mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

This fixes a build failure introduced by commit 2e48ce132e011e8 yesterday. When I saw that commit I expected the most likely problem would be in the NestedVM build, which is currently the thing with the most most out-of-date C implementation. And indeed the NestedVM toolchain doesn't have <tgmath.h> - but much more surprisingly, our _Windows_ builds failed too, with a compile error inside <tgmath.h> itself! I haven't looked closely into the problem yet. Our Windows builds are done with clang, which comes with its own <tgmath.h> superseding the standard Windows one. So you'd _hope_ that clang could make sense of its own header! But perhaps the problem is that this is an unusual compile mode and hasn't been tested. My fix is to simply add a cmake check for <tgmath.h> - which doesn't just check the file's existence, it actually tries compiling a file that #includes it, so it will detect 'file exists but is mysteriously broken' just as easily as 'not there at all'. So this makes the builds start working again, precisely on Ben's theory of opportunistically using <tgmath.h> where possible and falling back to <math.h> otherwise. It looks ugly, though! I'm half tempted to make a new header file whose job is to include a standard set of system headers, just so that that nasty #ifdef doesn't have to sit at the top of almost all the source files. But for the moment this at least gets the build working again.
4489 lines
136 KiB
C
4489 lines
136 KiB
C
/*
|
|
* galaxies.c: implementation of 'Tentai Show' from Nikoli,
|
|
* also sometimes called 'Spiral Galaxies'.
|
|
*
|
|
* Notes:
|
|
*
|
|
* Grid is stored as size (2n-1), holding edges as well as spaces
|
|
* (and thus vertices too, at edge intersections).
|
|
*
|
|
* Any dot will thus be positioned at one of our grid points,
|
|
* which saves any faffing with half-of-a-square stuff.
|
|
*
|
|
* Edges have on/off state; obviously the actual edges of the
|
|
* board are fixed to on, and everything else starts as off.
|
|
*
|
|
* Future solver directions:
|
|
*
|
|
* - Non-local version of the exclave extension? Suppose you have an
|
|
* exclave with multiple potential paths back home, but all of them
|
|
* go through the same tile somewhere in the middle of the path.
|
|
* Then _that_ critical square can be assigned to the home dot,
|
|
* even if we don't yet know the details of the path from it to
|
|
* either existing region.
|
|
*
|
|
* - Permit non-simply-connected puzzle instances in sub-Unreasonable
|
|
* mode? Even the simplest case 5x3:ubb is graded Unreasonable at
|
|
* present, because we have no solution technique short of
|
|
* recursion that can handle it.
|
|
*
|
|
* The reasoning a human uses for that puzzle is to observe that
|
|
* the centre left square has to connect to the centre dot, so it
|
|
* must have _some_ path back there. It could go round either side
|
|
* of the dot in the way. But _whichever_ way it goes, that rules
|
|
* out the left dot extending to the squares above and below it,
|
|
* because if it did that, that would block _both_ routes back to
|
|
* the centre.
|
|
*
|
|
* But the exclave-extending deduction we have at present is only
|
|
* capable of extending an exclave with _one_ liberty. This has
|
|
* two, so the only technique we have available is to try them one
|
|
* by one via recursion.
|
|
*
|
|
* My vague plan to fix this would be to re-run the exclave
|
|
* extension on a per-dot basis (probably after working out a
|
|
* non-local version as described above): instead of trying to find
|
|
* all exclaves at once, try it for one exclave at a time, or
|
|
* perhaps all exclaves relating to a particular home dot H. The
|
|
* point of this is that then you could spot pairs of squares with
|
|
* _two_ possible dots, one of which is H, and which are opposite
|
|
* to each other with respect to their other dot D (such as the
|
|
* squares above/below the left dot in this example). And then you
|
|
* merge those into one vertex of the connectivity graph, on the
|
|
* grounds that they're either both H or both D - and _then_ you
|
|
* have an exclave with only one path back home, and can make
|
|
* progress.
|
|
*
|
|
* Bugs:
|
|
*
|
|
* Notable puzzle IDs:
|
|
*
|
|
* Nikoli's example [web site has wrong highlighting]
|
|
* (at http://www.nikoli.co.jp/en/puzzles/astronomical_show/):
|
|
* 5x5:eBbbMlaBbOEnf
|
|
*
|
|
* The 'spiral galaxies puzzles are NP-complete' paper
|
|
* (at http://www.stetson.edu/~efriedma/papers/spiral.pdf):
|
|
* 7x7:chpgdqqqoezdddki
|
|
*
|
|
* Puzzle competition pdf examples
|
|
* (at http://www.puzzleratings.org/Yurekli2006puz.pdf):
|
|
* 6x6:EDbaMucCohbrecEi
|
|
* 10x10:beFbufEEzowDlxldibMHezBQzCdcFzjlci
|
|
* 13x13:dCemIHFFkJajjgDfdbdBzdzEgjccoPOcztHjBczLDjczqktJjmpreivvNcggFi
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#ifdef NO_TGMATH_H
|
|
# include <math.h>
|
|
#else
|
|
# include <tgmath.h>
|
|
#endif
|
|
|
|
#include "puzzles.h"
|
|
|
|
#ifdef DEBUGGING
|
|
#define solvep debug
|
|
#elif defined STANDALONE_SOLVER
|
|
static bool solver_show_working;
|
|
#define solvep(x) do { if (solver_show_working) { printf x; } } while(0)
|
|
#else
|
|
#define solvep(x) ((void)0)
|
|
#endif
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
/*
|
|
* Dirty hack to enable the generator to construct a game ID which
|
|
* solves to a specified black-and-white bitmap. We define a global
|
|
* variable here which gives the desired colour of each square, and
|
|
* we arrange that the grid generator never merges squares of
|
|
* different colours.
|
|
*
|
|
* The bitmap as stored here is a simple int array (at these sizes
|
|
* it isn't worth doing fiddly bit-packing). picture[y*w+x] is 1
|
|
* iff the pixel at (x,y) is intended to be black.
|
|
*
|
|
* (It might be nice to be able to specify some pixels as
|
|
* don't-care, to give the generator more leeway. But that might be
|
|
* fiddly.)
|
|
*/
|
|
static int *picture;
|
|
#endif
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_WHITEBG,
|
|
COL_BLACKBG,
|
|
COL_WHITEDOT,
|
|
COL_BLACKDOT,
|
|
COL_GRID,
|
|
COL_EDGE,
|
|
COL_ARROW,
|
|
COL_CURSOR,
|
|
NCOLOURS
|
|
};
|
|
|
|
#define DIFFLIST(A) \
|
|
A(NORMAL,Normal,n) \
|
|
A(UNREASONABLE,Unreasonable,u)
|
|
|
|
#define ENUM(upper,title,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define ENCODE(upper,title,lower) #lower
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
enum { DIFFLIST(ENUM)
|
|
DIFF_IMPOSSIBLE, DIFF_AMBIGUOUS, DIFF_UNFINISHED, DIFF_MAX };
|
|
static char const *const galaxies_diffnames[] = {
|
|
DIFFLIST(TITLE) "Impossible", "Ambiguous", "Unfinished" };
|
|
static char const galaxies_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
struct game_params {
|
|
/* X and Y is the area of the board as seen by
|
|
* the user, not the (2n+1) area the game uses. */
|
|
int w, h, diff;
|
|
};
|
|
|
|
enum { s_tile, s_edge, s_vertex };
|
|
|
|
#define F_DOT 1 /* there's a dot here */
|
|
#define F_EDGE_SET 2 /* the edge is set */
|
|
#define F_TILE_ASSOC 4 /* this tile is associated with a dot. */
|
|
#define F_DOT_BLACK 8 /* (ui only) dot is black. */
|
|
#define F_MARK 16 /* scratch flag */
|
|
#define F_REACHABLE 32
|
|
#define F_SCRATCH 64
|
|
#define F_MULTIPLE 128
|
|
#define F_DOT_HOLD 256
|
|
#define F_GOOD 512
|
|
|
|
typedef struct space {
|
|
int x, y; /* its position */
|
|
int type;
|
|
unsigned int flags;
|
|
int dotx, doty; /* if flags & F_TILE_ASSOC */
|
|
int nassoc; /* if flags & F_DOT */
|
|
} space;
|
|
|
|
#define INGRID(s,x,y) ((x) >= 0 && (y) >= 0 && \
|
|
(x) < (state)->sx && (y) < (state)->sy)
|
|
#define INUI(s,x,y) ((x) > 0 && (y) > 0 && \
|
|
(x) < ((state)->sx-1) && (y) < ((state)->sy-1))
|
|
|
|
#define GRID(s,g,x,y) ((s)->g[((y)*(s)->sx)+(x)])
|
|
#define SPACE(s,x,y) GRID(s,grid,x,y)
|
|
|
|
struct game_state {
|
|
int w, h; /* size from params */
|
|
int sx, sy; /* allocated size, (2x-1)*(2y-1) */
|
|
space *grid;
|
|
bool completed, used_solve;
|
|
int ndots;
|
|
space **dots;
|
|
|
|
midend *me; /* to call supersede_game_desc */
|
|
int cdiff; /* difficulty of current puzzle (for status bar),
|
|
or -1 if stale. */
|
|
};
|
|
|
|
static bool check_complete(const game_state *state, int *dsf, int *colours);
|
|
static int solver_state_inner(game_state *state, int maxdiff, int depth);
|
|
static int solver_state(game_state *state, int maxdiff);
|
|
static int solver_obvious(game_state *state);
|
|
static int solver_obvious_dot(game_state *state, space *dot);
|
|
static space *space_opposite_dot(const game_state *state, const space *sp,
|
|
const space *dot);
|
|
static space *tile_opposite(const game_state *state, const space *sp);
|
|
static game_state *execute_move(const game_state *state, const char *move);
|
|
|
|
/* ----------------------------------------------------------
|
|
* Game parameters and presets
|
|
*/
|
|
|
|
/* make up some sensible default sizes */
|
|
|
|
#define DEFAULT_PRESET 0
|
|
|
|
static const game_params galaxies_presets[] = {
|
|
{ 7, 7, DIFF_NORMAL },
|
|
{ 7, 7, DIFF_UNREASONABLE },
|
|
{ 10, 10, DIFF_NORMAL },
|
|
{ 10, 10, DIFF_UNREASONABLE },
|
|
{ 15, 15, DIFF_NORMAL },
|
|
{ 15, 15, DIFF_UNREASONABLE },
|
|
};
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char buf[80];
|
|
|
|
if (i < 0 || i >= lenof(galaxies_presets))
|
|
return false;
|
|
|
|
ret = snew(game_params);
|
|
*ret = galaxies_presets[i]; /* structure copy */
|
|
|
|
sprintf(buf, "%dx%d %s", ret->w, ret->h,
|
|
galaxies_diffnames[ret->diff]);
|
|
|
|
if (name) *name = dupstr(buf);
|
|
*params = ret;
|
|
return true;
|
|
}
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret;
|
|
game_fetch_preset(DEFAULT_PRESET, NULL, &ret);
|
|
return ret;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->h = params->w = atoi(string);
|
|
params->diff = DIFF_NORMAL;
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
params->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
if (*string == 'd') {
|
|
int i;
|
|
string++;
|
|
for (i = 0; i <= DIFF_UNREASONABLE; i++)
|
|
if (*string == galaxies_diffchars[i])
|
|
params->diff = i;
|
|
if (*string) string++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char str[80];
|
|
sprintf(str, "%dx%d", params->w, params->h);
|
|
if (full)
|
|
sprintf(str + strlen(str), "d%c", galaxies_diffchars[params->diff]);
|
|
return dupstr(str);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(4, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = "Difficulty";
|
|
ret[2].type = C_CHOICES;
|
|
ret[2].u.choices.choicenames = DIFFCONFIG;
|
|
ret[2].u.choices.selected = params->diff;
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->h = atoi(cfg[1].u.string.sval);
|
|
ret->diff = cfg[2].u.choices.selected;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 3 || params->h < 3)
|
|
return "Width and height must both be at least 3";
|
|
if (params->w > INT_MAX / 2 || params->h > INT_MAX / 2 ||
|
|
params->w > (INT_MAX - params->w*2 - params->h*2 - 1) / 4 / params->h)
|
|
return "Width times height must not be unreasonably large";
|
|
|
|
/*
|
|
* This shouldn't be able to happen at all, since decode_params
|
|
* and custom_params will never generate anything that isn't
|
|
* within range.
|
|
*/
|
|
assert(params->diff <= DIFF_UNREASONABLE);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------
|
|
* Game utility functions.
