lightsalmon */
|
|
0x98fb98, /* green */
|
|
0x7fffd4, /* aquamarine */
|
|
0x9370db, /* medium purple */
|
|
0xffa500, /* orange */
|
|
0x87cefa, /* lightskyblue */
|
|
0xffff00, /* yellow */
|
|
};
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int c, i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_NUMBER * 3 + i] = 0.0F;
|
|
ret[COL_ARROW * 3 + i] = 0.0F;
|
|
ret[COL_CURSOR * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 2.0F;
|
|
ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 1.3F;
|
|
}
|
|
ret[COL_NUMBER_SET * 3 + 0] = 0.0F;
|
|
ret[COL_NUMBER_SET * 3 + 1] = 0.0F;
|
|
ret[COL_NUMBER_SET * 3 + 2] = 0.9F;
|
|
|
|
ret[COL_ERROR * 3 + 0] = 1.0F;
|
|
ret[COL_ERROR * 3 + 1] = 0.0F;
|
|
ret[COL_ERROR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DRAG_ORIGIN * 3 + 0] = 0.2F;
|
|
ret[COL_DRAG_ORIGIN * 3 + 1] = 1.0F;
|
|
ret[COL_DRAG_ORIGIN * 3 + 2] = 0.2F;
|
|
|
|
for (c = 0; c < 8; c++) {
|
|
ret[(COL_B0 + c) * 3 + 0] = (float)((bgcols[c] & 0xff0000) >> 16) / 256.0F;
|
|
ret[(COL_B0 + c) * 3 + 1] = (float)((bgcols[c] & 0xff00) >> 8) / 256.0F;
|
|
ret[(COL_B0 + c) * 3 + 2] = (float)((bgcols[c] & 0xff)) / 256.0F;
|
|
}
|
|
for (c = 0; c < 8; c++) {
|
|
for (i = 0; i < 3; i++) {
|
|
ret[(COL_B0 + 8 + c) * 3 + i] =
|
|
(ret[(COL_B0 + c) * 3 + i] + ret[(COL_B0 + c + 1) * 3 + i]) / 2.0F;
|
|
}
|
|
}
|
|
|
|
#define average(r,a,b,w) do { \
|
|
for (i = 0; i < 3; i++) \
|
|
ret[(r)*3+i] = ret[(a)*3+i] + w * (ret[(b)*3+i] - ret[(a)*3+i]); \
|
|
} while (0)
|
|
average(COL_ARROW_BG_DIM, COL_BACKGROUND, COL_ARROW, 0.1F);
|
|
average(COL_NUMBER_SET_MID, COL_B0, COL_NUMBER_SET, 0.3F);
|
|
for (c = 0; c < NBACKGROUNDS; c++) {
|
|
/* I assume here that COL_ARROW and COL_NUMBER are the same.
|
|
* Otherwise I'd need two sets of COL_M*. */
|
|
average(COL_M0 + c, COL_B0 + c, COL_NUMBER, 0.3F);
|
|
average(COL_D0 + c, COL_B0 + c, COL_NUMBER, 0.1F);
|
|
average(COL_X0 + c, COL_BACKGROUND, COL_B0 + c, 0.5F);
|
|
}
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->tilesize = ds->started = ds->solved = 0;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->n = state->n;
|
|
|
|
ds->nums = snewn(state->n, int);
|
|
ds->dirp = snewn(state->n, int);
|
|
ds->f = snewn(state->n, unsigned int);
|
|
for (i = 0; i < state->n; i++) {
|
|
ds->nums[i] = 0;
|
|
ds->dirp[i] = -1;
|
|
ds->f[i] = 0;
|
|
}
|
|
|
|
ds->angle_offset = 0.0F;
|
|
|
|
ds->dragging = ds->dx = ds->dy = 0;
|
|
ds->dragb = NULL;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->nums);
|
|
sfree(ds->dirp);
|
|
sfree(ds->f);
|
|
if (ds->dragb) blitter_free(dr, ds->dragb);
|
|
|
|
sfree(ds);
|
|
}
|
|
|
|
/* cx, cy are top-left corner. sz is the 'radius' of the arrow.
