mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files
1229 lines
32 KiB
C
1229 lines
32 KiB
C
/*
|
|
* fifteen.c: standard 15-puzzle.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define PREFERRED_TILE_SIZE 48
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE / 2)
|
|
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define ANIM_TIME 0.13F
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
#define X(state, i) ( (i) % (state)->w )
|
|
#define Y(state, i) ( (i) / (state)->w )
|
|
#define C(state, x, y) ( (y) * (state)->w + (x) )
|
|
|
|
#define PARITY_P(params, gap) (((X((params), (gap)) - ((params)->w - 1)) ^ \
|
|
(Y((params), (gap)) - ((params)->h - 1)) ^ \
|
|
(((params)->w * (params)->h) + 1)) & 1)
|
|
#define PARITY_S(state) PARITY_P((state), ((state)->gap_pos))
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_TEXT,
|
|
COL_HIGHLIGHT,
|
|
COL_LOWLIGHT,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h, n;
|
|
int *tiles;
|
|
int gap_pos;
|
|
int completed; /* move count at time of completion */
|
|
bool used_solve; /* used to suppress completion flash */
|
|
int movecount;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 4;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
if (i == 0) {
|
|
*params = default_params();
|
|
*name = dupstr("4x4");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char data[256];
|
|
|
|
sprintf(data, "%dx%d", params->w, params->h);
|
|
|
|
return dupstr(data);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = NULL;
|
|
ret[2].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->h = atoi(cfg[1].u.string.sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 2 || params->h < 2)
|
|
return "Width and height must both be at least two";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int perm_parity(int *perm, int n)
|
|
{
|
|
int i, j, ret;
|
|
|
|
ret = 0;
|
|
|
|
for (i = 0; i < n-1; i++)
|
|
for (j = i+1; j < n; j++)
|
|
if (perm[i] > perm[j])
|
|
ret = !ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int is_completed(int *tiles, int n) {
|
|
int p;
|
|
for (p = 0; p < n; p++)
|
|
if (tiles[p] != (p < n-1 ? p+1 : 0))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
int gap, n, i, x;
|
|
int x1, x2, p1, p2, parity;
|
|
int *tiles;
|
|
bool *used;
|
|
char *ret;
|
|
int retlen;
|
|
|
|
n = params->w * params->h;
|
|
|
|
tiles = snewn(n, int);
|
|
used = snewn(n, bool);
|
|
|
|
do {
|
|
for (i = 0; i < n; i++) {
|
|
tiles[i] = -1;
|
|
used[i] = false;
|
|
}
|
|
|
|
gap = random_upto(rs, n);
|
|
tiles[gap] = 0;
|
|
used[0] = true;
|
|
|
|
/*
|
|
* Place everything else except the last two tiles.
|
|
*/
|
|
for (x = 0, i = n - 1; i > 2; i--) {
|
|
int k = random_upto(rs, i);
|
|
int j;
|
|
|
|
for (j = 0; j < n; j++)
|
|
if (!used[j] && (k-- == 0))
|
|
break;
|
|
|
|
assert(j < n && !used[j]);
|
|
used[j] = true;
|
|
|
|
while (tiles[x] >= 0)
|
|
x++;
|
|
assert(x < n);
|
|
tiles[x] = j;
|
|
}
|
|
|
|
/*
|
|
* Find the last two locations, and the last two pieces.
|
|
*/
|
|
while (tiles[x] >= 0)
|
|
x++;
|
|
assert(x < n);
|
|
x1 = x;
|
|
x++;
|
|
while (tiles[x] >= 0)
|
|
x++;
|
|
assert(x < n);
|
|
x2 = x;
|
|
|
|
for (i = 0; i < n; i++)
|
|
if (!used[i])
|
|
break;
|
|
p1 = i;
|
|
for (i = p1 + 1; i < n; i++)
|
|
if (!used[i])
|
|
break;
|
|
p2 = i;
|
|
|
|
/*
|
|
* Determine the required parity of the overall permutation.
|
|
* This is the XOR of:
|
|
*
|
|
* - The chessboard parity ((x^y)&1) of the gap square. The
|
|
* bottom right counts as even.
|
|
*
|
|
* - The parity of n. (The target permutation is 1,...,n-1,0
|
|
* rather than 0,...,n-1; this is a cyclic permutation of
|
|
* the starting point and hence is odd iff n is even.)