|
|
*/
|
|
|
|
static void add_dot(space *space) {
|
|
assert(!(space->flags & F_DOT));
|
|
space->flags |= F_DOT;
|
|
space->nassoc = 0;
|
|
}
|
|
|
|
static void remove_dot(space *space) {
|
|
assert(space->flags & F_DOT);
|
|
space->flags &= ~F_DOT;
|
|
}
|
|
|
|
static void remove_assoc(const game_state *state, space *tile) {
|
|
if (tile->flags & F_TILE_ASSOC) {
|
|
SPACE(state, tile->dotx, tile->doty).nassoc--;
|
|
tile->flags &= ~F_TILE_ASSOC;
|
|
tile->dotx = -1;
|
|
tile->doty = -1;
|
|
}
|
|
}
|
|
|
|
static void remove_assoc_with_opposite(game_state *state, space *tile) {
|
|
space *opposite;
|
|
|
|
if (!(tile->flags & F_TILE_ASSOC)) {
|
|
return;
|
|
}
|
|
|
|
opposite = tile_opposite(state, tile);
|
|
remove_assoc(state, tile);
|
|
|
|
if (opposite != NULL && opposite != tile) {
|
|
remove_assoc(state, opposite);
|
|
}
|
|
}
|
|
|
|
static void add_assoc(const game_state *state, space *tile, space *dot) {
|
|
remove_assoc(state, tile);
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
if (picture)
|
|
assert(!picture[(tile->y/2) * state->w + (tile->x/2)] ==
|
|
!(dot->flags & F_DOT_BLACK));
|
|
#endif
|
|
tile->flags |= F_TILE_ASSOC;
|
|
tile->dotx = dot->x;
|
|
tile->doty = dot->y;
|
|
dot->nassoc++;
|
|
/*debug(("add_assoc sp %d %d --> dot %d,%d, new nassoc %d.\n",
|
|
tile->x, tile->y, dot->x, dot->y, dot->nassoc));*/
|
|
}
|
|
|
|
static bool ok_to_add_assoc_with_opposite_internal(
|
|
const game_state *state, space *tile, space *opposite)
|
|
{
|
|
int *colors;
|
|
bool toret;
|
|
|
|
if (tile->type != s_tile)
|
|
return false;
|
|
if (tile->flags & F_DOT)
|
|
return false;
|
|
if (opposite == NULL)
|
|
return false;
|
|
if (opposite->flags & F_DOT)
|
|
return false;
|
|
|
|
toret = true;
|
|
colors = snewn(state->w * state->h, int);
|
|
check_complete(state, NULL, colors);
|
|
|
|
if (colors[(tile->y - 1)/2 * state->w + (tile->x - 1)/2])
|
|
toret = false;
|
|
if (colors[(opposite->y - 1)/2 * state->w + (opposite->x - 1)/2])
|
|
toret = false;
|
|
|
|
sfree(colors);
|
|
return toret;
|
|
}
|
|
|
|
#ifndef EDITOR
|
|
static bool ok_to_add_assoc_with_opposite(
|
|
const game_state *state, space *tile, space *dot)
|
|
{
|
|
space *opposite = space_opposite_dot(state, tile, dot);
|
|
return ok_to_add_assoc_with_opposite_internal(state, tile, opposite);
|
|
}
|
|
#endif
|
|
|
|
static void add_assoc_with_opposite(game_state *state, space *tile, space *dot) {
|
|
space *opposite = space_opposite_dot(state, tile, dot);
|
|
|
|
if(opposite && ok_to_add_assoc_with_opposite_internal(
|
|
state, tile, opposite))
|
|
{
|
|
remove_assoc_with_opposite(state, tile);
|
|
add_assoc(state, tile, dot);
|
|
remove_assoc_with_opposite(state, opposite);
|
|
add_assoc(state, opposite, dot);
|
|
}
|
|
}
|
|
|
|
#ifndef EDITOR
|
|
static space *sp2dot(const game_state *state, int x, int y)
|
|
{
|
|
space *sp = &SPACE(state, x, y);
|
|
if (!(sp->flags & F_TILE_ASSOC)) return NULL;
|
|
return &SPACE(state, sp->dotx, sp->doty);
|
|
}
|
|
#endif
|
|
|
|
#define IS_VERTICAL_EDGE(x) ((x % 2) == 0)
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *encode_game(const game_state *state);
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
#ifdef EDITOR
|
|
game_params par;
|
|
char *params, *desc, *ret;
|
|
par.w = state->w;
|
|
par.h = state->h;
|
|
par.diff = DIFF_MAX; /* shouldn't be used */
|
|
params = encode_params(&par, false);
|
|
desc = encode_game(state);
|
|
ret = snewn(strlen(params) + strlen(desc) + 2, char);
|
|
sprintf(ret, "%s:%s", params, desc);
|
|
sfree(params);
|
|
sfree(desc);
|
|
return ret;
|
|
#else
|
|
int maxlen = (state->sx+1)*state->sy, x, y;
|
|
char *ret, *p;
|
|
space *sp;
|
|
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->sy; y++) {
|
|
for (x = 0; x < state->sx; x++) {
|
|
sp = &SPACE(state, x, y);
|
|
if (sp->flags & F_DOT)
|
|
*p++ = 'o';
|
|
#if 0
|
|
else if (sp->flags & (F_REACHABLE|F_MULTIPLE|F_MARK))
|
|
*p++ = (sp->flags & F_MULTIPLE) ? 'M' :
|
|
(sp->flags & F_REACHABLE) ? 'R' : 'X';
|
|
#endif
|
|
else {
|
|
switch (sp->type) {
|
|
case s_tile:
|
|
if (sp->flags & F_TILE_ASSOC) {
|
|
space *dot = sp2dot(state, sp->x, sp->y);
|
|
if (dot && dot->flags & F_DOT)
|
|
*p++ = (dot->flags & F_DOT_BLACK) ? 'B' : 'W';
|
|
else
|
|
*p++ = '?'; /* association with not-a-dot. */
|
|
} else
|
|
*p++ = ' ';
|
|
break;
|
|
|
|
case s_vertex:
|
|
*p++ = '+';
|
|
break;
|
|
|
|
case s_edge:
|
|
if (sp->flags & F_EDGE_SET)
|
|
*p++ = (IS_VERTICAL_EDGE(x)) ? '|' : '-';
|
|
else
|
|
*p++ = ' ';
|
|
break;
|
|
|
|
default:
|
|
assert(!"shouldn't get here!");
|
|
}
|
|
}
|
|
}
|
|
*p++ = '\n';
|
|
}
|
|
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
|
|
return ret;
|
|
#endif
|
|
}
|
|
|
|
static void dbg_state(const game_state *state)
|
|
{
|
|
#ifdef DEBUGGING
|
|
char *temp = game_text_format(state);
|
|
debug(("%s\n", temp));
|
|
sfree(temp);
|
|
#endif
|
|
}
|
|
|
|
/* Space-enumeration callbacks should all return 1 for 'progress made',
|
|
* -1 for 'impossible', and 0 otherwise. */
|
|
typedef int (*space_cb)(game_state *state, space *sp, void *ctx);
|
|
|
|
#define IMPOSSIBLE_QUITS 1
|
|
|
|
static int foreach_sub(game_state *state, space_cb cb, unsigned int f,
|
|
void *ctx, int startx, int starty)
|
|
{
|
|
int x, y, ret;
|
|
bool progress = false, impossible = false;
|
|
space *sp;
|
|
|
|
for (y = starty; y < state->sy; y += 2) {
|
|
sp = &SPACE(state, startx, y);
|
|
for (x = startx; x < state->sx; x += 2) {
|
|
ret = cb(state, sp, ctx);
|
|
if (ret == -1) {
|
|
if (f & IMPOSSIBLE_QUITS) return -1;
|
|
impossible = true;
|
|
} else if (ret == 1) {
|
|
progress = true;
|
|
}
|
|
sp += 2;
|
|
}
|
|
}
|
|
return impossible ? -1 : progress ? 1 : 0;
|
|
}
|
|
|
|
static int foreach_tile(game_state *state, space_cb cb, unsigned int f,
|
|
void *ctx)
|
|
{
|
|
return foreach_sub(state, cb, f, ctx, 1, 1);
|
|
}
|
|
|
|
static int foreach_edge(game_state *state, space_cb cb, unsigned int f,
|
|
void *ctx)
|
|
{
|
|
int ret1, ret2;
|
|
|
|
ret1 = foreach_sub(state, cb, f, ctx, 0, 1);
|
|
ret2 = foreach_sub(state, cb, f, ctx, 1, 0);
|
|
|
|
if (ret1 == -1 || ret2 == -1) return -1;
|
|
return (ret1 || ret2) ? 1 : 0;
|
|
}
|
|
|
|
#if 0
|
|
static int foreach_vertex(game_state *state, space_cb cb, unsigned int f,
|
|
void *ctx)
|
|
{
|
|
return foreach_sub(state, cb, f, ctx, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static int is_same_assoc(game_state *state,
|
|
int x1, int y1, int x2, int y2)
|
|
{
|
|
space *s1, *s2;
|
|
|
|
if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2))
|
|
return 0;
|
|
|
|
s1 = &SPACE(state, x1, y1);
|
|
s2 = &SPACE(state, x2, y2);
|
|
assert(s1->type == s_tile && s2->type == s_tile);
|
|
if ((s1->flags & F_TILE_ASSOC) && (s2->flags & F_TILE_ASSOC) &&
|
|
s1->dotx == s2->dotx && s1->doty == s2->doty)
|
|
return 1;
|
|
return 0; /* 0 if not same or not both associated. */
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static int edges_into_vertex(game_state *state,
|
|
int x, int y)
|
|
{
|
|
int dx, dy, nx, ny, count = 0;
|
|
|
|
assert(SPACE(state, x, y).type == s_vertex);
|
|
for (dx = -1; dx <= 1; dx++) {
|
|
for (dy = -1; dy <= 1; dy++) {
|
|
if (dx != 0 && dy != 0) continue;
|
|
if (dx == 0 && dy == 0) continue;
|
|
|
|
nx = x+dx; ny = y+dy;
|
|
if (!INGRID(state, nx, ny)) continue;
|
|
assert(SPACE(state, nx, ny).type == s_edge);
|
|
if (SPACE(state, nx, ny).flags & F_EDGE_SET)
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
static space *space_opposite_dot(const game_state *state, const space *sp,
|
|
const space *dot)
|
|
{
|
|
int dx, dy, tx, ty;
|
|
space *sp2;
|
|
|
|
dx = sp->x - dot->x;
|
|
dy = sp->y - dot->y;
|
|
tx = dot->x - dx;
|
|
ty = dot->y - dy;
|
|
if (!INGRID(state, tx, ty)) return NULL;
|
|
|
|
sp2 = &SPACE(state, tx, ty);
|
|
assert(sp2->type == sp->type);
|
|
return sp2;
|
|
}
|
|
|
|
static space *tile_opposite(const game_state *state, const space *sp)
|
|
{
|
|
space *dot;
|
|
|
|
assert(sp->flags & F_TILE_ASSOC);
|
|
dot = &SPACE(state, sp->dotx, sp->doty);
|
|
return space_opposite_dot(state, sp, dot);
|
|
}
|
|
|
|
static bool dotfortile(game_state *state, space *tile, space *dot)
|
|
{
|
|
space *tile_opp = space_opposite_dot(state, tile, dot);
|
|
|
|
if (!tile_opp) return false; /* opposite would be off grid */
|
|
if (tile_opp->flags & F_TILE_ASSOC &&
|
|
(tile_opp->dotx != dot->x || tile_opp->doty != dot->y))
|
|
return false; /* opposite already associated with diff. dot */
|
|
return true;
|
|
}
|
|
|
|
static void adjacencies(game_state *state, space *sp, space **a1s, space **a2s)
|
|
{
|
|
int dxs[4] = {-1, 1, 0, 0}, dys[4] = {0, 0, -1, 1};
|
|
int n, x, y;
|
|
|
|
/* this function needs optimising. */
|
|
|
|
for (n = 0; n < 4; n++) {
|
|
x = sp->x+dxs[n];
|
|
y = sp->y+dys[n];
|
|
|
|
if (INGRID(state, x, y)) {
|
|
a1s[n] = &SPACE(state, x, y);
|
|
|
|
x += dxs[n]; y += dys[n];
|
|
|
|
if (INGRID(state, x, y))
|
|
a2s[n] = &SPACE(state, x, y);
|
|
else
|
|
a2s[n] = NULL;
|
|
} else {
|
|
a1s[n] = a2s[n] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool outline_tile_fordot(game_state *state, space *tile, bool mark)
|
|
{
|
|
space *tadj[4], *eadj[4];
|
|
int i;
|
|
bool didsth = false, edge, same;
|
|
|
|
assert(tile->type == s_tile);
|
|
adjacencies(state, tile, eadj, tadj);
|
|
for (i = 0; i < 4; i++) {
|
|
if (!eadj[i]) continue;
|
|
|
|
edge = eadj[i]->flags & F_EDGE_SET;
|
|
if (tadj[i]) {
|
|
if (!(tile->flags & F_TILE_ASSOC))
|
|
same = !(tadj[i]->flags & F_TILE_ASSOC);
|
|
else
|
|
same = ((tadj[i]->flags & F_TILE_ASSOC) &&
|
|
tile->dotx == tadj[i]->dotx &&
|
|
tile->doty == tadj[i]->doty);
|
|
} else
|
|
same = false;
|
|
|
|
if (!edge && !same) {
|
|
if (mark) eadj[i]->flags |= F_EDGE_SET;
|
|
didsth = true;
|
|
} else if (edge && same) {
|
|
if (mark) eadj[i]->flags &= ~F_EDGE_SET;
|
|
didsth = true;
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static void tiles_from_edge(game_state *state, space *sp, space **ts)
|
|
{
|
|
int xs[2], ys[2];
|
|
|
|
if (IS_VERTICAL_EDGE(sp->x)) {
|
|
xs[0] = sp->x-1; ys[0] = sp->y;
|
|
xs[1] = sp->x+1; ys[1] = sp->y;
|
|
} else {
|
|
xs[0] = sp->x; ys[0] = sp->y-1;
|
|
xs[1] = sp->x; ys[1] = sp->y+1;
|
|
}
|
|
ts[0] = INGRID(state, xs[0], ys[0]) ? &SPACE(state, xs[0], ys[0]) : NULL;
|
|
ts[1] = INGRID(state, xs[1], ys[1]) ? &SPACE(state, xs[1], ys[1]) : NULL;
|
|
}
|
|
|
|
/* Returns a move string for use by 'solve', including the initial
|
|
* 'S' if issolve is true. */
|
|
static char *diff_game(const game_state *src, const game_state *dest,
|
|
bool issolve, int set_cdiff)
|
|
{
|
|
int movelen = 0, movesize = 256, x, y, len;
|
|
char *move = snewn(movesize, char), buf[80];
|
|
const char *sep = "";
|
|
char achar = issolve ? 'a' : 'A';
|
|
space *sps, *spd;
|
|
|
|
assert(src->sx == dest->sx && src->sy == dest->sy);
|
|
|
|
if (issolve) {
|
|
move[movelen++] = 'S';
|
|
sep = ";";
|
|
}
|
|
#ifdef EDITOR
|
|
if (set_cdiff >= 0) {
|
|
switch (set_cdiff) {
|
|
case DIFF_IMPOSSIBLE:
|
|
movelen += sprintf(move+movelen, "%sII", sep);
|
|
break;
|
|
case DIFF_AMBIGUOUS:
|
|
movelen += sprintf(move+movelen, "%sIA", sep);
|
|
break;
|
|
case DIFF_UNFINISHED:
|
|
movelen += sprintf(move+movelen, "%sIU", sep);
|
|
break;
|
|
default:
|
|
movelen += sprintf(move+movelen, "%si%c",
|
|
sep, galaxies_diffchars[set_cdiff]);
|
|
break;
|
|
}
|
|
sep = ";";
|
|
}
|
|
#endif
|
|
move[movelen] = '\0';
|
|
for (x = 0; x < src->sx; x++) {
|
|
for (y = 0; y < src->sy; y++) {
|
|
sps = &SPACE(src, x, y);
|
|
spd = &SPACE(dest, x, y);
|
|
|
|
assert(sps->type == spd->type);
|
|
|
|
len = 0;
|
|
if (sps->type == s_tile) {
|
|
if ((sps->flags & F_TILE_ASSOC) &&
|
|
(spd->flags & F_TILE_ASSOC)) {
|
|
if (sps->dotx != spd->dotx ||
|
|
sps->doty != spd->doty)
|
|
/* Both associated; change association, if different */
|
|
len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
|
|
(int)achar, x, y, spd->dotx, spd->doty);
|
|
} else if (sps->flags & F_TILE_ASSOC)
|
|
/* Only src associated; remove. */
|
|
len = sprintf(buf, "%sU%d,%d", sep, x, y);
|
|
else if (spd->flags & F_TILE_ASSOC)
|
|
/* Only dest associated; add. */
|
|
len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
|
|
(int)achar, x, y, spd->dotx, spd->doty);
|
|
} else if (sps->type == s_edge) {
|
|
if ((sps->flags & F_EDGE_SET) != (spd->flags & F_EDGE_SET))
|
|
/* edge flags are different; flip them. */
|
|
len = sprintf(buf, "%sE%d,%d", sep, x, y);
|
|
}
|
|
if (len) {
|
|
if (movelen + len >= movesize) {
|
|
movesize = movelen + len + 256;
|
|
move = sresize(move, movesize, char);
|
|
}
|
|
strcpy(move + movelen, buf);
|
|
movelen += len;
|
|
sep = ";";
|
|
}
|
|
}
|
|
}
|
|
debug(("diff_game src then dest:\n"));
|
|
dbg_state(src);
|
|
dbg_state(dest);
|
|
debug(("diff string %s\n", move));
|
|
return move;
|
|
}
|
|
|
|
/* Returns true if a dot here would not be too close to any other dots
|
|
* (and would avoid other game furniture). */
|
|
static bool dot_is_possible(const game_state *state, space *sp,
|
|
bool allow_assoc)
|
|
{
|
|
int bx = 0, by = 0, dx, dy;
|
|
space *adj;
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
int col = -1;
|
|
#endif
|
|
|
|
switch (sp->type) {
|
|
case s_tile:
|
|
bx = by = 1; break;
|
|
case s_edge:
|
|
if (IS_VERTICAL_EDGE(sp->x)) {
|
|
bx = 2; by = 1;
|
|
} else {
|
|
bx = 1; by = 2;
|
|
}
|
|
break;
|
|
case s_vertex:
|
|
bx = by = 2; break;
|
|
}
|
|
|
|
for (dx = -bx; dx <= bx; dx++) {
|
|
for (dy = -by; dy <= by; dy++) {
|
|
if (!INGRID(state, sp->x+dx, sp->y+dy)) continue;
|
|
|
|
adj = &SPACE(state, sp->x+dx, sp->y+dy);
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
/*
|
|
* Check that all the squares we're looking at have the
|
|
* same colour.