|
|
* ang is in radians, clockwise from 0 == straight up. */
|
|
static void draw_arrow(drawing *dr, int cx, int cy, int sz, double ang,
|
|
int cfill, int cout)
|
|
{
|
|
int coords[14];
|
|
int xdx, ydx, xdy, ydy, xdx3, xdy3;
|
|
double s = sin(ang), c = cos(ang);
|
|
|
|
xdx3 = (int)(sz * (c/3 + 1) + 0.5) - sz;
|
|
xdy3 = (int)(sz * (s/3 + 1) + 0.5) - sz;
|
|
xdx = (int)(sz * (c + 1) + 0.5) - sz;
|
|
xdy = (int)(sz * (s + 1) + 0.5) - sz;
|
|
ydx = -xdy;
|
|
ydy = xdx;
|
|
|
|
|
|
coords[2*0 + 0] = cx - ydx;
|
|
coords[2*0 + 1] = cy - ydy;
|
|
coords[2*1 + 0] = cx + xdx;
|
|
coords[2*1 + 1] = cy + xdy;
|
|
coords[2*2 + 0] = cx + xdx3;
|
|
coords[2*2 + 1] = cy + xdy3;
|
|
coords[2*3 + 0] = cx + xdx3 + ydx;
|
|
coords[2*3 + 1] = cy + xdy3 + ydy;
|
|
coords[2*4 + 0] = cx - xdx3 + ydx;
|
|
coords[2*4 + 1] = cy - xdy3 + ydy;
|
|
coords[2*5 + 0] = cx - xdx3;
|
|
coords[2*5 + 1] = cy - xdy3;
|
|
coords[2*6 + 0] = cx - xdx;
|
|
coords[2*6 + 1] = cy - xdy;
|
|
|
|
draw_polygon(dr, coords, 7, cfill, cout);
|
|
}
|
|
|
|
static void draw_arrow_dir(drawing *dr, int cx, int cy, int sz, int dir,
|
|
int cfill, int cout, double angle_offset)
|
|
{
|
|
double ang = 2.0 * PI * (double)dir / 8.0 + angle_offset;
|
|
draw_arrow(dr, cx, cy, sz, ang, cfill, cout);
|
|
}
|
|
|
|
/* cx, cy are centre coordinates.. */
|
|
static void draw_star(drawing *dr, int cx, int cy, int rad, int npoints,
|
|
int cfill, int cout, double angle_offset)
|
|
{
|
|
int *coords, n;
|
|
double a, r;
|
|
|
|
assert(npoints > 0);
|
|
|
|
coords = snewn(npoints * 2 * 2, int);
|
|
|
|
for (n = 0; n < npoints * 2; n++) {
|
|
a = 2.0 * PI * ((double)n / ((double)npoints * 2.0)) + angle_offset;
|
|
r = (n % 2) ? (double)rad/2.0 : (double)rad;
|
|
|
|
/* We're rotating the point at (0, -r) by a degrees */
|
|
coords[2*n+0] = cx + (int)( r * sin(a));
|
|
coords[2*n+1] = cy + (int)(-r * cos(a));
|
|
}
|
|
draw_polygon(dr, coords, npoints*2, cfill, cout);
|
|
sfree(coords);
|
|
}
|
|
|
|
static int num2col(game_drawstate *ds, int num)
|
|
{
|
|
int set = num / (ds->n+1);
|
|
|
|
if (num <= 0 || set == 0) return COL_B0;
|
|
return COL_B0 + 1 + ((set-1) % 15);
|
|
}
|
|
|
|
#define ARROW_HALFSZ (7 * TILE_SIZE / 32)
|
|
|
|
#define F_CUR 0x001 /* Cursor on this tile. */
|
|
#define F_DRAG_SRC 0x002 /* Tile is source of a drag. */
|
|
#define F_ERROR 0x004 /* Tile marked in error. */
|
|
#define F_IMMUTABLE 0x008 /* Tile (number) is immutable. */
|
|
#define F_ARROW_POINT 0x010 /* Tile points to other tile */
|
|
#define F_ARROW_INPOINT 0x020 /* Other tile points in here. */
|
|
#define F_DIM 0x040 /* Tile is dim */
|
|
|
|
static void tile_redraw(drawing *dr, game_drawstate *ds, int tx, int ty,
|
|
int dir, int dirp, int num, unsigned int f,
|
|
double angle_offset, int print_ink)
|
|
{
|
|
int cb = TILE_SIZE / 16, textsz;
|
|
char buf[20];
|
|
int arrowcol, sarrowcol, setcol, textcol;
|
|
int acx, acy, asz, empty = 0;
|
|
|
|
if (num == 0 && !(f & F_ARROW_POINT) && !(f & F_ARROW_INPOINT)) {
|
|
empty = 1;
|
|
/*
|
|
* We don't display text in empty cells: typically these are
|
|
* signified by num=0. However, in some cases a cell could
|
|
* have had the number 0 assigned to it if the user made an
|
|
* error (e.g. tried to connect a chain of length 5 to the
|
|
* immutable number 4) so we _do_ display the 0 if the cell
|
|
* has a link in or a link out.