|
|
*/
|
|
parity = PARITY_P(params, gap);
|
|
|
|
/*
|
|
* Try the last two tiles one way round. If that fails, swap
|
|
* them.
|
|
*/
|
|
tiles[x1] = p1;
|
|
tiles[x2] = p2;
|
|
if (perm_parity(tiles, n) != parity) {
|
|
tiles[x1] = p2;
|
|
tiles[x2] = p1;
|
|
assert(perm_parity(tiles, n) == parity);
|
|
}
|
|
} while (is_completed(tiles, n));
|
|
|
|
/*
|
|
* Now construct the game description, by describing the tile
|
|
* array as a simple sequence of comma-separated integers.
|
|
*/
|
|
ret = NULL;
|
|
retlen = 0;
|
|
for (i = 0; i < n; i++) {
|
|
char buf[80];
|
|
int k;
|
|
|
|
k = sprintf(buf, "%d,", tiles[i]);
|
|
|
|
ret = sresize(ret, retlen + k + 1, char);
|
|
strcpy(ret + retlen, buf);
|
|
retlen += k;
|
|
}
|
|
ret[retlen-1] = '\0'; /* delete last comma */
|
|
|
|
sfree(tiles);
|
|
sfree(used);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
const char *p;
|
|
const char *err;
|
|
int i, area;
|
|
bool *used;
|
|
|
|
area = params->w * params->h;
|
|
p = desc;
|
|
err = NULL;
|
|
|
|
used = snewn(area, bool);
|
|
for (i = 0; i < area; i++)
|
|
used[i] = false;
|
|
|
|
for (i = 0; i < area; i++) {
|
|
const char *q = p;
|
|
int n;
|
|
|
|
if (*p < '0' || *p > '9') {
|
|
err = "Not enough numbers in string";
|
|
goto leave;
|
|
}
|
|
while (*p >= '0' && *p <= '9')
|
|
p++;
|
|
if (i < area-1 && *p != ',') {
|
|
err = "Expected comma after number";
|
|
goto leave;
|
|
}
|
|
else if (i == area-1 && *p) {
|
|
err = "Excess junk at end of string";
|
|
goto leave;
|
|
}
|
|
n = atoi(q);
|
|
if (n < 0 || n >= area) {
|
|
err = "Number out of range";
|
|
goto leave;
|
|
}
|
|
if (used[n]) {
|
|
err = "Number used twice";
|
|
goto leave;
|
|
}
|
|
used[n] = true;
|
|
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
|
|
leave:
|
|
sfree(used);
|
|
return err;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int i;
|
|
const char *p;
|
|
|
|
state->w = params->w;
|
|
state->h = params->h;
|
|
state->n = params->w * params->h;
|
|
state->tiles = snewn(state->n, int);
|
|
|
|
state->gap_pos = 0;
|
|
p = desc;
|
|
i = 0;
|
|
for (i = 0; i < state->n; i++) {
|
|
assert(*p);
|
|
state->tiles[i] = atoi(p);
|
|
if (state->tiles[i] == 0)
|
|
state->gap_pos = i;
|
|
while (*p && *p != ',')
|
|
p++;
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
assert(!*p);
|
|
assert(state->tiles[state->gap_pos] == 0);
|
|
|
|
state->completed = state->movecount = 0;
|
|
state->used_solve = false;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->n = state->n;
|
|
ret->tiles = snewn(state->w * state->h, int);
|
|
memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int));
|
|
ret->gap_pos = state->gap_pos;
|
|
ret->completed = state->completed;
|
|
ret->movecount = state->movecount;
|
|
ret->used_solve = state->used_solve;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->tiles);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
return dupstr("S");
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
char *ret, *p, buf[80];
|
|
int x, y, col, maxlen;
|
|
|
|
/*
|
|
* First work out how many characters we need to display each
|
|
* number.
|
|
*/
|
|
col = sprintf(buf, "%d", state->n-1);
|
|
|
|
/*
|
|
* Now we know the exact total size of the grid we're going to
|
|
* produce: it's got h rows, each containing w lots of col, w-1
|
|
* spaces and a trailing newline.