|
|
*/
|
|
if (picture) {
|
|
if (adj->type == s_tile) {
|
|
int c = picture[(adj->y / 2) * state->w + (adj->x / 2)];
|
|
if (col < 0)
|
|
col = c;
|
|
if (c != col)
|
|
return false; /* colour mismatch */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!allow_assoc && (adj->flags & F_TILE_ASSOC))
|
|
return false;
|
|
|
|
if (dx != 0 || dy != 0) {
|
|
/* Other than our own square, no dots nearby. */
|
|
if (adj->flags & (F_DOT))
|
|
return false;
|
|
}
|
|
|
|
/* We don't want edges within our rectangle
|
|
* (but don't care about edges on the edge) */
|
|
if (abs(dx) < bx && abs(dy) < by &&
|
|
adj->flags & F_EDGE_SET)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------
|
|
* Game generation, structure creation, and descriptions.
|
|
*/
|
|
|
|
static game_state *blank_game(int w, int h)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int x, y;
|
|
|
|
state->w = w;
|
|
state->h = h;
|
|
|
|
state->sx = (w*2)+1;
|
|
state->sy = (h*2)+1;
|
|
state->grid = snewn(state->sx * state->sy, space);
|
|
state->completed = false;
|
|
state->used_solve = false;
|
|
|
|
for (x = 0; x < state->sx; x++) {
|
|
for (y = 0; y < state->sy; y++) {
|
|
space *sp = &SPACE(state, x, y);
|
|
memset(sp, 0, sizeof(space));
|
|
sp->x = x;
|
|
sp->y = y;
|
|
if ((x % 2) == 0 && (y % 2) == 0)
|
|
sp->type = s_vertex;
|
|
else if ((x % 2) == 0 || (y % 2) == 0) {
|
|
sp->type = s_edge;
|
|
if (x == 0 || y == 0 || x == state->sx-1 || y == state->sy-1)
|
|
sp->flags |= F_EDGE_SET;
|
|
} else
|
|
sp->type = s_tile;
|
|
}
|
|
}
|
|
|
|
state->ndots = 0;
|
|
state->dots = NULL;
|
|
|
|
state->me = NULL; /* filled in by new_game. */
|
|
state->cdiff = -1;
|
|
|
|
return state;
|
|
}
|
|
|
|
static void game_update_dots(game_state *state)
|
|
{
|
|
int i, n, sz = state->sx * state->sy;
|
|
|
|
if (state->dots) sfree(state->dots);
|
|
state->ndots = 0;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
if (state->grid[i].flags & F_DOT) state->ndots++;
|
|
}
|
|
state->dots = snewn(state->ndots, space *);
|
|
n = 0;
|
|
for (i = 0; i < sz; i++) {
|
|
if (state->grid[i].flags & F_DOT)
|
|
state->dots[n++] = &state->grid[i];
|
|
}
|
|
}
|
|
|
|
static void clear_game(game_state *state, bool cleardots)
|
|
{
|
|
int x, y;
|
|
|
|
/* don't erase edge flags around outline! */
|
|
for (x = 1; x < state->sx-1; x++) {
|
|
for (y = 1; y < state->sy-1; y++) {
|
|
if (cleardots)
|
|
SPACE(state, x, y).flags = 0;
|
|
else
|
|
SPACE(state, x, y).flags &= (F_DOT|F_DOT_BLACK);
|
|
}
|
|
}
|
|
if (cleardots) game_update_dots(state);
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret = blank_game(state->w, state->h);
|
|
|
|
ret->completed = state->completed;
|
|
ret->used_solve = state->used_solve;
|
|
|
|
memcpy(ret->grid, state->grid,
|
|
ret->sx*ret->sy*sizeof(space));
|
|
|
|
game_update_dots(ret);
|
|
|
|
ret->me = state->me;
|
|
ret->cdiff = state->cdiff;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (state->dots) sfree(state->dots);
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
/* Game description is a sequence of letters representing the number
|
|
* of spaces (a = 0, y = 24) before the next dot; a-y for a white dot,
|
|
* and A-Y for a black dot. 'z' is 25 spaces (and no dot).
|
|
*
|
|
* I know it's a bitch to generate by hand, so we provide
|
|
* an edit mode.
|
|
*/
|
|
|
|
static char *encode_game(const game_state *state)
|
|
{
|
|
char *desc, *p;
|
|
int run, x, y, area;
|
|
unsigned int f;
|
|
|
|
area = (state->sx-2) * (state->sy-2);
|
|
|
|
desc = snewn(area, char);
|
|
p = desc;
|
|
run = 0;
|
|
for (y = 1; y < state->sy-1; y++) {
|
|
for (x = 1; x < state->sx-1; x++) {
|
|
f = SPACE(state, x, y).flags;
|
|
|
|
/* a/A is 0 spaces between, b/B is 1 space, ...
|
|
* y/Y is 24 spaces, za/zA is 25 spaces, ...
|
|
* It's easier to count from 0 because we then
|
|
* don't have to special-case the top left-hand corner
|
|
* (which could be a dot with 0 spaces before it). */
|
|
if (!(f & F_DOT))
|
|
run++;
|
|
else {
|
|
while (run > 24) {
|
|
*p++ = 'z';
|
|
run -= 25;
|
|
}
|
|
*p++ = ((f & F_DOT_BLACK) ? 'A' : 'a') + run;
|
|
run = 0;
|
|
}
|
|
}
|
|
}
|
|
assert(p - desc < area);
|
|
*p++ = '\0';
|
|
desc = sresize(desc, p - desc, char);
|
|
|
|
return desc;
|
|
}
|
|
|
|
struct movedot {
|
|
int op;
|
|
space *olddot, *newdot;
|
|
};
|
|
|
|
enum { MD_CHECK, MD_MOVE };
|
|
|
|
static int movedot_cb(game_state *state, space *tile, void *vctx)
|
|
{
|
|
struct movedot *md = (struct movedot *)vctx;
|
|
space *newopp = NULL;
|
|
|
|
assert(tile->type == s_tile);
|
|
assert(md->olddot && md->newdot);
|
|
|
|
if (!(tile->flags & F_TILE_ASSOC)) return 0;
|
|
if (tile->dotx != md->olddot->x || tile->doty != md->olddot->y)
|
|
return 0;
|
|
|
|
newopp = space_opposite_dot(state, tile, md->newdot);
|
|
|
|
switch (md->op) {
|
|
case MD_CHECK:
|
|
/* If the tile is associated with the old dot, check its
|
|
* opposite wrt the _new_ dot is empty or same assoc. */
|
|
if (!newopp) return -1; /* no new opposite */
|
|
if (newopp->flags & F_TILE_ASSOC) {
|
|
if (newopp->dotx != md->olddot->x ||
|
|
newopp->doty != md->olddot->y)
|
|
return -1; /* associated, but wrong dot. */
|
|
}
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
if (picture) {
|
|
/*
|
|
* Reject if either tile and the dot don't match in colour.
|
|
*/
|
|
if (!(picture[(tile->y/2) * state->w + (tile->x/2)]) ^
|
|
!(md->newdot->flags & F_DOT_BLACK))
|
|
return -1;
|
|
if (!(picture[(newopp->y/2) * state->w + (newopp->x/2)]) ^
|
|
!(md->newdot->flags & F_DOT_BLACK))
|
|
return -1;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case MD_MOVE:
|
|
/* Move dot associations: anything that was associated
|
|
* with the old dot, and its opposite wrt the new dot,
|
|
* become associated with the new dot. */
|
|
assert(newopp);
|
|
debug(("Associating %d,%d and %d,%d with new dot %d,%d.\n",
|
|
tile->x, tile->y, newopp->x, newopp->y,
|
|
md->newdot->x, md->newdot->y));
|
|
add_assoc(state, tile, md->newdot);
|
|
add_assoc(state, newopp, md->newdot);
|
|
return 1; /* we did something! */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* For the given dot, first see if we could expand it into all the given
|
|
* extra spaces (by checking for empty spaces on the far side), and then
|
|
* see if we can move the dot to shift the CoG to include the new spaces.
|
|
*/
|
|
static bool dot_expand_or_move(game_state *state, space *dot,
|
|
space **toadd, int nadd)
|
|
{
|
|
space *tileopp;
|
|
int i, ret, nnew, cx, cy;
|
|
struct movedot md;
|
|
|
|
debug(("dot_expand_or_move: %d tiles for dot %d,%d\n",
|
|
nadd, dot->x, dot->y));
|
|
for (i = 0; i < nadd; i++)
|
|
debug(("dot_expand_or_move: dot %d,%d\n",
|
|
toadd[i]->x, toadd[i]->y));
|
|
assert(dot->flags & F_DOT);
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
if (picture) {
|
|
/*
|
|
* Reject the expansion totally if any of the new tiles are
|
|
* the wrong colour.
|
|
*/
|
|
for (i = 0; i < nadd; i++) {
|
|
if (!(picture[(toadd[i]->y/2) * state->w + (toadd[i]->x/2)]) ^
|
|
!(dot->flags & F_DOT_BLACK))
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* First off, could we just expand the current dot's tile to cover
|
|
* the space(s) passed in and their opposites? */
|
|
for (i = 0; i < nadd; i++) {
|
|
tileopp = space_opposite_dot(state, toadd[i], dot);
|
|
if (!tileopp) goto noexpand;
|
|
if (tileopp->flags & F_TILE_ASSOC) goto noexpand;
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
if (picture) {
|
|
/*
|
|
* The opposite tiles have to be the right colour as well.