|
|
*/
|
|
}
|
|
|
|
/* Calculate colours. */
|
|
|
|
if (print_ink >= 0) {
|
|
/*
|
|
* We're printing, so just do everything in black.
|
|
*/
|
|
arrowcol = textcol = print_ink;
|
|
setcol = sarrowcol = -1; /* placate optimiser */
|
|
} else {
|
|
|
|
setcol = empty ? COL_BACKGROUND : num2col(ds, num);
|
|
|
|
#define dim(fg,bg) ( \
|
|
(bg)==COL_BACKGROUND ? COL_ARROW_BG_DIM : \
|
|
(bg) + COL_D0 - COL_B0 \
|
|
)
|
|
|
|
#define mid(fg,bg) ( \
|
|
(fg)==COL_NUMBER_SET ? COL_NUMBER_SET_MID : \
|
|
(bg) + COL_M0 - COL_B0 \
|
|
)
|
|
|
|
#define dimbg(bg) ( \
|
|
(bg)==COL_BACKGROUND ? COL_BACKGROUND : \
|
|
(bg) + COL_X0 - COL_B0 \
|
|
)
|
|
|
|
if (f & F_DRAG_SRC) arrowcol = COL_DRAG_ORIGIN;
|
|
else if (f & F_DIM) arrowcol = dim(COL_ARROW, setcol);
|
|
else if (f & F_ARROW_POINT) arrowcol = mid(COL_ARROW, setcol);
|
|
else arrowcol = COL_ARROW;
|
|
|
|
if ((f & F_ERROR) && !(f & F_IMMUTABLE)) textcol = COL_ERROR;
|
|
else {
|
|
if (f & F_IMMUTABLE) textcol = COL_NUMBER_SET;
|
|
else textcol = COL_NUMBER;
|
|
|
|
if (f & F_DIM) textcol = dim(textcol, setcol);
|
|
else if (((f & F_ARROW_POINT) || num==ds->n) &&
|
|
((f & F_ARROW_INPOINT) || num==1))
|
|
textcol = mid(textcol, setcol);
|
|
}
|
|
|
|
if (f & F_DIM) sarrowcol = dim(COL_ARROW, setcol);
|
|
else sarrowcol = COL_ARROW;
|
|
}
|
|
|
|
/* Clear tile background */
|
|
|
|
if (print_ink < 0) {
|
|
draw_rect(dr, tx, ty, TILE_SIZE, TILE_SIZE,
|
|
(f & F_DIM) ? dimbg(setcol) : setcol);
|
|
}
|
|
|
|
/* Draw large (outwards-pointing) arrow. */
|
|
|
|
asz = ARROW_HALFSZ; /* 'radius' of arrow/star. */
|
|
acx = tx+TILE_SIZE/2+asz; /* centre x */
|
|
acy = ty+TILE_SIZE/2+asz; /* centre y */
|
|
|
|
if (num == ds->n && (f & F_IMMUTABLE))
|
|
draw_star(dr, acx, acy, asz, 5, arrowcol, arrowcol, angle_offset);
|
|
else
|
|
draw_arrow_dir(dr, acx, acy, asz, dir, arrowcol, arrowcol, angle_offset);
|
|
if (print_ink < 0 && (f & F_CUR))
|
|
draw_rect_corners(dr, acx, acy, asz+1, COL_CURSOR);
|
|
|
|
/* Draw dot iff this tile requires a predecessor and doesn't have one. */
|
|
|
|
if (print_ink < 0) {
|
|
acx = tx+TILE_SIZE/2-asz;
|
|
acy = ty+TILE_SIZE/2+asz;
|
|
|
|
if (!(f & F_ARROW_INPOINT) && num != 1) {
|
|
draw_circle(dr, acx, acy, asz / 4, sarrowcol, sarrowcol);
|
|
}
|
|
}
|
|
|
|
/* Draw text (number or set). */
|
|
|
|
if (!empty) {
|
|
int set = (num <= 0) ? 0 : num / (ds->n+1);
|
|
|
|
char *p = buf;
|
|
if (set == 0 || num <= 0) {
|
|
sprintf(buf, "%d", num);
|
|
} else {
|
|
int n = num % (ds->n+1);
|
|
p += sizeof(buf) - 1;
|
|
|
|
if (n != 0) {
|
|
sprintf(buf, "+%d", n); /* Just to get the length... */
|
|
p -= strlen(buf);
|
|
sprintf(p, "+%d", n);
|
|
} else {
|
|
*p = '\0';
|
|
}
|
|
do {
|
|
set--;
|
|
p--;
|
|
*p = (char)((set % 26)+'a');
|
|
set /= 26;
|
|
} while (set);
|
|
}
|
|
textsz = min(2*asz, (TILE_SIZE - 2 * cb) / (int)strlen(p));
|
|
draw_text(dr, tx + cb, ty + TILE_SIZE/4, FONT_VARIABLE, textsz,
|
|
ALIGN_VCENTRE | ALIGN_HLEFT, textcol, p);
|
|
}
|