|
|
*/
|
|
maxlen = state->h * state->w * (col+1);
|
|
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
int v = state->tiles[state->w*y+x];
|
|
if (v == 0)
|
|
sprintf(buf, "%*s", col, "");
|
|
else
|
|
sprintf(buf, "%*d", col, v);
|
|
memcpy(p, buf, col);
|
|
p += col;
|
|
if (x+1 == state->w)
|
|
*p++ = '\n';
|
|
else
|
|
*p++ = ' ';
|
|
}
|
|
}
|
|
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
bool started;
|
|
int w, h, bgcolour;
|
|
int *tiles;
|
|
int tilesize;
|
|
};
|
|
|
|
static int flip_cursor(int button)
|
|
{
|
|
switch (button) {
|
|
case CURSOR_UP: return CURSOR_DOWN;
|
|
case CURSOR_DOWN: return CURSOR_UP;
|
|
case CURSOR_LEFT: return CURSOR_RIGHT;
|
|
case CURSOR_RIGHT: return CURSOR_LEFT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void next_move_3x2(int ax, int ay, int bx, int by,
|
|
int gx, int gy, int *dx, int *dy)
|
|
{
|
|
/* When w = 3 and h = 2 and the tile going in the top left corner
|
|
* is at (ax, ay) and the tile going in the bottom left corner is
|
|
* at (bx, by) and the blank tile is at (gx, gy), how do you move? */
|
|
|
|
/* Hard-coded shortest solutions. Sorry. */
|
|
static const unsigned char move[120] = {
|
|
1,2,0,1,2,2,
|
|
2,0,0,2,0,0,
|
|
0,0,2,0,2,0,
|
|
0,0,0,2,0,2,
|
|
2,0,0,0,2,0,
|
|
|
|
0,3,0,1,1,1,
|
|
3,0,3,2,1,2,
|
|
2,1,1,0,1,0,
|
|
2,1,2,1,0,1,
|
|
1,2,0,2,1,2,
|
|
|
|
0,1,3,1,3,0,
|
|
1,3,1,3,0,3,
|
|
0,0,3,3,0,0,
|
|
0,0,0,1,2,1,
|
|
3,0,0,1,1,1,
|
|
|
|
3,1,1,1,3,0,
|
|
1,1,1,1,1,1,
|
|
1,3,1,1,3,0,
|
|
1,1,3,3,1,3,
|
|
1,3,0,0,0,0
|
|
};
|
|
static const struct { int dx, dy; } d[4] = {{+1,0},{-1,0},{0,+1},{0,-1}};
|
|
|
|
int ea = 3*ay + ax, eb = 3*by + bx, eg = 3*gy + gx, v;
|
|
if (eb > ea) --eb;
|
|
if (eg > ea) --eg;
|
|
if (eg > eb) --eg;
|
|
v = move[ea + eb*6 + eg*5*6];
|
|
*dx = d[v].dx;
|
|
*dy = d[v].dy;
|
|
}
|
|
|
|
static void next_move(int nx, int ny, int ox, int oy, int gx, int gy,
|
|
int tx, int ty, int w, int *dx, int *dy)
|
|
{
|
|
const int to_tile_x = (gx < nx ? +1 : -1);
|
|
const int to_goal_x = (gx < tx ? +1 : -1);
|
|
const bool gap_x_on_goal_side = ((nx-tx) * (nx-gx) > 0);
|
|
|
|
assert (nx != tx || ny != ty); /* not already in place */
|
|
assert (nx != gx || ny != gy); /* not placing the gap */
|
|
assert (ty <= ny); /* because we're greedy (and flipping) */
|
|
assert (ty <= gy); /* because we're greedy (and flipping) */
|
|
|
|
/* TODO: define a termination function. Idea: 0 if solved, or
|
|
* the number of moves to solve the next piece plus the number of
|
|
* further unsolved pieces times an upper bound on the number of
|
|
* moves required to solve any piece. If such a function can be
|
|
* found, we have (termination && (termination => correctness)).