|
|
*/
|
|
if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^
|
|
!(dot->flags & F_DOT_BLACK))
|
|
goto noexpand;
|
|
}
|
|
#endif
|
|
}
|
|
/* OK, all spaces have valid empty opposites: associate spaces and
|
|
* opposites with our dot. */
|
|
for (i = 0; i < nadd; i++) {
|
|
tileopp = space_opposite_dot(state, toadd[i], dot);
|
|
add_assoc(state, toadd[i], dot);
|
|
add_assoc(state, tileopp, dot);
|
|
debug(("Added associations %d,%d and %d,%d --> %d,%d\n",
|
|
toadd[i]->x, toadd[i]->y,
|
|
tileopp->x, tileopp->y,
|
|
dot->x, dot->y));
|
|
dbg_state(state);
|
|
}
|
|
return true;
|
|
|
|
noexpand:
|
|
/* Otherwise, try to move dot so as to encompass given spaces: */
|
|
/* first, calculate the 'centre of gravity' of the new dot. */
|
|
nnew = dot->nassoc + nadd; /* number of tiles assoc. with new dot. */
|
|
cx = dot->x * dot->nassoc;
|
|
cy = dot->y * dot->nassoc;
|
|
for (i = 0; i < nadd; i++) {
|
|
cx += toadd[i]->x;
|
|
cy += toadd[i]->y;
|
|
}
|
|
/* If the CoG isn't a whole number, it's not possible. */
|
|
if ((cx % nnew) != 0 || (cy % nnew) != 0) {
|
|
debug(("Unable to move dot %d,%d, CoG not whole number.\n",
|
|
dot->x, dot->y));
|
|
return false;
|
|
}
|
|
cx /= nnew; cy /= nnew;
|
|
|
|
/* Check whether all spaces in the old tile would have a good
|
|
* opposite wrt the new dot. */
|
|
md.olddot = dot;
|
|
md.newdot = &SPACE(state, cx, cy);
|
|
md.op = MD_CHECK;
|
|
ret = foreach_tile(state, movedot_cb, IMPOSSIBLE_QUITS, &md);
|
|
if (ret == -1) {
|
|
debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
|
|
dot->x, dot->y));
|
|
return false;
|
|
}
|
|
/* Also check whether all spaces we're adding would have a good
|
|
* opposite wrt the new dot. */
|
|
for (i = 0; i < nadd; i++) {
|
|
tileopp = space_opposite_dot(state, toadd[i], md.newdot);
|
|
if (tileopp && (tileopp->flags & F_TILE_ASSOC) &&
|
|
(tileopp->dotx != dot->x || tileopp->doty != dot->y)) {
|
|
tileopp = NULL;
|
|
}
|
|
if (!tileopp) {
|
|
debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
|
|
dot->x, dot->y));
|
|
return false;
|
|
}
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
if (picture) {
|
|
if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^
|
|
!(dot->flags & F_DOT_BLACK))
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* If we've got here, we're ok. First, associate all of 'toadd'
|
|
* with the _old_ dot (so they'll get fixed up, with their opposites,
|
|
* in the next step). */
|
|
for (i = 0; i < nadd; i++) {
|
|
debug(("Associating to-add %d,%d with old dot %d,%d.\n",
|
|
toadd[i]->x, toadd[i]->y, dot->x, dot->y));
|
|
add_assoc(state, toadd[i], dot);
|
|
}
|
|
|
|
/* Finally, move the dot and fix up all the old associations. */
|
|
debug(("Moving dot at %d,%d to %d,%d\n",
|
|
dot->x, dot->y, md.newdot->x, md.newdot->y));
|
|
{
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
int f = dot->flags & F_DOT_BLACK;
|
|
#endif
|
|
remove_dot(dot);
|
|
add_dot(md.newdot);
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
md.newdot->flags |= f;
|
|
#endif
|
|
}
|
|
|
|
md.op = MD_MOVE;
|
|
ret = foreach_tile(state, movedot_cb, 0, &md);
|
|
assert(ret == 1);
|
|
dbg_state(state);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Hard-code to a max. of 2x2 squares, for speed (less malloc) */
|
|
#define MAX_TOADD 4
|
|
#define MAX_OUTSIDE 8
|
|
|
|
#define MAX_TILE_PERC 20
|
|
|
|
static bool generate_try_block(game_state *state, random_state *rs,
|
|
int x1, int y1, int x2, int y2)
|
|
{
|
|
int x, y, nadd = 0, nout = 0, i, maxsz;
|
|
space *sp, *toadd[MAX_TOADD], *outside[MAX_OUTSIDE], *dot;
|
|
|
|
if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return false;
|
|
|
|
/* We limit the maximum size of tiles to be ~2*sqrt(area); so,
|
|
* a 5x5 grid shouldn't have anything >10 tiles, a 20x20 grid
|
|
* nothing >40 tiles. */
|
|
maxsz = (int)sqrt((double)(state->w * state->h)) * 2;
|
|
debug(("generate_try_block, maxsz %d\n", maxsz));
|
|
|
|
/* Make a static list of the spaces; if any space is already
|
|
* associated then quit immediately. */
|
|
for (x = x1; x <= x2; x += 2) {
|
|
for (y = y1; y <= y2; y += 2) {
|
|
assert(nadd < MAX_TOADD);
|
|
sp = &SPACE(state, x, y);
|
|
assert(sp->type == s_tile);
|
|
if (sp->flags & F_TILE_ASSOC) return false;
|
|
toadd[nadd++] = sp;
|
|
}
|
|
}
|
|
|
|
/* Make a list of the spaces outside of our block, and shuffle it. */
|
|
#define OUTSIDE(x, y) do { \
|
|
if (INGRID(state, (x), (y))) { \
|
|
assert(nout < MAX_OUTSIDE); \
|
|
outside[nout++] = &SPACE(state, (x), (y)); \
|
|
} \
|
|
} while(0)
|
|
for (x = x1; x <= x2; x += 2) {
|
|
OUTSIDE(x, y1-2);
|
|
OUTSIDE(x, y2+2);
|
|
}
|
|
for (y = y1; y <= y2; y += 2) {
|
|
OUTSIDE(x1-2, y);
|
|
OUTSIDE(x2+2, y);
|
|
}
|
|
shuffle(outside, nout, sizeof(space *), rs);
|
|
|
|
for (i = 0; i < nout; i++) {
|
|
if (!(outside[i]->flags & F_TILE_ASSOC)) continue;
|
|
dot = &SPACE(state, outside[i]->dotx, outside[i]->doty);
|
|
if (dot->nassoc >= maxsz) {
|
|
debug(("Not adding to dot %d,%d, large enough (%d) already.\n",
|
|
dot->x, dot->y, dot->nassoc));
|
|
continue;
|
|
}
|
|
if (dot_expand_or_move(state, dot, toadd, nadd)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
static bool one_try; /* override for soak testing */
|
|
#endif
|
|
|
|
#define GP_DOTS 1
|
|
|
|
static void generate_pass(game_state *state, random_state *rs, int *scratch,
|
|
int perc, unsigned int flags)
|
|
{
|
|
int sz = state->sx*state->sy, nspc, i, ret;
|
|
|
|
/* Random list of squares to try and process, one-by-one. */
|
|
for (i = 0; i < sz; i++) scratch[i] = i;
|
|
shuffle(scratch, sz, sizeof(int), rs);
|
|
|
|
/* This bug took me a, er, little while to track down. On PalmOS,
|
|
* which has 16-bit signed ints, puzzles over about 9x9 started
|
|
* failing to generate because the nspc calculation would start
|
|
* to overflow, causing the dots not to be filled in properly. */
|
|
nspc = (int)(((long)perc * (long)sz) / 100L);
|
|
debug(("generate_pass: %d%% (%d of %dx%d) squares, flags 0x%x\n",
|
|
perc, nspc, state->sx, state->sy, flags));
|
|
|
|
for (i = 0; i < nspc; i++) {
|
|
space *sp = &state->grid[scratch[i]];
|
|
int x1 = sp->x, y1 = sp->y, x2 = sp->x, y2 = sp->y;
|
|
|
|
if (sp->type == s_edge) {
|
|
if (IS_VERTICAL_EDGE(sp->x)) {
|
|
x1--; x2++;
|
|
} else {
|
|
y1--; y2++;
|
|
}
|
|
}
|
|
if (sp->type != s_vertex) {
|
|
/* heuristic; expanding from vertices tends to generate lots of
|
|
* too-big regions of tiles. */
|
|
if (generate_try_block(state, rs, x1, y1, x2, y2))
|
|
continue; /* we expanded successfully. */
|
|
}
|
|
|
|
if (!(flags & GP_DOTS)) continue;
|
|
|
|
if ((sp->type == s_edge) && (i % 2)) {
|
|
debug(("Omitting edge %d,%d as half-of.\n", sp->x, sp->y));
|
|
continue;
|
|
}
|
|
|
|
/* If we've got here we might want to put a dot down. Check
|
|
* if we can, and add one if so. */
|
|
if (dot_is_possible(state, sp, false)) {
|
|
add_dot(sp);
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
if (picture) {
|
|
if (picture[(sp->y/2) * state->w + (sp->x/2)])
|
|
sp->flags |= F_DOT_BLACK;
|
|
}
|
|
#endif
|
|
ret = solver_obvious_dot(state, sp);
|
|
assert(ret != -1);
|
|
debug(("Added dot (and obvious associations) at %d,%d\n",
|
|
sp->x, sp->y));
|
|
dbg_state(state);
|
|
}
|
|
}
|
|
dbg_state(state);
|
|
}
|
|
|
|
/*
|
|
* We try several times to generate a grid at all, before even feeding
|
|
* it to the solver. Then we pick whichever of the resulting grids was
|
|
* the most 'wiggly', as measured by the number of inward corners in
|
|
* the shape of any region.
|
|
*
|
|
* Rationale: wiggly shapes are what make this puzzle fun, and it's
|
|
* disappointing to be served a game whose entire solution is a
|
|
* collection of rectangles. But we also don't want to introduce a
|
|
* _hard requirement_ of wiggliness, because a player who knew that
|
|
* was there would be able to use it as an extra clue. This way, we
|
|
* just probabilistically skew in favour of wiggliness.
|
|
*/
|
|
#define GENERATE_TRIES 10
|
|
|
|
static bool is_wiggle(const game_state *state, int x, int y, int dx, int dy)
|
|
{
|
|
int x1 = x+2*dx, y1 = y+2*dy;
|
|
int x2 = x-2*dy, y2 = y+2*dx;
|
|
space *t, *t1, *t2;
|
|
|
|
if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2))
|
|
return false;
|
|
|
|
t = &SPACE(state, x, y);
|
|
t1 = &SPACE(state, x1, y1);
|
|
t2 = &SPACE(state, x2, y2);
|
|
return ((t1->dotx == t2->dotx && t1->doty == t2->doty) &&
|
|
!(t1->dotx == t->dotx && t1->doty == t->doty));
|
|
}
|
|
|
|
static int measure_wiggliness(const game_state *state, int *scratch)
|
|
{
|
|
int sz = state->sx*state->sy;
|
|
int x, y, nwiggles = 0;
|
|
memset(scratch, 0, sz);
|
|
|
|
for (y = 1; y < state->sy; y += 2) {
|
|
for (x = 1; x < state->sx; x += 2) {
|
|
if (y+2 < state->sy) {
|
|
nwiggles += is_wiggle(state, x, y, 0, +1);
|
|
nwiggles += is_wiggle(state, x, y, 0, -1);
|
|
nwiggles += is_wiggle(state, x, y, +1, 0);
|
|
nwiggles += is_wiggle(state, x, y, -1, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
return nwiggles;
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
game_state *state = blank_game(params->w, params->h), *copy;
|
|
char *desc;
|
|
int *scratch, sz = state->sx*state->sy, i;
|
|
int diff, best_wiggliness;
|
|
bool cc;
|
|
|
|
scratch = snewn(sz, int);
|
|
|
|
generate:
|
|
best_wiggliness = -1;
|
|
copy = NULL;
|
|
for (i = 0; i < GENERATE_TRIES; i++) {
|
|
int this_wiggliness;
|
|
|
|
do {
|
|
clear_game(state, true);
|
|
generate_pass(state, rs, scratch, 100, GP_DOTS);
|
|
game_update_dots(state);
|
|
} while (state->ndots == 1);
|
|
|
|
this_wiggliness = measure_wiggliness(state, scratch);
|
|
debug(("Grid gen #%d: wiggliness=%d", i, this_wiggliness));
|
|
if (this_wiggliness > best_wiggliness) {
|
|
best_wiggliness = this_wiggliness;
|
|
if (copy)
|
|
free_game(copy);
|
|
copy = dup_game(state);
|
|
debug((" new best"));
|
|
}
|
|
debug(("\n"));
|
|
}
|
|
assert(copy);
|
|
free_game(state);
|
|
state = copy;
|
|
|
|
#ifdef DEBUGGING
|
|
{
|
|
char *tmp = encode_game(state);
|
|
debug(("new_game_desc state %dx%d:%s\n", params->w, params->h, tmp));
|
|
sfree(tmp);
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < state->sx*state->sy; i++)
|
|
if (state->grid[i].type == s_tile)
|
|
outline_tile_fordot(state, &state->grid[i], true);
|
|
cc = check_complete(state, NULL, NULL);
|
|
assert(cc);
|
|
|
|
copy = dup_game(state);
|
|
clear_game(copy, false);
|
|
dbg_state(copy);
|
|
diff = solver_state(copy, params->diff);
|
|
free_game(copy);
|
|
|
|
assert(diff != DIFF_IMPOSSIBLE);
|
|
if (diff != params->diff) {
|
|
/*
|
|
* If the puzzle was insoluble at this difficulty level (i.e.
|
|
* too hard), _or_ soluble at a lower level (too easy), go
|
|
* round again.
|
|
*
|
|
* An exception is in soak-testing mode, where we return the
|
|
* first puzzle we got regardless.
|
|
*/
|
|
#ifdef STANDALONE_SOLVER
|
|
if (!one_try)
|
|
#endif
|
|
goto generate;
|
|
}
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
/*
|
|
* Postprocessing pass to prevent excessive numbers of adjacent
|
|
* singletons. Iterate over all edges in random shuffled order;
|
|
* for each edge that separates two regions, investigate
|
|
* whether removing that edge and merging the regions would
|
|
* still yield a valid and soluble puzzle. (The two regions
|
|
* must also be the same colour, of course.) If so, do it.
|
|
*
|
|
* This postprocessing pass is slow (due to repeated solver
|
|
* invocations), and seems to be unnecessary during normal
|
|
* unconstrained game generation. However, when generating a
|
|
* game under colour constraints, excessive singletons seem to
|
|
* turn up more often, so it's worth doing this.