|
|
|
if (print_ink < 0) {
|
|
draw_rect_outline(dr, tx, ty, TILE_SIZE, TILE_SIZE, COL_GRID);
|
|
draw_update(dr, tx, ty, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
}
|
|
|
|
static void draw_drag_indicator(drawing *dr, game_drawstate *ds,
|
|
game_state *state, game_ui *ui, int validdrag)
|
|
{
|
|
int dir, w = ds->w, acol = COL_ARROW;
|
|
int fx = FROMCOORD(ui->dx), fy = FROMCOORD(ui->dy);
|
|
double ang;
|
|
|
|
if (validdrag) {
|
|
/* If we could move here, lock the arrow to the appropriate direction. */
|
|
dir = ui->drag_is_from ? state->dirs[ui->sy*w+ui->sx] : state->dirs[fy*w+fx];
|
|
|
|
ang = (2.0 * PI * dir) / 8.0; /* similar to calculation in draw_arrow_dir. */
|
|
} else {
|
|
/* Draw an arrow pointing away from/towards the origin cell. */
|
|
int ox = COORD(ui->sx) + TILE_SIZE/2, oy = COORD(ui->sy) + TILE_SIZE/2;
|
|
double tana, offset;
|
|
double xdiff = fabs(ox - ui->dx), ydiff = fabs(oy - ui->dy);
|
|
|
|
if (xdiff == 0) {
|
|
ang = (oy > ui->dy) ? 0.0F : PI;
|
|
} else if (ydiff == 0) {
|
|
ang = (ox > ui->dx) ? 3.0F*PI/2.0F : PI/2.0F;
|
|
} else {
|
|
if (ui->dx > ox && ui->dy < oy) {
|
|
tana = xdiff / ydiff;
|
|
offset = 0.0F;
|
|
} else if (ui->dx > ox && ui->dy > oy) {
|
|
tana = ydiff / xdiff;
|
|
offset = PI/2.0F;
|
|
} else if (ui->dx < ox && ui->dy > oy) {
|
|
tana = xdiff / ydiff;
|
|
offset = PI;
|
|
} else {
|
|
tana = ydiff / xdiff;
|
|
offset = 3.0F * PI / 2.0F;
|
|
}
|
|
ang = atan(tana) + offset;
|
|
}
|
|
|
|
if (!ui->drag_is_from) ang += PI; /* point to origin, not away from. */
|
|
|
|
}
|
|
draw_arrow(dr, ui->dx, ui->dy, ARROW_HALFSZ, ang, acol, acol);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int x, y, i, w = ds->w, dirp, force = 0;
|
|
unsigned int f;
|
|
double angle_offset = 0.0;
|
|
game_state *postdrop = NULL;
|
|
|
|
if (flashtime > 0.0F)
|
|
angle_offset = 2.0 * PI * (flashtime / FLASH_SPIN);
|
|
if (angle_offset != ds->angle_offset) {
|
|
ds->angle_offset = angle_offset;
|
|
force = 1;
|
|
}
|
|
|
|
if (ds->dragging) {
|
|
assert(ds->dragb);
|
|
blitter_load(dr, ds->dragb, ds->dx, ds->dy);
|
|
draw_update(dr, ds->dx, ds->dy, BLITTER_SIZE, BLITTER_SIZE);
|
|
ds->dragging = FALSE;
|
|
}
|
|
|
|
/* If an in-progress drag would make a valid move if finished, we
|
|
* reflect that move in the board display. We let interpret_move do
|
|
* most of the heavy lifting for us: we have to copy the game_ui so
|
|
* as not to stomp on the real UI's drag state. */
|
|
if (ui->dragging) {
|
|
game_ui uicopy = *ui;
|
|
char *movestr = interpret_move(state, &uicopy, ds, ui->dx, ui->dy, LEFT_RELEASE);
|
|
|
|
if (movestr != NULL && strcmp(movestr, "") != 0) {
|
|
postdrop = execute_move(state, movestr);
|
|
sfree(movestr);
|
|
|
|
state = postdrop;
|
|
}
|
|
}
|
|
|
|
if (!ds->started) {
|
|
int aw = TILE_SIZE * state->w;
|
|
int ah = TILE_SIZE * state->h;
|
|
draw_rect(dr, 0, 0, aw + 2 * BORDER, ah + 2 * BORDER, COL_BACKGROUND);
|
|
draw_rect_outline(dr, BORDER - 1, BORDER - 1, aw + 2, ah + 2, COL_GRID);