|
|
* The catch is our temporary disturbance of 2x3 corners. */
|
|
|
|
/* handles end-of-row, when 3 and 4 are in the top right 2x3 box */
|
|
if (tx == w - 2 &&
|
|
ny <= ty + 2 && (nx == tx || nx == tx + 1) &&
|
|
oy <= ty + 2 && (ox == tx || ox == tx + 1) &&
|
|
gy <= ty + 2 && (gx == tx || gx == tx + 1))
|
|
{
|
|
next_move_3x2(oy - ty, tx + 1 - ox,
|
|
ny - ty, tx + 1 - nx,
|
|
gy - ty, tx + 1 - gx, dy, dx);
|
|
*dx *= -1;
|
|
return;
|
|
}
|
|
|
|
if (tx == w - 1) {
|
|
if (ny <= ty + 2 && (nx == tx || nx == tx - 1) &&
|
|
gy <= ty + 2 && (gx == tx || gx == tx - 1)) {
|
|
next_move_3x2(ny - ty, tx - nx, 0, 1, gy - ty, tx - gx, dy, dx);
|
|
*dx *= -1;
|
|
} else if (gy == ty)
|
|
*dy = +1;
|
|
else if (nx != tx || ny != ty + 1) {
|
|
next_move((w - 1) - nx, ny, -1, -1, (w - 1) - gx, gy,
|
|
0, ty + 1, -1, dx, dy);
|
|
*dx *= -1;
|
|
} else if (gx == nx)
|
|
*dy = -1;
|
|
else
|
|
*dx = +1;
|
|
return;
|
|
}
|
|
|
|
/* note that *dy = -1 is unsafe when gy = ty + 1 and gx < tx */
|
|
if (gy < ny)
|
|
if (nx == gx || (gy == ty && gx == tx))
|
|
*dy = +1;
|
|
else if (!gap_x_on_goal_side)
|
|
*dx = to_tile_x;
|
|
else if (ny - ty > abs(nx - tx))
|
|
*dx = to_tile_x;
|
|
else *dy = +1;
|
|
|
|
else if (gy == ny)
|
|
if (nx == tx) /* then we know ny > ty */
|
|
if (gx > nx || ny > ty + 1)
|
|
*dy = -1; /* ... so this is safe */
|
|
else
|
|
*dy = +1;
|
|
else if (gap_x_on_goal_side)
|
|
*dx = to_tile_x;
|
|
else if (gy == ty || (gy == ty + 1 && gx < tx))
|
|
*dy = +1;
|
|
else
|
|
*dy = -1;
|
|
|
|
else if (nx == tx) /* gy > ny */
|
|
if (gx > nx)
|
|
*dy = -1;
|
|
else
|
|
*dx = +1;
|
|
else if (gx == nx)
|
|
*dx = to_goal_x;
|
|
else if (gap_x_on_goal_side)
|
|
if (gy == ty + 1 && gx < tx)
|
|
*dx = to_tile_x;
|
|
else
|
|
*dy = -1;
|
|
|
|
else if (ny - ty > abs(nx - tx))
|
|
*dy = -1;
|
|
else
|
|
*dx = to_tile_x;
|
|
}
|
|
|
|
static bool compute_hint(const game_state *state, int *out_x, int *out_y)
|
|
{
|
|
/* The overall solving process is this:
|
|
* 1. Find the next piece to be put in its place
|
|
* 2. Move it diagonally towards its place
|
|
* 3. Move it horizontally or vertically towards its place
|
|
* (Modulo the last two tiles at the end of each row/column)
|
|
*/
|
|
|
|
int gx = X(state, state->gap_pos);
|
|
int gy = Y(state, state->gap_pos);
|
|
|
|
int tx, ty, nx, ny, ox, oy, /* {target,next,next2}_{x,y} */ i;
|
|
int dx = 0, dy = 0;
|
|
|
|
/* 1. Find the next piece
|
|
* if (there are no more unfinished columns than rows) {
|
|
* fill the top-most row, left to right
|
|
* } else { fill the left-most column, top to bottom }
|
|
*/
|
|
const int w = state->w, h = state->h, n = w*h;
|
|
int next_piece = 0, next_piece_2 = 0, solr = 0, solc = 0;
|
|
int unsolved_rows = h, unsolved_cols = w;
|
|
|
|
assert(out_x);
|
|
assert(out_y);
|
|
|
|
while (solr < h && solc < w) {
|
|
int start, step, stop;
|
|
if (unsolved_cols <= unsolved_rows)
|
|
start = solr*w + solc, step = 1, stop = unsolved_cols;
|
|
else
|
|
start = solr*w + solc, step = w, stop = unsolved_rows;
|
|
for (i = 0; i < stop; ++i) {
|
|
const int j = start + i*step;
|
|
if (state->tiles[j] != j + 1) {
|
|
next_piece = j + 1;
|
|
next_piece_2 = next_piece + step;
|
|