|
|
*/
|
|
{
|
|
int *posns, nposns;
|
|
int i, j, newdiff;
|
|
game_state *copy2;
|
|
|
|
nposns = params->w * (params->h+1) + params->h * (params->w+1);
|
|
posns = snewn(nposns, int);
|
|
for (i = j = 0; i < state->sx*state->sy; i++)
|
|
if (state->grid[i].type == s_edge)
|
|
posns[j++] = i;
|
|
assert(j == nposns);
|
|
|
|
shuffle(posns, nposns, sizeof(*posns), rs);
|
|
|
|
for (i = 0; i < nposns; i++) {
|
|
int x, y, x0, y0, x1, y1, cx, cy, cn, cx0, cy0, cx1, cy1, tx, ty;
|
|
space *s0, *s1, *ts, *d0, *d1, *dn;
|
|
bool ok;
|
|
|
|
/* Coordinates of edge space */
|
|
x = posns[i] % state->sx;
|
|
y = posns[i] / state->sx;
|
|
|
|
/* Coordinates of square spaces on either side of edge */
|
|
x0 = ((x+1) & ~1) - 1; /* round down to next odd number */
|
|
y0 = ((y+1) & ~1) - 1;
|
|
x1 = 2*x-x0; /* and reflect about x to get x1 */
|
|
y1 = 2*y-y0;
|
|
|
|
if (!INGRID(state, x0, y0) || !INGRID(state, x1, y1))
|
|
continue; /* outermost edge of grid */
|
|
s0 = &SPACE(state, x0, y0);
|
|
s1 = &SPACE(state, x1, y1);
|
|
assert(s0->type == s_tile && s1->type == s_tile);
|
|
|
|
if (s0->dotx == s1->dotx && s0->doty == s1->doty)
|
|
continue; /* tiles _already_ owned by same dot */
|
|
|
|
d0 = &SPACE(state, s0->dotx, s0->doty);
|
|
d1 = &SPACE(state, s1->dotx, s1->doty);
|
|
|
|
if ((d0->flags ^ d1->flags) & F_DOT_BLACK)
|
|
continue; /* different colours: cannot merge */
|
|
|
|
/*
|
|
* Work out where the centre of gravity of the new
|
|
* region would be.
|
|
*/
|
|
cx = d0->nassoc * d0->x + d1->nassoc * d1->x;
|
|
cy = d0->nassoc * d0->y + d1->nassoc * d1->y;
|
|
cn = d0->nassoc + d1->nassoc;
|
|
if (cx % cn || cy % cn)
|
|
continue; /* CoG not at integer coordinates */
|
|
cx /= cn;
|
|
cy /= cn;
|
|
assert(INUI(state, cx, cy));
|
|
|
|
/*
|
|
* Ensure that the CoG would actually be _in_ the new
|
|
* region, by verifying that all its surrounding tiles
|
|
* belong to one or other of our two dots.
|
|
*/
|
|
cx0 = ((cx+1) & ~1) - 1; /* round down to next odd number */
|
|
cy0 = ((cy+1) & ~1) - 1;
|
|
cx1 = 2*cx-cx0; /* and reflect about cx to get cx1 */
|
|
cy1 = 2*cy-cy0;
|
|
ok = true;
|
|
for (ty = cy0; ty <= cy1; ty += 2)
|
|
for (tx = cx0; tx <= cx1; tx += 2) {
|
|
ts = &SPACE(state, tx, ty);
|
|
assert(ts->type == s_tile);
|
|
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
|
|
(ts->dotx != d1->x || ts->doty != d1->y))
|
|
ok = false;
|
|
}
|
|
if (!ok)
|
|
continue;
|
|
|
|
/*
|
|
* Verify that for every tile in either source region,
|
|
* that tile's image in the new CoG is also in one of
|
|
* the two source regions.
|
|
*/
|
|
for (ty = 1; ty < state->sy; ty += 2) {
|
|
for (tx = 1; tx < state->sx; tx += 2) {
|
|
int tx1, ty1;
|
|
|
|
ts = &SPACE(state, tx, ty);
|
|
assert(ts->type == s_tile);
|
|
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
|
|
(ts->dotx != d1->x || ts->doty != d1->y))
|
|
continue; /* not part of these tiles anyway */
|
|
tx1 = 2*cx-tx;
|
|
ty1 = 2*cy-ty;
|
|
if (!INGRID(state, tx1, ty1)) {
|
|
ok = false;
|
|
break;
|
|
}
|
|
ts = &SPACE(state, cx+cx-tx, cy+cy-ty);
|
|
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
|
|
(ts->dotx != d1->x || ts->doty != d1->y)) {
|
|
ok = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!ok)
|
|
break;
|
|
}
|
|
if (!ok)
|
|
continue;
|
|
|
|
/*
|
|
* Now we're clear to attempt the merge. We take a copy
|
|
* of the game state first, so we can revert it easily
|
|
* if the resulting puzzle turns out to have become
|
|
* insoluble.
|
|
*/
|
|
copy2 = dup_game(state);
|
|
|
|
remove_dot(d0);
|
|
remove_dot(d1);
|
|
dn = &SPACE(state, cx, cy);
|
|
add_dot(dn);
|
|
dn->flags |= (d0->flags & F_DOT_BLACK);
|
|
for (ty = 1; ty < state->sy; ty += 2) {
|
|
for (tx = 1; tx < state->sx; tx += 2) {
|
|
ts = &SPACE(state, tx, ty);
|
|
assert(ts->type == s_tile);
|
|
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
|
|
(ts->dotx != d1->x || ts->doty != d1->y))
|
|
continue; /* not part of these tiles anyway */
|
|
add_assoc(state, ts, dn);
|
|
}
|
|
}
|
|
|
|
copy = dup_game(state);
|
|
clear_game(copy, false);
|
|
dbg_state(copy);
|
|
newdiff = solver_state(copy, params->diff);
|
|
free_game(copy);
|
|
if (diff == newdiff) {
|
|
/* Still just as soluble. Let the merge stand. */
|
|
free_game(copy2);
|
|
} else {
|
|
/* Became insoluble. Revert. */
|
|
free_game(state);
|
|
state = copy2;
|
|
}
|
|
}
|
|
sfree(posns);
|
|
}
|
|
#endif
|
|
|
|
desc = encode_game(state);
|
|
#ifndef STANDALONE_SOLVER
|
|
debug(("new_game_desc generated: \n"));
|
|
dbg_state(state);
|
|
#endif
|
|
|
|
game_state *blank = blank_game(params->w, params->h);
|
|
*aux = diff_game(blank, state, true, -1);
|
|
free_game(blank);
|
|
|
|
free_game(state);
|
|
sfree(scratch);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static bool dots_too_close(game_state *state)
|
|
{
|
|
/* Quick-and-dirty check, using half the solver:
|
|
* solver_obvious will only fail if the dots are
|
|
* too close together, so dot-proximity associations
|
|
* overlap. */
|
|
game_state *tmp = dup_game(state);
|
|
int ret = solver_obvious(tmp);
|
|
free_game(tmp);
|
|
return ret == -1;
|
|
}
|
|
|
|
static game_state *load_game(const game_params *params, const char *desc,
|
|
const char **why_r)
|
|
{
|
|
game_state *state = blank_game(params->w, params->h);
|
|
const char *why = NULL;
|
|
int i, x, y, n;
|
|
unsigned int df;
|
|
|
|
i = 0;
|
|
while (*desc) {
|
|
n = *desc++;
|
|
if (n == 'z') {
|
|
i += 25;
|
|
continue;
|
|
}
|
|
if (n >= 'a' && n <= 'y') {
|
|
i += n - 'a';
|
|
df = 0;
|
|
} else if (n >= 'A' && n <= 'Y') {
|
|
i += n - 'A';
|
|
df = F_DOT_BLACK;
|
|
} else {
|
|
why = "Invalid characters in game description"; goto fail;
|
|
}
|
|
/* if we got here we incremented i and have a dot to add. */
|
|
y = (i / (state->sx-2)) + 1;
|
|
x = (i % (state->sx-2)) + 1;
|
|
if (!INUI(state, x, y)) {
|
|
why = "Too much data to fit in grid"; goto fail;
|
|
}
|
|
add_dot(&SPACE(state, x, y));
|
|
SPACE(state, x, y).flags |= df;
|
|
i++;
|
|
}
|
|
game_update_dots(state);
|
|
|
|
if (dots_too_close(state)) {
|
|
why = "Dots too close together"; goto fail;
|
|
}
|
|
|
|
return state;
|
|
|
|
fail:
|
|
free_game(state);
|
|
if (why_r) *why_r = why;
|
|
return NULL;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
const char *why = NULL;
|
|
game_state *dummy = load_game(params, desc, &why);
|
|
if (dummy) {
|
|
free_game(dummy);
|
|
assert(!why);
|
|
} else
|
|
assert(why);
|
|
return why;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
game_state *state = load_game(params, desc, NULL);
|
|
if (!state) {
|
|
assert("Unable to load ?validated game.");
|
|
return NULL;
|
|
}
|
|
#ifdef EDITOR
|
|
state->me = me;
|
|
#endif
|
|
return state;
|
|
}
|
|
|
|
/* ----------------------------------------------------------
|
|
* Solver and all its little wizards.
|
|
*/
|
|
|
|
#if defined DEBUGGING || defined STANDALONE_SOLVER
|
|
static int solver_recurse_depth;
|
|
#define STATIC_RECURSION_DEPTH
|
|
#endif
|
|
|
|
typedef struct solver_ctx {
|
|
game_state *state;
|
|
int sz; /* state->sx * state->sy */
|
|
space **scratch; /* size sz */
|
|
int *dsf; /* size sz */
|
|
int *iscratch; /* size sz */
|
|
} solver_ctx;
|
|
|
|
static solver_ctx *new_solver(game_state *state)
|
|
{
|
|
solver_ctx *sctx = snew(solver_ctx);
|
|
sctx->state = state;
|
|
sctx->sz = state->sx*state->sy;
|
|
sctx->scratch = snewn(sctx->sz, space *);
|
|
sctx->dsf = snew_dsf(sctx->sz);
|
|
sctx->iscratch = snewn(sctx->sz, int);
|
|
return sctx;
|
|
}
|
|
|
|
static void free_solver(solver_ctx *sctx)
|
|
{
|
|
sfree(sctx->scratch);
|
|
sfree(sctx->dsf);
|
|
sfree(sctx->iscratch);
|
|
sfree(sctx);
|
|
}
|
|
|
|
/* Solver ideas so far:
|
|
*
|
|
* For any empty space, work out how many dots it could associate
|
|
* with:
|
|
* it needs line-of-sight
|
|
* it needs an empty space on the far side
|
|
* any adjacent lines need corresponding line possibilities.
|
|
*/
|
|
|
|
/* The solver_ctx should keep a list of dot positions, for quicker looping.
|
|
*
|
|
* Solver techniques, in order of difficulty:
|
|
* obvious adjacency to dots
|
|
* transferring tiles to opposite side
|
|
* transferring lines to opposite side
|
|
* one possible dot for a given tile based on opposite availability
|
|
* tile with 3 definite edges next to an associated tile must associate
|
|
with same dot.