|
|
draw_update(dr, 0, 0, aw + 2 * BORDER, ah + 2 * BORDER);
|
|
}
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
i = y*w + x;
|
|
f = 0;
|
|
dirp = -1;
|
|
|
|
if (ui->cshow && x == ui->cx && y == ui->cy)
|
|
f |= F_CUR;
|
|
|
|
if (ui->dragging) {
|
|
if (x == ui->sx && y == ui->sy)
|
|
f |= F_DRAG_SRC;
|
|
else if (ui->drag_is_from) {
|
|
if (!ispointing(state, ui->sx, ui->sy, x, y))
|
|
f |= F_DIM;
|
|
} else {
|
|
if (!ispointing(state, x, y, ui->sx, ui->sy))
|
|
f |= F_DIM;
|
|
}
|
|
}
|
|
|
|
if (state->impossible ||
|
|
state->nums[i] < 0 || state->flags[i] & FLAG_ERROR)
|
|
f |= F_ERROR;
|
|
if (state->flags[i] & FLAG_IMMUTABLE)
|
|
f |= F_IMMUTABLE;
|
|
|
|
if (state->next[i] != -1)
|
|
f |= F_ARROW_POINT;
|
|
|
|
if (state->prev[i] != -1) {
|
|
/* Currently the direction here is from our square _back_
|
|
* to its previous. We could change this to give the opposite
|
|
* sense to the direction. */
|
|
f |= F_ARROW_INPOINT;
|
|
dirp = whichdir(x, y, state->prev[i]%w, state->prev[i]/w);
|
|
}
|
|
|
|
if (state->nums[i] != ds->nums[i] ||
|
|
f != ds->f[i] || dirp != ds->dirp[i] ||
|
|
force || !ds->started) {
|
|
int sign;
|
|
{
|
|
/*
|
|
* Trivial and foolish configurable option done on
|
|
* purest whim. With this option enabled, the
|
|
* victory flash is done by rotating each square
|
|
* in the opposite direction from its immediate
|
|
* neighbours, so that they behave like a field of
|
|
* interlocking gears. With it disabled, they all
|
|
* rotate in the same direction. Choose for
|
|
* yourself which is more brain-twisting :-)
|
|
*/
|
|
static int gear_mode = -1;
|
|
if (gear_mode < 0) {
|
|
char *env = getenv("SIGNPOST_GEARS");
|
|
gear_mode = (env && (env[0] == 'y' || env[0] == 'Y'));
|
|
}
|
|
if (gear_mode)
|
|
sign = 1 - 2 * ((x ^ y) & 1);
|
|
else
|
|
sign = 1;
|
|
}
|
|
tile_redraw(dr, ds,
|
|
BORDER + x * TILE_SIZE,
|
|
BORDER + y * TILE_SIZE,
|
|
state->dirs[i], dirp, state->nums[i], f,
|
|
sign * angle_offset, -1);
|
|
ds->nums[i] = state->nums[i];
|
|
ds->f[i] = f;
|
|
ds->dirp[i] = dirp;
|
|
}
|
|
}
|
|
}
|
|
if (ui->dragging) {
|
|
ds->dragging = TRUE;
|
|
ds->dx = ui->dx - BLITTER_SIZE/2;
|
|
ds->dy = ui->dy - BLITTER_SIZE/2;
|
|
blitter_save(dr, ds->dragb, ds->dx, ds->dy);
|
|
|
|
draw_drag_indicator(dr, ds, state, ui, postdrop ? 1 : 0);
|
|
}
|
|
if (postdrop) free_game(postdrop);
|
|
if (!ds->started) ds->started = TRUE;
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed &&
|
|
newstate->completed && !newstate->used_solve)
|
|
return FLASH_SPIN;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
game_compute_size(params, 1300, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int ink = print_mono_colour(dr, 0);
|
|
int x, y;
|
|
|
|
/* Fake up just enough of a drawstate */
|
|
game_drawstate ads, *ds = &ads;
|
|
ds->tilesize = tilesize;
|
|
ds->n = state->n;
|
|
|
|
/*
|
|
* Border and grid.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 40);