break;
|
|
}
|
|
}
|
|
if (i < stop) break;
|
|
|
|
(unsolved_cols <= unsolved_rows)
|
|
? (++solr, --unsolved_rows)
|
|
: (++solc, --unsolved_cols);
|
|
}
|
|
|
|
if (next_piece == n)
|
|
return false;
|
|
|
|
/* 2, 3. Move the next piece towards its place */
|
|
|
|
/* gx, gy already set */
|
|
tx = X(state, next_piece - 1); /* where we're going */
|
|
ty = Y(state, next_piece - 1);
|
|
for (i = 0; i < n && state->tiles[i] != next_piece; ++i);
|
|
nx = X(state, i); /* where we're at */
|
|
ny = Y(state, i);
|
|
for (i = 0; i < n && state->tiles[i] != next_piece_2; ++i);
|
|
ox = X(state, i);
|
|
oy = Y(state, i);
|
|
|
|
if (unsolved_cols <= unsolved_rows)
|
|
next_move(nx, ny, ox, oy, gx, gy, tx, ty, w, &dx, &dy);
|
|
else
|
|
next_move(ny, nx, oy, ox, gy, gx, ty, tx, h, &dy, &dx);
|
|
|
|
assert (dx || dy);
|
|
|
|
*out_x = gx + dx;
|
|
*out_y = gy + dy;
|
|
return true;
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int cx = X(state, state->gap_pos), nx = cx;
|
|
int cy = Y(state, state->gap_pos), ny = cy;
|
|
char buf[80];
|
|
|
|
button &= ~MOD_MASK;
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
nx = FROMCOORD(x);
|
|
ny = FROMCOORD(y);
|
|
if (nx < 0 || nx >= state->w || ny < 0 || ny >= state->h)
|
|
return NULL; /* out of bounds */
|
|
} else if (IS_CURSOR_MOVE(button)) {
|
|
static int invert_cursor = -1;
|
|
if (invert_cursor == -1) {
|
|
char *env = getenv("FIFTEEN_INVERT_CURSOR");
|
|
invert_cursor = (env && (env[0] == 'y' || env[0] == 'Y'));
|
|
}
|
|
button = flip_cursor(button); /* the default */
|
|
if (invert_cursor)
|
|
button = flip_cursor(button); /* undoes the first flip */
|
|
move_cursor(button, &nx, &ny, state->w, state->h, false);
|
|
} else if ((button == 'h' || button == 'H') && !state->completed) {
|
|
if (!compute_hint(state, &nx, &ny))
|
|
return NULL; /* shouldn't happen, since ^^we^^checked^^ */
|
|
} else
|
|
return NULL; /* no move */
|
|
|
|
/*
|
|
* Any click location should be equal to the gap location
|
|
* in _precisely_ one coordinate.
|
|
*/
|
|
if ((cx == nx) ^ (cy == ny)) {
|
|
sprintf(buf, "M%d,%d", nx, ny);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *from, const char *move)
|
|
{
|
|
int gx, gy, dx, dy, ux, uy, up, p;
|
|
game_state *ret;
|
|
|
|
if (!strcmp(move, "S")) {
|
|
int i;
|
|
|
|
ret = dup_game(from);
|
|
|
|
/*
|
|
* Simply replace the grid with a solved one. For this game,
|
|
* this isn't a useful operation for actually telling the user
|
|
* what they should have done, but it is useful for
|
|
* conveniently being able to get hold of a clean state from
|
|
* which to practise manoeuvres.
|
|
*/
|
|
for (i = 0; i < ret->n; i++)
|
|
ret->tiles[i] = (i+1) % ret->n;
|
|
ret->gap_pos = ret->n-1;
|
|
ret->used_solve = true;
|
|
ret->completed = ret->movecount = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
gx = X(from, from->gap_pos);
|
|
gy = Y(from, from->gap_pos);
|
|
|
|
if (move[0] != 'M' ||
|
|
sscanf(move+1, "%d,%d", &dx, &dy) != 2 ||
|
|
(dx == gx && dy == gy) || (dx != gx && dy != gy) ||
|
|
dx < 0 || dx >= from->w || dy < 0 || dy >= from->h)
|
|
return NULL;
|
|
|
|
/*
|
|
* Find the unit displacement from the original gap
|
|
* position towards this one.