|
|
*
|
|
* one possible dot for a given tile based on line-of-sight
|
|
*/
|
|
|
|
static int solver_add_assoc(game_state *state, space *tile, int dx, int dy,
|
|
const char *why)
|
|
{
|
|
space *dot, *tile_opp;
|
|
|
|
dot = &SPACE(state, dx, dy);
|
|
tile_opp = space_opposite_dot(state, tile, dot);
|
|
|
|
assert(tile->type == s_tile);
|
|
if (tile->flags & F_TILE_ASSOC) {
|
|
if ((tile->dotx != dx) || (tile->doty != dy)) {
|
|
solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
|
|
"already --> %d,%d.\n",
|
|
solver_recurse_depth*4, "",
|
|
tile->x, tile->y, dx, dy, why,
|
|
tile->dotx, tile->doty));
|
|
return -1;
|
|
}
|
|
return 0; /* no-op */
|
|
}
|
|
if (!tile_opp) {
|
|
solvep(("%*s%d,%d --> %d,%d impossible, no opposite tile.\n",
|
|
solver_recurse_depth*4, "", tile->x, tile->y, dx, dy));
|
|
return -1;
|
|
}
|
|
if (tile_opp->flags & F_TILE_ASSOC &&
|
|
(tile_opp->dotx != dx || tile_opp->doty != dy)) {
|
|
solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
|
|
"opposite already --> %d,%d.\n",
|
|
solver_recurse_depth*4, "",
|
|
tile->x, tile->y, dx, dy, why,
|
|
tile_opp->dotx, tile_opp->doty));
|
|
return -1;
|
|
}
|
|
|
|
add_assoc(state, tile, dot);
|
|
add_assoc(state, tile_opp, dot);
|
|
solvep(("%*sSetting %d,%d --> %d,%d (%s).\n",
|
|
solver_recurse_depth*4, "",
|
|
tile->x, tile->y,dx, dy, why));
|
|
solvep(("%*sSetting %d,%d --> %d,%d (%s, opposite).\n",
|
|
solver_recurse_depth*4, "",
|
|
tile_opp->x, tile_opp->y, dx, dy, why));
|
|
return 1;
|
|
}
|
|
|
|
static int solver_obvious_dot(game_state *state, space *dot)
|
|
{
|
|
int dx, dy, ret, didsth = 0;
|
|
space *tile;
|
|
|
|
debug(("%*ssolver_obvious_dot for %d,%d.\n",
|
|
solver_recurse_depth*4, "", dot->x, dot->y));
|
|
|
|
assert(dot->flags & F_DOT);
|
|
for (dx = -1; dx <= 1; dx++) {
|
|
for (dy = -1; dy <= 1; dy++) {
|
|
if (!INGRID(state, dot->x+dx, dot->y+dy)) continue;
|
|
|
|
tile = &SPACE(state, dot->x+dx, dot->y+dy);
|
|
if (tile->type == s_tile) {
|
|
ret = solver_add_assoc(state, tile, dot->x, dot->y,
|
|
"next to dot");
|
|
if (ret < 0) return -1;
|
|
if (ret > 0) didsth = 1;
|
|
}
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solver_obvious(game_state *state)
|
|
{
|
|
int i, didsth = 0, ret;
|
|
|
|
debug(("%*ssolver_obvious.\n", solver_recurse_depth*4, ""));
|
|
|
|
for (i = 0; i < state->ndots; i++) {
|
|
ret = solver_obvious_dot(state, state->dots[i]);
|
|
if (ret < 0) return -1;
|
|
if (ret > 0) didsth = 1;
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solver_lines_opposite_cb(game_state *state, space *edge, void *ctx)
|
|
{
|
|
int didsth = 0, n, dx, dy;
|
|
space *tiles[2], *tile_opp, *edge_opp;
|
|
|
|
assert(edge->type == s_edge);
|
|
|
|
tiles_from_edge(state, edge, tiles);
|
|
|
|
/* if tiles[0] && tiles[1] && they're both associated
|
|
* and they're both associated with different dots,
|
|
* ensure the line is set. */
|
|
if (!(edge->flags & F_EDGE_SET) &&
|
|
tiles[0] && tiles[1] &&
|
|
(tiles[0]->flags & F_TILE_ASSOC) &&
|
|
(tiles[1]->flags & F_TILE_ASSOC) &&
|
|
(tiles[0]->dotx != tiles[1]->dotx ||
|
|
tiles[0]->doty != tiles[1]->doty)) {
|
|
/* No edge, but the two adjacent tiles are both
|
|
* associated with different dots; add the edge. */
|
|
solvep(("%*sSetting edge %d,%d - tiles different dots.\n",
|
|
solver_recurse_depth*4, "", edge->x, edge->y));
|
|
edge->flags |= F_EDGE_SET;
|
|
didsth = 1;
|
|
}
|
|
|
|
if (!(edge->flags & F_EDGE_SET)) return didsth;
|
|
for (n = 0; n < 2; n++) {
|
|
if (!tiles[n]) continue;
|
|
assert(tiles[n]->type == s_tile);
|
|
if (!(tiles[n]->flags & F_TILE_ASSOC)) continue;
|
|
|
|
tile_opp = tile_opposite(state, tiles[n]);
|
|
if (!tile_opp) {
|
|
solvep(("%*simpossible: edge %d,%d has assoc. tile %d,%d"
|
|
" with no opposite.\n",
|
|
solver_recurse_depth*4, "",
|
|
edge->x, edge->y, tiles[n]->x, tiles[n]->y));
|
|
/* edge of tile has no opposite edge (off grid?);
|
|
* this is impossible. */
|
|
return -1;
|
|
}
|
|
|
|
dx = tiles[n]->x - edge->x;
|
|
dy = tiles[n]->y - edge->y;
|
|
assert(INGRID(state, tile_opp->x+dx, tile_opp->y+dy));
|
|
edge_opp = &SPACE(state, tile_opp->x+dx, tile_opp->y+dy);
|
|
if (!(edge_opp->flags & F_EDGE_SET)) {
|
|
solvep(("%*sSetting edge %d,%d as opposite %d,%d\n",
|
|
solver_recurse_depth*4, "",
|
|
tile_opp->x+dx, tile_opp->y+dy, edge->x, edge->y));
|
|
edge_opp->flags |= F_EDGE_SET;
|
|
didsth = 1;
|
|
}
|
|
}
|
|
return didsth;
|
|
}
|
|
|
|
static int solver_spaces_oneposs_cb(game_state *state, space *tile, void *ctx)
|
|
{
|
|
int n, eset, ret;
|
|
space *edgeadj[4], *tileadj[4];
|
|
int dotx, doty;
|
|
|
|
assert(tile->type == s_tile);
|
|
if (tile->flags & F_TILE_ASSOC) return 0;
|
|
|
|
adjacencies(state, tile, edgeadj, tileadj);
|
|
|
|
/* Empty tile. If each edge is either set, or associated with
|
|
* the same dot, we must also associate with dot. */
|
|
eset = 0; dotx = -1; doty = -1;
|
|
for (n = 0; n < 4; n++) {
|
|
assert(edgeadj[n]);
|
|
assert(edgeadj[n]->type == s_edge);
|
|
if (edgeadj[n]->flags & F_EDGE_SET) {
|
|
eset++;
|
|
} else {
|
|
assert(tileadj[n]);
|
|
assert(tileadj[n]->type == s_tile);
|
|
|
|
/* If an adjacent tile is empty we can't make any deductions.*/
|
|
if (!(tileadj[n]->flags & F_TILE_ASSOC))
|
|
return 0;
|
|
|
|
/* If an adjacent tile is assoc. with a different dot
|
|
* we can't make any deductions. */
|
|
if (dotx != -1 && doty != -1 &&
|
|
(tileadj[n]->dotx != dotx ||
|
|
tileadj[n]->doty != doty))
|
|
return 0;
|
|
|
|
dotx = tileadj[n]->dotx;
|
|
doty = tileadj[n]->doty;
|
|
}
|
|
}
|
|
if (eset == 4) {
|
|
solvep(("%*simpossible: empty tile %d,%d has 4 edges\n",
|
|
solver_recurse_depth*4, "",
|
|
tile->x, tile->y));
|
|
return -1;
|
|
}
|
|
assert(dotx != -1 && doty != -1);
|
|
|
|
ret = solver_add_assoc(state, tile, dotx, doty, "rest are edges");
|
|
if (ret == -1) return -1;
|
|
assert(ret != 0); /* really should have done something. */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Improved algorithm for tracking line-of-sight from dots, and not spaces.
|
|
*
|
|
* The solver_ctx already stores a list of dots: the algorithm proceeds by
|
|
* expanding outwards from each dot in turn, expanding first to the boundary
|
|
* of its currently-connected tile and then to all empty tiles that could see
|
|
* it. Empty tiles will be flagged with a 'can see dot <x,y>' sticker.
|
|
*
|
|
* Expansion will happen by (symmetrically opposite) pairs of squares; if
|
|
* a square hasn't an opposite number there's no point trying to expand through
|
|
* it. Empty tiles will therefore also be tagged in pairs.
|
|
*
|
|
* If an empty tile already has a 'can see dot <x,y>' tag from a previous dot,
|
|
* it (and its partner) gets untagged (or, rather, a 'can see two dots' tag)
|
|
* because we're looking for single-dot possibilities.
|
|
*
|
|
* Once we've gone through all the dots, any which still have a 'can see dot'
|
|
* tag get associated with that dot (because it must have been the only one);
|
|
* any without any tag (i.e. that could see _no_ dots) cause an impossibility
|
|
* marked.
|
|
*
|
|
* The expansion will happen each time with a stored list of (space *) pairs,
|
|
* rather than a mark-and-sweep idea; that's horrifically inefficient.
|
|
*
|
|
* expansion algorithm:
|
|
*
|
|
* * allocate list of (space *) the size of s->sx*s->sy.
|
|
* * allocate second grid for (flags, dotx, doty) size of sx*sy.
|
|
*
|
|
* clear second grid (flags = 0, all dotx and doty = 0)
|
|
* flags: F_REACHABLE, F_MULTIPLE
|
|
*
|
|
*
|
|
* * for each dot, start with one pair of tiles that are associated with it --
|
|
* * vertex --> (dx+1, dy+1), (dx-1, dy-1)
|
|
* * edge --> (adj1, adj2)
|
|
* * tile --> (tile, tile) ???
|
|
* * mark that pair of tiles with F_MARK, clear all other F_MARKs.
|
|
* * add two tiles to start of list.
|
|
*
|
|
* set start = 0, end = next = 2
|
|
*
|
|
* from (start to end-1, step 2) {
|
|
* * we have two tiles (t1, t2), opposites wrt our dot.
|
|
* * for each (at1) sensible adjacent tile to t1 (i.e. not past an edge):
|
|
* * work out at2 as the opposite to at1
|
|
* * assert at1 and at2 have the same F_MARK values.
|
|
* * if at1 & F_MARK ignore it (we've been there on a previous sweep)
|
|
* * if either are associated with a different dot
|
|
* * mark both with F_MARK (so we ignore them later)
|
|
* * otherwise (assoc. with our dot, or empty):
|
|
* * mark both with F_MARK
|
|
* * add their space * values to the end of the list, set next += 2.
|
|
* }
|
|
*
|
|
* if (end == next)
|
|
* * we didn't add any new squares; exit the loop.
|
|
* else
|
|
* * set start = next+1, end = next. go round again
|
|
*
|
|
* We've finished expanding from the dot. Now, for each square we have
|
|
* in our list (--> each square with F_MARK):
|
|
* * if the tile is empty:
|
|
* * if F_REACHABLE was already set
|
|
* * set F_MULTIPLE
|
|
* * otherwise
|
|
* * set F_REACHABLE, set dotx and doty to our dot.
|
|
*
|
|
* Then, continue the whole thing for each dot in turn.
|
|
*
|
|
* Once we've done for each dot, go through the entire grid looking for
|
|
* empty tiles: for each empty tile:
|
|
* if F_REACHABLE and not F_MULTIPLE, set that dot (and its double)
|
|
* if !F_REACHABLE, return as impossible.
|
|
*
|
|
*/
|
|
|
|
/* Returns true if this tile is either already associated with this dot,
|
|
* or blank. */
|
|
static bool solver_expand_checkdot(space *tile, space *dot)
|
|
{
|
|
if (!(tile->flags & F_TILE_ASSOC)) return true;
|
|
if (tile->dotx == dot->x && tile->doty == dot->y) return true;
|
|
return false;
|
|
}
|
|
|
|
static void solver_expand_fromdot(game_state *state, space *dot, solver_ctx *sctx)
|
|
{
|
|
int i, j, x, y, start, end, next;
|
|
space *sp;
|
|
|
|
/* Clear the grid of the (space) flags we'll use. */
|
|
|
|
/* This is well optimised; analysis showed that:
|
|
for (i = 0; i < sctx->sz; i++) state->grid[i].flags &= ~F_MARK;
|
|
took up ~85% of the total function time! */
|
|
for (y = 1; y < state->sy; y += 2) {
|
|
sp = &SPACE(state, 1, y);
|
|
for (x = 1; x < state->sx; x += 2, sp += 2)
|
|
sp->flags &= ~F_MARK;
|
|
}
|
|
|
|
/* Seed the list of marked squares with two that must be associated
|
|
* with our dot (possibly the same space) */
|
|
if (dot->type == s_tile) {
|
|
sctx->scratch[0] = sctx->scratch[1] = dot;
|
|
} else if (dot->type == s_edge) {
|
|
tiles_from_edge(state, dot, sctx->scratch);
|
|
} else if (dot->type == s_vertex) {
|
|
/* pick two of the opposite ones arbitrarily. */
|
|
sctx->scratch[0] = &SPACE(state, dot->x-1, dot->y-1);
|
|
sctx->scratch[1] = &SPACE(state, dot->x+1, dot->y+1);
|
|
}
|
|
assert(sctx->scratch[0]->flags & F_TILE_ASSOC);
|
|
assert(sctx->scratch[1]->flags & F_TILE_ASSOC);
|
|
|
|
sctx->scratch[0]->flags |= F_MARK;
|
|
sctx->scratch[1]->flags |= F_MARK;
|
|
|
|
debug(("%*sexpand from dot %d,%d seeded with %d,%d and %d,%d.\n",
|
|
solver_recurse_depth*4, "", dot->x, dot->y,
|
|
sctx->scratch[0]->x, sctx->scratch[0]->y,
|
|
sctx->scratch[1]->x, sctx->scratch[1]->y));
|
|
|
|
start = 0; end = 2; next = 2;
|
|
|
|
expand:
|
|
debug(("%*sexpand: start %d, end %d, next %d\n",
|
|
solver_recurse_depth*4, "", start, end, next));
|
|
for (i = start; i < end; i += 2) {
|
|
space *t1 = sctx->scratch[i]/*, *t2 = sctx->scratch[i+1]*/;
|
|
space *edges[4], *tileadj[4], *tileadj2;
|
|
|
|
adjacencies(state, t1, edges, tileadj);
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
assert(edges[j]);
|
|
if (edges[j]->flags & F_EDGE_SET) continue;
|
|
assert(tileadj[j]);
|
|
|
|
if (tileadj[j]->flags & F_MARK) continue; /* seen before. */
|
|
|
|
/* We have a tile adjacent to t1; find its opposite. */
|
|
tileadj2 = space_opposite_dot(state, tileadj[j], dot);
|
|
if (!tileadj2) {
|
|
debug(("%*sMarking %d,%d, no opposite.\n",
|
|
solver_recurse_depth*4, "",
|
|
tileadj[j]->x, tileadj[j]->y));
|
|
tileadj[j]->flags |= F_MARK;
|
|
continue; /* no opposite, so mark for next time. */
|
|
}
|
|
/* If the tile had an opposite we should have either seen both of
|
|
* these, or neither of these, before. */
|
|
assert(!(tileadj2->flags & F_MARK));
|
|
|
|
if (solver_expand_checkdot(tileadj[j], dot) &&
|
|
solver_expand_checkdot(tileadj2, dot)) {
|
|
/* Both tiles could associate with this dot; add them to
|
|
* our list. */
|
|
debug(("%*sAdding %d,%d and %d,%d to possibles list.\n",
|
|
solver_recurse_depth*4, "",
|
|
tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
|
|
sctx->scratch[next++] = tileadj[j];
|
|
sctx->scratch[next++] = tileadj2;
|
|
}
|
|
/* Either way, we've seen these tiles already so mark them. */
|
|
debug(("%*sMarking %d,%d and %d,%d.\n",
|
|
solver_recurse_depth*4, "",
|
|
tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
|
|
tileadj[j]->flags |= F_MARK;
|
|
tileadj2->flags |= F_MARK;
|
|
}
|
|
}
|
|
if (next > end) {
|
|
/* We added more squares; go back and try again. */
|
|
start = end; end = next; goto expand;
|
|
}
|
|
|
|
/* We've expanded as far as we can go. Now we update the main flags
|
|
* on all tiles we've expanded into -- if they were empty, we have
|
|
* found possible associations for this dot. */
|
|
for (i = 0; i < end; i++) {
|
|
if (sctx->scratch[i]->flags & F_TILE_ASSOC) continue;
|
|
if (sctx->scratch[i]->flags & F_REACHABLE) {
|
|
/* This is (at least) the second dot this tile could
|
|
* associate with. */
|
|
debug(("%*sempty tile %d,%d could assoc. other dot %d,%d\n",
|
|
solver_recurse_depth*4, "",
|
|
sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
|
|
sctx->scratch[i]->flags |= F_MULTIPLE;
|
|
} else {
|
|
/* This is the first (possibly only) dot. */
|
|
debug(("%*sempty tile %d,%d could assoc. 1st dot %d,%d\n",
|
|
solver_recurse_depth*4, "",
|
|
sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
|
|
sctx->scratch[i]->flags |= F_REACHABLE;
|
|
sctx->scratch[i]->dotx = dot->x;
|
|
sctx->scratch[i]->doty = dot->y;
|
|
}
|
|
}
|
|
dbg_state(state);
|
|
}
|
|
|
|
static int solver_expand_postcb(game_state *state, space *tile, void *ctx)
|
|
{
|
|
assert(tile->type == s_tile);
|
|
|
|
if (tile->flags & F_TILE_ASSOC) return 0;
|
|
|
|
if (!(tile->flags & F_REACHABLE)) {
|
|
solvep(("%*simpossible: space (%d,%d) can reach no dots.\n",
|
|
solver_recurse_depth*4, "", tile->x, tile->y));
|
|
return -1;
|
|
}
|
|
if (tile->flags & F_MULTIPLE) return 0;
|
|
|
|
return solver_add_assoc(state, tile, tile->dotx, tile->doty,
|
|
"single possible dot after expansion");
|
|
}
|
|
|
|
static int solver_expand_dots(game_state *state, solver_ctx *sctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sctx->sz; i++)
|
|
state->grid[i].flags &= ~(F_REACHABLE|F_MULTIPLE);
|
|
|
|
for (i = 0; i < state->ndots; i++)
|
|
solver_expand_fromdot(state, state->dots[i], sctx);
|
|
|
|
return foreach_tile(state, solver_expand_postcb, IMPOSSIBLE_QUITS, sctx);
|
|
}
|
|
|
|
static int solver_extend_exclaves(game_state *state, solver_ctx *sctx)
|
|
{
|
|
int x, y, done_something = 0;
|
|
|
|
/*
|
|
* Make a dsf by unifying any two adjacent tiles associated with
|
|
* the same dot. This will identify separate connected components
|
|
* of the tiles belonging to a given dot. Any such component that
|
|
* doesn't contain its own dot is an 'exclave', and will need some
|
|
* kind of path of tiles to connect it back to the dot.