|
|
for (x = 1; x < state->w; x++)
|
|
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(state->h), ink);
|
|
for (y = 1; y < state->h; y++)
|
|
draw_line(dr, COORD(0), COORD(y), COORD(state->w), COORD(y), ink);
|
|
print_line_width(dr, 2*TILE_SIZE / 40);
|
|
draw_rect_outline(dr, COORD(0), COORD(0), TILE_SIZE*state->w,
|
|
TILE_SIZE*state->h, ink);
|
|
|
|
/*
|
|
* Arrows and numbers.
|
|
*/
|
|
print_line_width(dr, 0);
|
|
for (y = 0; y < state->h; y++)
|
|
for (x = 0; x < state->w; x++)
|
|
tile_redraw(dr, ds, COORD(x), COORD(y), state->dirs[y*state->w+x],
|
|
0, state->nums[y*state->w+x], 0, 0.0, ink);
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame signpost
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Signpost", "games.signpost", "signpost",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_status,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
FALSE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
REQUIRE_RBUTTON, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
#include <time.h>
|
|
#include <stdarg.h>
|
|
|
|
const char *quis = NULL;
|
|
int verbose = 0;
|
|
|
|
void usage(FILE *out) {
|
|
fprintf(out, "usage: %s [--stdin] [--soak] [--seed SEED] <params>|<game id>\n", quis);
|
|
}
|
|
|
|
static void cycle_seed(char **seedstr, random_state *rs)
|
|
{
|
|
char newseed[16];
|
|
int j;
|
|
|
|
newseed[15] = '\0';
|
|
newseed[0] = '1' + (char)random_upto(rs, 9);
|
|
for (j = 1; j < 15; j++)
|
|
newseed[j] = '0' + (char)random_upto(rs, 10);
|
|
sfree(*seedstr);
|
|
*seedstr = dupstr(newseed);
|
|
}
|
|
|
|
static void start_soak(game_params *p, char *seedstr)
|
|
{
|
|
time_t tt_start, tt_now, tt_last;
|
|
char *desc, *aux;
|
|
random_state *rs;
|
|
long n = 0, nnums = 0, i;
|
|
game_state *state;
|
|
|
|
tt_start = tt_now = time(NULL);
|
|
printf("Soak-generating a %dx%d grid.\n", p->w, p->h);
|
|
|
|
while (1) {
|
|
rs = random_new(seedstr, strlen(seedstr));
|
|
desc = thegame.new_desc(p, rs, &aux, 0);
|
|
|
|
state = thegame.new_game(NULL, p, desc);
|
|
for (i = 0; i < state->n; i++) {
|
|
if (state->flags[i] & FLAG_IMMUTABLE)
|
|
nnums++;
|
|
}
|
|
thegame.free_game(state);
|
|
|
|
sfree(desc);
|
|
cycle_seed(&seedstr, rs);
|
|
random_free(rs);
|
|
|
|
n++;
|
|
tt_last = time(NULL);
|
|
if (tt_last > tt_now) {
|
|
tt_now = tt_last;
|
|
printf("%ld total, %3.1f/s, %3.1f nums/grid (%3.1f%%).\n",
|
|
n,
|
|
(double)n / ((double)tt_now - tt_start),
|
|
(double)nnums / (double)n,
|
|
((double)nnums * 100.0) / ((double)n * (double)p->w * (double)p->h) );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_desc(char *id)
|
|
{
|
|
char *desc, *err, *solvestr;
|
|
game_params *p;
|
|
game_state *s;
|
|
|
|
printf("%s\n ", id);
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: expecting game description.", quis);
|
|
exit(1);
|
|
}
|
|
|
|
*desc++ = '\0';
|
|
|
|
p = thegame.default_params();
|
|
thegame.decode_params(p, id);
|
|
err = thegame.validate_params(p, 1);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s", quis, err);