|
|
*/
|
|
ux = (dx < gx ? -1 : dx > gx ? +1 : 0);
|
|
uy = (dy < gy ? -1 : dy > gy ? +1 : 0);
|
|
up = C(from, ux, uy);
|
|
|
|
ret = dup_game(from);
|
|
|
|
ret->gap_pos = C(from, dx, dy);
|
|
assert(ret->gap_pos >= 0 && ret->gap_pos < ret->n);
|
|
|
|
ret->tiles[ret->gap_pos] = 0;
|
|
|
|
for (p = from->gap_pos; p != ret->gap_pos; p += up) {
|
|
assert(p >= 0 && p < from->n);
|
|
ret->tiles[p] = from->tiles[p + up];
|
|
ret->movecount++;
|
|
}
|
|
|
|
/*
|
|
* See if the game has been completed.
|
|
*/
|
|
if (!ret->completed && is_completed(ret->tiles, ret->n)) {
|
|
ret->completed = ret->movecount;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
ret[COL_TEXT * 3 + i] = 0.0;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = false;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->bgcolour = COL_BACKGROUND;
|
|
ds->tiles = snewn(ds->w*ds->h, int);
|
|
ds->tilesize = 0; /* haven't decided yet */
|
|
for (i = 0; i < ds->w*ds->h; i++)
|
|
ds->tiles[i] = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->tiles);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
|
|
int x, int y, int tile, int flash_colour)
|
|
{
|
|
if (tile == 0) {
|
|
draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
|
|
flash_colour);
|
|
} else {
|
|
int coords[6];
|
|
char str[40];
|
|
|
|
coords[0] = x + TILE_SIZE - 1;
|
|
coords[1] = y + TILE_SIZE - 1;
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
coords[4] = x;
|
|
coords[5] = y + TILE_SIZE - 1;
|
|
draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
coords[0] = x;
|
|
coords[1] = y;
|
|
draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
|
|
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
|
|
flash_colour);
|
|
|
|
sprintf(str, "%d", tile);
|
|
draw_text(dr, x + TILE_SIZE/2, y + TILE_SIZE/2,
|
|
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_TEXT, str);
|
|
}
|
|
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, pass, bgcolour;
|
|
|
|
if (flashtime > 0) {
|
|
int frame = (int)(flashtime / FLASH_FRAME);
|
|
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
|
|
} else
|
|
bgcolour = COL_BACKGROUND;
|
|
|
|
if (!ds->started) {
|
|
int coords[10];
|
|
|
|
/*
|
|
* Recessed area containing the whole puzzle.
|
|
*/
|
|
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[4] = coords[2] - TILE_SIZE;
|
|
coords[5] = coords[3] + TILE_SIZE;
|
|
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[6] = coords[8] + TILE_SIZE;
|
|
coords[7] = coords[9] - TILE_SIZE;
|
|
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
ds->started = true;
|
|
}
|
|
|
|
/*
|
|
* Now draw each tile. We do this in two passes to make
|
|
* animation easy.
|
|
*/
|
|
for (pass = 0; pass < 2; pass++) {
|
|
for (i = 0; i < state->n; i++) {
|
|
int t, t0;
|
|
/*
|
|
* Figure out what should be displayed at this
|
|
* location. It's either a simple tile, or it's a
|
|
* transition between two tiles (in which case we say
|
|
* -1 because it must always be drawn).
|
|
*/
|
|
|
|
if (oldstate && oldstate->tiles[i] != state->tiles[i])
|
|
t = -1;
|
|
else
|
|
t = state->tiles[i];
|
|
|
|
t0 = t;
|
|
|
|
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
|
|
ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) {
|
|
int x, y;
|
|
|
|
/*
|
|
* Figure out what to _actually_ draw, and where to
|
|
* draw it.
|
|
*/
|
|
if (t == -1) {
|
|
int x0, y0, x1, y1;
|
|
int j;
|
|
|
|
/*
|
|
* On the first pass, just blank the tile.
|
|
*/
|
|
if (pass == 0) {
|
|
x = COORD(X(state, i));
|
|
y = COORD(Y(state, i));
|
|
t = 0;
|
|
} else {
|
|
float c;
|
|
|
|
t = state->tiles[i];
|
|
|
|
/*
|
|
* Don't bother moving the gap; just don't
|
|
* draw it.
|
|
*/
|
|
if (t == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Find the coordinates of this tile in the old and
|
|
* new states.