|
|
*/
|
|
dsf_init(sctx->dsf, sctx->sz);
|
|
for (x = 1; x < state->sx; x += 2) {
|
|
for (y = 1; y < state->sy; y += 2) {
|
|
int dotx, doty;
|
|
space *tile, *othertile;
|
|
|
|
tile = &SPACE(state, x, y);
|
|
if (!(tile->flags & F_TILE_ASSOC))
|
|
continue; /* not associated with any dot */
|
|
dotx = tile->dotx;
|
|
doty = tile->doty;
|
|
|
|
if (INGRID(state, x+2, y)) {
|
|
othertile = &SPACE(state, x+2, y);
|
|
if ((othertile->flags & F_TILE_ASSOC) &&
|
|
othertile->dotx == dotx && othertile->doty == doty)
|
|
dsf_merge(sctx->dsf, y*state->sx+x, y*state->sx+(x+2));
|
|
}
|
|
|
|
if (INGRID(state, x, y+2)) {
|
|
othertile = &SPACE(state, x, y+2);
|
|
if ((othertile->flags & F_TILE_ASSOC) &&
|
|
othertile->dotx == dotx && othertile->doty == doty)
|
|
dsf_merge(sctx->dsf, y*state->sx+x, (y+2)*state->sx+x);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Go through the grid again, and count the 'liberties' of each
|
|
* connected component, in the Go sense, i.e. the number of
|
|
* currently unassociated squares adjacent to the component. The
|
|
* idea is that if an exclave has just one liberty, then that
|
|
* square _must_ extend the exclave, or else it will be completely
|
|
* cut off from connecting back to its home dot.
|
|
*
|
|
* We need to count each adjacent square just once, even if it
|
|
* borders the component on multiple edges. So we'll go through
|
|
* each unassociated square, check all four of its neighbours, and
|
|
* de-duplicate them.
|
|
*
|
|
* We'll store the count of liberties in the entry of iscratch
|
|
* corresponding to the square centre (i.e. with odd coordinates).
|
|
* Every time we find a liberty, we store its index in the square
|
|
* to the left of that, so that when a component has exactly one
|
|
* liberty we can remember what it was.
|
|
*
|
|
* Square centres that are not the canonical dsf element of a
|
|
* connected component will get their liberty count set to -1,
|
|
* which will allow us to identify them in the later loop (after
|
|
* we start making changes and need to spot that an associated
|
|
* square _now_ was not associated when the dsf was built).
|
|
*/
|
|
|
|
/* Initialise iscratch */
|
|
for (x = 1; x < state->sx; x += 2) {
|
|
for (y = 1; y < state->sy; y += 2) {
|
|
int index = y * state->sx + x;
|
|
if (!(SPACE(state, x, y).flags & F_TILE_ASSOC) ||
|
|
dsf_canonify(sctx->dsf, index) != index) {
|
|
sctx->iscratch[index] = -1; /* mark as not a component */
|
|
} else {
|
|
sctx->iscratch[index] = 0; /* zero liberty count */
|
|
sctx->iscratch[index-1] = 0; /* initialise neighbour id */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Find each unassociated square and see what it's a liberty of */
|
|
for (x = 1; x < state->sx; x += 2) {
|
|
for (y = 1; y < state->sy; y += 2) {
|
|
int dx, dy, ni[4], nn, i;
|
|
|
|
if ((SPACE(state, x, y).flags & F_TILE_ASSOC))
|
|
continue; /* not an unassociated square */
|
|
|
|
/* Find distinct indices of adjacent components */
|
|
nn = 0;
|
|
for (dx = -1; dx <= 1; dx++) {
|
|
for (dy = -1; dy <= 1; dy++) {
|
|
if (dx != 0 && dy != 0) continue;
|
|
if (dx == 0 && dy == 0) continue;
|
|
|
|
if (INGRID(state, x+2*dx, y+2*dy) &&
|
|
(SPACE(state, x+2*dx, y+2*dy).flags & F_TILE_ASSOC)) {
|
|
/* Find id of the component adjacent to x,y */
|
|
int nindex = (y+2*dy) * state->sx + (x+2*dx);
|
|
nindex = dsf_canonify(sctx->dsf, nindex);
|
|
|
|
/* See if we've seen it before in another direction */
|
|
for (i = 0; i < nn; i++)
|
|
if (ni[i] == nindex)
|
|
break;
|
|
if (i == nn) {
|
|
/* No, it's new. Mark x,y as a liberty of it */
|
|
sctx->iscratch[nindex]++;
|
|
assert(nindex > 0);
|
|
sctx->iscratch[nindex-1] = y * state->sx + x;
|
|
|
|
/* And record this component as having been seen */
|
|
ni[nn++] = nindex;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we have all the data we need to find exclaves with exactly
|
|
* one liberty. In each case, associate the unique liberty square
|
|
* with the same dot.
|
|
*/
|
|
for (x = 1; x < state->sx; x += 2) {
|
|
for (y = 1; y < state->sy; y += 2) {
|
|
int index, dotx, doty, ex, ey, added;
|
|
space *tile;
|
|
|
|
index = y*state->sx+x;
|
|
if (sctx->iscratch[index] == -1)
|
|
continue; /* wasn't canonical when dsf was built */
|
|
|
|
tile = &SPACE(state, x, y);
|
|
if (!(tile->flags & F_TILE_ASSOC))
|
|
continue; /* not associated with any dot */
|
|
dotx = tile->dotx;
|
|
doty = tile->doty;
|
|
|
|
if (index == dsf_canonify(
|
|
sctx->dsf, (doty | 1) * state->sx + (dotx | 1)))
|
|
continue; /* not an exclave - contains its own dot */
|
|
|
|
if (sctx->iscratch[index] == 0) {
|
|
solvep(("%*sExclave at %d,%d has no liberties!\n",
|
|
solver_recurse_depth*4, "", x, y));
|
|
return -1;
|
|
}
|
|
|
|
if (sctx->iscratch[index] != 1)
|
|
continue; /* more than one liberty, can't be sure which */
|
|
|
|
assert(sctx->iscratch[index-1] != 0);
|
|
ex = sctx->iscratch[index-1] % state->sx;
|
|
ey = sctx->iscratch[index-1] / state->sx;
|
|
tile = &SPACE(state, ex, ey);
|
|
if (tile->flags & F_TILE_ASSOC)
|
|
continue; /* already done by earlier iteration of this loop */
|
|
|
|
added = solver_add_assoc(state, tile, dotx, doty,
|
|
"to connect exclave");
|
|
if (added < 0)
|
|
return -1;
|
|
if (added > 0)
|
|
done_something = 1;
|
|
}
|
|
}
|
|
|
|
return done_something;
|
|
}
|
|
|
|
struct recurse_ctx {
|
|
space *best;
|
|
int bestn;
|
|
};
|
|
|
|
static int solver_recurse_cb(game_state *state, space *tile, void *ctx)
|
|
{
|
|
struct recurse_ctx *rctx = (struct recurse_ctx *)ctx;
|
|
int i, n = 0;
|
|
|
|
assert(tile->type == s_tile);
|
|
if (tile->flags & F_TILE_ASSOC) return 0;
|
|
|
|
/* We're unassociated: count up all the dots we could associate with. */
|
|
for (i = 0; i < state->ndots; i++) {
|
|
if (dotfortile(state, tile, state->dots[i]))
|
|
n++;
|
|
}
|
|
if (n > rctx->bestn) {
|
|
rctx->bestn = n;
|
|
rctx->best = tile;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define MAXRECURSE 5
|
|
|
|
static int solver_recurse(game_state *state, int maxdiff, int depth)
|
|
{
|
|
int diff = DIFF_IMPOSSIBLE, ret, n, gsz = state->sx * state->sy;
|
|
space *ingrid, *outgrid = NULL, *bestopp;
|
|
struct recurse_ctx rctx;
|
|
|
|
if (depth >= MAXRECURSE) {
|
|
solvep(("Limiting recursion to %d, returning.\n", MAXRECURSE));
|
|
return DIFF_UNFINISHED;
|
|
}
|
|
|
|
/* Work out the cell to recurse on; go through all unassociated tiles
|
|
* and find which one has the most possible dots it could associate
|
|
* with. */
|
|
rctx.best = NULL;
|
|
rctx.bestn = 0;
|
|
|
|
foreach_tile(state, solver_recurse_cb, 0, &rctx);
|
|
if (rctx.bestn == 0) return DIFF_IMPOSSIBLE; /* or assert? */
|
|
assert(rctx.best);
|
|
|
|
solvep(("%*sRecursing around %d,%d, with %d possible dots.\n",
|
|
solver_recurse_depth*4, "",
|
|
rctx.best->x, rctx.best->y, rctx.bestn));
|
|
|
|
ingrid = snewn(gsz, space);
|
|
memcpy(ingrid, state->grid, gsz * sizeof(space));
|
|
|
|
for (n = 0; n < state->ndots; n++) {
|
|
memcpy(state->grid, ingrid, gsz * sizeof(space));
|
|
|
|
if (!dotfortile(state, rctx.best, state->dots[n])) continue;
|
|
|
|
/* set cell (temporarily) pointing to that dot. */
|
|
solver_add_assoc(state, rctx.best,
|
|
state->dots[n]->x, state->dots[n]->y,
|
|
"Attempting for recursion");
|
|
|
|
ret = solver_state_inner(state, maxdiff, depth + 1);
|
|
|
|
#ifdef STATIC_RECURSION_DEPTH
|
|
solver_recurse_depth = depth; /* restore after recursion returns */
|
|
#endif
|
|
|
|
if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE) {
|
|
/* we found our first solved grid; copy it away. */
|
|
assert(!outgrid);
|
|
outgrid = snewn(gsz, space);
|
|
memcpy(outgrid, state->grid, gsz * sizeof(space));
|
|
}
|
|
/* reset cell back to unassociated. */
|
|
bestopp = tile_opposite(state, rctx.best);
|
|
assert(bestopp && bestopp->flags & F_TILE_ASSOC);
|
|
|
|
remove_assoc(state, rctx.best);
|
|
remove_assoc(state, bestopp);
|
|
|
|
if (ret == DIFF_AMBIGUOUS || ret == DIFF_UNFINISHED)
|
|
diff = ret;
|
|
else if (ret == DIFF_IMPOSSIBLE)
|
|
/* no change */;
|
|
else {
|
|
/* precisely one solution */
|
|
if (diff == DIFF_IMPOSSIBLE)
|
|
diff = DIFF_UNREASONABLE;
|
|
else
|
|
diff = DIFF_AMBIGUOUS;
|
|
}
|
|
/* if we've found >1 solution, or ran out of recursion,
|
|
* give up immediately. */
|
|
if (diff == DIFF_AMBIGUOUS || diff == DIFF_UNFINISHED)
|
|
break;
|
|
}
|
|
|
|
if (outgrid) {
|
|
/* we found (at least one) soln; copy it back to state */
|
|
memcpy(state->grid, outgrid, gsz * sizeof(space));
|
|
sfree(outgrid);
|
|
}
|
|
sfree(ingrid);
|
|
return diff;
|
|
}
|
|
|
|
static int solver_state_inner(game_state *state, int maxdiff, int depth)
|
|
{
|
|
solver_ctx *sctx = new_solver(state);
|
|
int ret, diff = DIFF_NORMAL;
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
/* hack, hack: set picture to NULL during solving so that add_assoc
|
|
* won't complain when we attempt recursive guessing and guess wrong */
|
|
int *savepic = picture;
|
|
picture = NULL;
|
|
#endif
|
|
|
|
#ifdef STATIC_RECURSION_DEPTH
|
|
solver_recurse_depth = depth;
|
|
#endif
|
|
|
|
ret = solver_obvious(state);
|
|
if (ret < 0) {
|
|
diff = DIFF_IMPOSSIBLE;
|
|
goto got_result;
|
|
}
|
|
|
|
#define CHECKRET(d) do { \
|
|
if (ret < 0) { diff = DIFF_IMPOSSIBLE; goto got_result; } \
|
|
if (ret > 0) { diff = max(diff, (d)); goto cont; } \
|
|
} while(0)
|
|
|
|
while (1) {
|
|
cont:
|
|
ret = foreach_edge(state, solver_lines_opposite_cb,
|
|
IMPOSSIBLE_QUITS, sctx);
|
|
CHECKRET(DIFF_NORMAL);
|
|
|
|
ret = foreach_tile(state, solver_spaces_oneposs_cb,
|
|
IMPOSSIBLE_QUITS, sctx);
|
|
CHECKRET(DIFF_NORMAL);
|
|
|
|
ret = solver_expand_dots(state, sctx);
|
|
CHECKRET(DIFF_NORMAL);
|
|
|
|
ret = solver_extend_exclaves(state, sctx);
|
|
CHECKRET(DIFF_NORMAL);
|
|
|
|
if (maxdiff <= DIFF_NORMAL)
|
|
break;
|
|
|
|
/* harder still? */
|
|
|
|
/* if we reach here, we've made no deductions, so we terminate. */
|
|
break;
|
|
}
|
|
|
|
if (check_complete(state, NULL, NULL)) goto got_result;
|
|
|
|
diff = (maxdiff >= DIFF_UNREASONABLE) ?