|
|
thegame.free_params(p);
|
|
return;
|
|
}
|
|
|
|
err = thegame.validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc);
|
|
thegame.free_params(p);
|
|
return;
|
|
}
|
|
|
|
s = thegame.new_game(NULL, p, desc);
|
|
|
|
solvestr = thegame.solve(s, s, NULL, &err);
|
|
if (!solvestr)
|
|
fprintf(stderr, "%s\n", err);
|
|
else
|
|
printf("Puzzle is soluble.\n");
|
|
|
|
thegame.free_game(s);
|
|
thegame.free_params(p);
|
|
}
|
|
|
|
int main(int argc, const char *argv[])
|
|
{
|
|
char *id = NULL, *desc, *err, *aux = NULL;
|
|
int soak = 0, verbose = 0, stdin_desc = 0, n = 1, i;
|
|
char *seedstr = NULL, newseed[16];
|
|
|
|
setvbuf(stdout, NULL, _IONBF, 0);
|
|
|
|
quis = argv[0];
|
|
while (--argc > 0) {
|
|
char *p = (char*)(*++argv);
|
|
if (!strcmp(p, "-v") || !strcmp(p, "--verbose"))
|
|
verbose = 1;
|
|
else if (!strcmp(p, "--stdin"))
|
|
stdin_desc = 1;
|
|
else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
|
|
seedstr = dupstr(*++argv);
|
|
argc--;
|
|
} else if (!strcmp(p, "-n") || !strcmp(p, "--number")) {
|
|
n = atoi(*++argv);
|
|
argc--;
|
|
} else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) {
|
|
soak = 1;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
usage(stderr);
|
|
exit(1);
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
sprintf(newseed, "%lu", time(NULL));
|
|
seedstr = dupstr(newseed);
|
|
|
|
if (id || !stdin_desc) {
|
|
if (id && strchr(id, ':')) {
|
|
/* Parameters and description passed on cmd-line:
|
|
* try and solve it. */
|
|
process_desc(id);
|
|
} else {
|
|
/* No description passed on cmd-line: decode parameters
|
|
* (with optional seed too) */
|
|
|
|
game_params *p = thegame.default_params();
|
|
|
|
if (id) {
|
|
char *cmdseed = strchr(id, '#');
|
|
if (cmdseed) {
|
|
*cmdseed++ = '\0';
|
|
sfree(seedstr);
|
|
seedstr = dupstr(cmdseed);
|
|
}
|
|
|
|
thegame.decode_params(p, id);
|
|
}
|
|
|
|
err = thegame.validate_params(p, 1);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s", quis, err);
|
|
thegame.free_params(p);
|
|
exit(1);
|
|
}
|
|
|
|
/* We have a set of valid parameters; either soak with it
|
|
* or generate a single game description and print to stdout. */
|
|
if (soak)
|
|
start_soak(p, seedstr);
|
|
else {
|
|
char *pstring = thegame.encode_params(p, 0);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
random_state *rs = random_new(seedstr, strlen(seedstr));
|
|
|
|
if (verbose) printf("%s#%s\n", pstring, seedstr);
|
|
desc = thegame.new_desc(p, rs, &aux, 0);
|
|
printf("%s:%s\n", pstring, desc);
|
|
sfree(desc);
|
|
|
|
cycle_seed(&seedstr, rs);
|
|
|
|
random_free(rs);
|
|
}
|
|
|
|
sfree(pstring);
|
|
}
|
|
thegame.free_params(p);
|
|
}
|
|
}
|
|
|
|
if (stdin_desc) {
|
|
char buf[4096];
|
|
|
|
while (fgets(buf, sizeof(buf), stdin)) {
|
|
buf[strcspn(buf, "\r\n")] = '\0';
|
|
process_desc(buf);
|
|
}
|
|
}
|
|
sfree(seedstr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|