|
|
*/
|
|
x1 = COORD(X(state, i));
|
|
y1 = COORD(Y(state, i));
|
|
for (j = 0; j < oldstate->n; j++)
|
|
if (oldstate->tiles[j] == state->tiles[i])
|
|
break;
|
|
assert(j < oldstate->n);
|
|
x0 = COORD(X(state, j));
|
|
y0 = COORD(Y(state, j));
|
|
|
|
c = (animtime / ANIM_TIME);
|
|
if (c < 0.0F) c = 0.0F;
|
|
if (c > 1.0F) c = 1.0F;
|
|
|
|
x = x0 + (int)(c * (x1 - x0));
|
|
y = y0 + (int)(c * (y1 - y0));
|
|
}
|
|
|
|
} else {
|
|
if (pass == 0)
|
|
continue;
|
|
x = COORD(X(state, i));
|
|
y = COORD(Y(state, i));
|
|
}
|
|
|
|
draw_tile(dr, ds, state, x, y, t, bgcolour);
|
|
}
|
|
ds->tiles[i] = t0;
|
|
}
|
|
}
|
|
ds->bgcolour = bgcolour;
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbuf[256];
|
|
|
|
/*
|
|
* Don't show the new status until we're also showing the
|
|
* new _state_ - after the game animation is complete.
|
|
*/
|
|
if (oldstate)
|
|
state = oldstate;
|
|
|
|
if (state->used_solve)
|
|
sprintf(statusbuf, "Moves since auto-solve: %d",
|
|
state->movecount - state->completed);
|
|
else
|
|
sprintf(statusbuf, "%sMoves: %d",
|
|
(state->completed ? "COMPLETED! " : ""),
|
|
(state->completed ? state->completed : state->movecount));
|
|
|
|
status_bar(dr, statusbuf);
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return ANIM_TIME;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve)
|
|
return 2 * FLASH_FRAME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
*x = COORD(X(state, state->gap_pos));
|
|
*y = COORD(Y(state, state->gap_pos));
|
|
*w = *h = TILE_SIZE;
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static bool game_timing_state(const game_state *state, game_ui *ui)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame fifteen
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Fifteen", "games.fifteen", "fifteen",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
NULL, /* current_key_label */
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
false, false, game_print_size, game_print,
|
|
true, /* wants_statusbar */
|
|
false, game_timing_state,
|
|
0, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *params;
|
|
game_state *state;
|
|
char *id = NULL, *desc;
|
|
const char *err;
|
|
bool grade = false;
|
|
char *progname = argv[0];
|
|
|
|
char buf[80];
|
|
int limit, x, y;
|
|
bool solvable;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (!strcmp(p, "-v")) {
|
|
/* solver_show_working = true; */
|
|
} else if (!strcmp(p, "-g")) {
|
|
grade = true;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", progname, p);
|
|
return 1;
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
params = default_params();
|
|
decode_params(params, id);
|
|
err = validate_desc(params, desc);
|
|
if (err) {
|
|
free_params(params);
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
|
|
state = new_game(NULL, params, desc);
|
|
free_params(params);
|
|
|
|
solvable = (PARITY_S(state) == perm_parity(state->tiles, state->n));
|
|
if (grade || !solvable) {
|
|
free_game(state);
|
|
fputs(solvable ? "Game is solvable" : "Game is unsolvable",
|
|
grade ? stdout : stderr);
|
|
return !grade;
|
|
}
|
|
|
|
for (limit = 5 * state->n * state->n * state->n; limit; --limit) {
|
|
game_state *next_state;
|
|
if (!compute_hint(state, &x, &y)) {
|
|
fprintf(stderr, "couldn't compute next move while solving %s:%s",
|
|
id, desc);
|
|
return 1;
|
|
}
|
|
printf("Move the space to (%d, %d), moving %d into the space\n",
|
|
x + 1, y + 1, state->tiles[C(state, x, y)]);
|
|
sprintf(buf, "M%d,%d", x, y);
|
|
next_state = execute_move(state, buf);
|
|
|
|
free_game(state);
|
|
if (!next_state) {
|
|
fprintf(stderr, "invalid move when solving %s:%s\n", id, desc);
|
|
return 1;
|
|
}
|
|
state = next_state;
|
|
if (next_state->completed) {
|
|
free_game(state);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
free_game(state);
|
|
fprintf(stderr, "ran out of moves for %s:%s\n", id, desc);
|
|
return 1;
|
|
}
|
|
|
|
#endif
|