|
|
solver_recurse(state, maxdiff, depth) : DIFF_UNFINISHED;
|
|
|
|
got_result:
|
|
free_solver(sctx);
|
|
#ifndef STANDALONE_SOLVER
|
|
debug(("solver_state ends, diff %s:\n", galaxies_diffnames[diff]));
|
|
dbg_state(state);
|
|
#endif
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
picture = savepic;
|
|
#endif
|
|
|
|
return diff;
|
|
}
|
|
|
|
static int solver_state(game_state *state, int maxdiff)
|
|
{
|
|
return solver_state_inner(state, maxdiff, 0);
|
|
}
|
|
|
|
#ifndef EDITOR
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
game_state *tosolve;
|
|
char *ret;
|
|
int i;
|
|
int diff;
|
|
|
|
if (aux) {
|
|
tosolve = execute_move(state, aux);
|
|
goto solved;
|
|
} else {
|
|
tosolve = dup_game(currstate);
|
|
diff = solver_state(tosolve, DIFF_UNREASONABLE);
|
|
if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
|
|
debug(("solve_game solved with current state.\n"));
|
|
goto solved;
|
|
}
|
|
free_game(tosolve);
|
|
|
|
tosolve = dup_game(state);
|
|
diff = solver_state(tosolve, DIFF_UNREASONABLE);
|
|
if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
|
|
debug(("solve_game solved with original state.\n"));
|
|
goto solved;
|
|
}
|
|
free_game(tosolve);
|
|
}
|
|
|
|
return NULL;
|
|
|
|
solved:
|
|
/*
|
|
* Clear tile associations: the solution will only include the
|
|
* edges.
|
|
*/
|
|
for (i = 0; i < tosolve->sx*tosolve->sy; i++)
|
|
tosolve->grid[i].flags &= ~F_TILE_ASSOC;
|
|
ret = diff_game(currstate, tosolve, true, -1);
|
|
free_game(tosolve);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* ----------------------------------------------------------
|
|
* User interface.
|
|
*/
|
|
|
|
struct game_ui {
|
|
bool dragging;
|
|
int dx, dy; /* pixel coords of drag pos. */
|
|
int dotx, doty; /* grid coords of dot we're dragging from. */
|
|
int srcx, srcy; /* grid coords of drag start */
|
|
int cur_x, cur_y;
|
|
bool cur_visible;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->dragging = false;
|
|
ui->cur_x = ui->cur_y = 1;
|
|
ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
#define FLASH_TIME 0.15F
|
|
|
|
#define PREFERRED_TILE_SIZE 32
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define DOT_SIZE (TILE_SIZE / 4)
|
|
#define EDGE_THICKNESS (max(TILE_SIZE / 16, 2))
|
|
#define BORDER TILE_SIZE
|
|
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define SCOORD(x) ( ((x) * TILE_SIZE)/2 + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
|
|
|
|
#define DRAW_WIDTH (BORDER * 2 + ds->w * TILE_SIZE)
|
|
#define DRAW_HEIGHT (BORDER * 2 + ds->h * TILE_SIZE)
|
|
|
|
#define CURSOR_SIZE DOT_SIZE
|
|
|
|
struct game_drawstate {
|
|
bool started;
|
|
int w, h;
|
|
int tilesize;
|
|
unsigned long *grid;
|
|
int *dx, *dy;
|
|
blitter *bl;
|
|
blitter *blmirror;
|
|
|
|
bool dragging;
|
|
int dragx, dragy, oppx, oppy;
|
|
|
|
int *colour_scratch;
|
|
|
|
int cx, cy;
|
|
bool cur_visible;
|
|
blitter *cur_bl;
|
|
};
|
|
|
|
#define CORNER_TOLERANCE 0.15F
|
|
#define CENTRE_TOLERANCE 0.15F
|
|
|
|
/*
|
|
* Round FP coordinates to the centre of the nearest edge.
|
|
*/
|
|
#ifndef EDITOR
|
|
static void coord_round_to_edge(float x, float y, int *xr, int *yr)
|
|
{
|
|
float xs, ys, xv, yv, dx, dy;
|
|
|
|
/*
|
|
* Find the nearest square-centre.
|
|
*/
|
|
xs = (float)floor(x) + 0.5F;
|
|
ys = (float)floor(y) + 0.5F;
|
|
|
|
/*
|
|
* Find the nearest grid vertex.
|
|
*/
|
|
xv = (float)floor(x + 0.5F);
|
|
yv = (float)floor(y + 0.5F);
|
|
|
|
/*
|
|
* Determine whether the horizontal or vertical edge from that
|
|
* vertex alongside that square is closer to us, by comparing
|
|
* distances from the square cente.
|
|
*/
|
|
dx = (float)fabs(x - xs);
|
|
dy = (float)fabs(y - ys);
|
|
if (dx > dy) {
|
|
/* Vertical edge: x-coord of corner,
|
|
* y-coord of square centre. */
|
|
*xr = 2 * (int)xv;
|
|
*yr = 1 + 2 * (int)floor(ys);
|
|
} else {
|
|
/* Horizontal edge: x-coord of square centre,
|
|
* y-coord of corner. */
|
|
*xr = 1 + 2 * (int)floor(xs);
|
|
*yr = 2 * (int)yv;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef EDITOR
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
char buf[80];
|
|
int px, py;
|
|
space *sp;
|
|
|
|
px = 2*FROMCOORD((float)x) + 0.5F;
|
|
py = 2*FROMCOORD((float)y) + 0.5F;
|
|
|
|
if (button == 'C' || button == 'c') return dupstr("C");
|
|
|
|
if (button == 'S' || button == 's') {
|
|
char *ret;
|
|
game_state *tmp = dup_game(state);
|
|
int cdiff = solver_state(tmp, DIFF_UNREASONABLE-1);
|
|
ret = diff_game(state, tmp, 0, cdiff);
|
|
free_game(tmp);
|
|
return ret;
|
|
}
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
if (!INUI(state, px, py)) return NULL;
|
|
sp = &SPACE(state, px, py);
|
|
if (!dot_is_possible(state, sp, 1)) return NULL;
|
|
sprintf(buf, "%c%d,%d",
|
|
(char)((button == LEFT_BUTTON) ? 'D' : 'd'), px, py);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#else
|
|
static bool edge_placement_legal(const game_state *state, int x, int y)
|
|
{
|
|
space *sp = &SPACE(state, x, y);
|
|
if (sp->type != s_edge)
|
|
return false; /* this is a face-centre or a grid vertex */
|
|
|
|
/* Check this line doesn't actually intersect a dot */
|
|
unsigned int flags = (GRID(state, grid, x, y).flags |
|
|
GRID(state, grid, x & ~1U, y & ~1U).flags |
|
|
GRID(state, grid, (x+1) & ~1U, (y+1) & ~1U).flags);
|
|
if (flags & F_DOT)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
space *sp;
|
|
|
|
if (IS_CURSOR_SELECT(button) && ui->cur_visible) {
|
|
sp = &SPACE(state, ui->cur_x, ui->cur_y);
|
|
if (ui->dragging) {
|
|
if (ui->cur_x == ui->srcx && ui->cur_y == ui->srcy)
|
|
return "Cancel";
|
|
if (ok_to_add_assoc_with_opposite(
|
|
state, &SPACE(state, ui->cur_x, ui->cur_y),
|
|
&SPACE(state, ui->dotx, ui->doty)))
|
|
return "Place";
|
|
return (ui->srcx == ui->dotx && ui->srcy == ui->doty) ?
|
|
"Cancel" : "Remove";
|
|
} else if (sp->flags & F_DOT)
|
|
return "New arrow";
|
|
else if (sp->flags & F_TILE_ASSOC)
|
|
return "Move arrow";
|
|
else if (sp->type == s_edge &&
|
|
edge_placement_legal(state, ui->cur_x, ui->cur_y))
|
|
return (sp->flags & F_EDGE_SET) ? "Clear" : "Edge";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
/* UI operations (play mode):
|
|
*
|
|
* Toggle edge (set/unset) (left-click on edge)
|
|
* Associate space with dot (left-drag from dot)
|
|
* Unassociate space (left-drag from space off grid)
|
|
* Autofill lines around shape? (right-click?)
|
|
*
|
|
* (edit mode; will clear all lines/associations)
|
|
*
|
|
* Add or remove dot (left-click)
|
|
*/
|
|
char buf[80];
|
|
const char *sep = "";
|
|
int px, py;
|
|
space *sp, *dot;
|
|
|
|
buf[0] = '\0';
|
|
|
|
if (button == 'H' || button == 'h') {
|
|
char *ret;
|
|
game_state *tmp = dup_game(state);
|
|
solver_obvious(tmp);
|
|
ret = diff_game(state, tmp, false, -1);
|
|
free_game(tmp);
|
|
return ret;
|
|
}
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
ui->cur_visible = false;
|
|
coord_round_to_edge(FROMCOORD((float)x), FROMCOORD((float)y),
|
|
&px, &py);
|
|
|
|
if (!INUI(state, px, py)) return NULL;
|
|
if (!edge_placement_legal(state, px, py))
|
|
return NULL;
|
|
|
|
sprintf(buf, "E%d,%d", px, py);
|
|
return dupstr(buf);
|
|
} else if (button == RIGHT_BUTTON) {
|
|
int px1, py1;
|
|
|
|
ui->cur_visible = false;
|
|
|
|
px = (int)(2*FROMCOORD((float)x) + 0.5F);
|
|
py = (int)(2*FROMCOORD((float)y) + 0.5F);
|
|
|
|
dot = NULL;
|
|
|
|
/*
|
|
* If there's a dot anywhere nearby, we pick up an arrow
|
|
* pointing at that dot.
|
|
*/
|
|
for (py1 = py-1; py1 <= py+1; py1++)
|
|
for (px1 = px-1; px1 <= px+1; px1++) {
|
|
if (px1 >= 0 && px1 < state->sx &&
|
|
py1 >= 0 && py1 < state->sy &&
|
|
x >= SCOORD(px1-1) && x < SCOORD(px1+1) &&
|
|
y >= SCOORD(py1-1) && y < SCOORD(py1+1) &&
|
|
SPACE(state, px1, py1).flags & F_DOT) {
|
|
/*
|
|
* Found a dot. Begin a drag from it.
|
|
*/
|
|
dot = &SPACE(state, px1, py1);
|
|
ui->srcx = px1;
|
|
ui->srcy = py1;
|
|
goto done; /* multi-level break */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Otherwise, find the nearest _square_, and pick up the
|
|
* same arrow as it's got on it, if any.
|
|
*/
|
|
if (!dot) {
|
|
px = 2*FROMCOORD(x+TILE_SIZE) - 1;
|
|
py = 2*FROMCOORD(y+TILE_SIZE) - 1;
|
|
if (px >= 0 && px < state->sx && py >= 0 && py < state->sy) {
|
|
sp = &SPACE(state, px, py);
|
|
if (sp->flags & F_TILE_ASSOC) {
|
|
dot = &SPACE(state, sp->dotx, sp->doty);
|
|
ui->srcx = px;
|
|
ui->srcy = py;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Now, if we've managed to find a dot, begin a drag.
|
|
*/
|
|
if (dot) {
|
|
ui->dragging = true;
|
|
ui->dx = x;
|
|
ui->dy = y;
|
|
ui->dotx = dot->x;
|
|
ui->doty = dot->y;
|
|
return UI_UPDATE;
|
|
}
|
|
} else if (button == RIGHT_DRAG && ui->dragging) {
|
|
/* just move the drag coords. */
|
|
ui->dx = x;
|
|
ui->dy = y;
|
|
return UI_UPDATE;
|
|
} else if (button == RIGHT_RELEASE && ui->dragging) {
|
|
/*
|
|
* Drags are always targeted at a single square.
|
|
*/
|
|
px = 2*FROMCOORD(x+TILE_SIZE) - 1;
|
|
py = 2*FROMCOORD(y+TILE_SIZE) - 1;
|
|
|
|
dropped: /* We arrive here from the end of a keyboard drag. */
|
|
ui->dragging = false;
|
|
/*
|
|
* Dragging an arrow on to the same square it started from
|
|
* is a null move; just update the ui and finish.
|
|
*/
|
|
if (px == ui->srcx && py == ui->srcy)
|
|
return UI_UPDATE;
|
|
|
|
/*
|
|
* Otherwise, we remove the arrow from its starting
|
|
* square if we didn't start from a dot...
|
|
*/
|
|
if ((ui->srcx != ui->dotx || ui->srcy != ui->doty) &&
|
|
SPACE(state, ui->srcx, ui->srcy).flags & F_TILE_ASSOC) {
|
|
sprintf(buf + strlen(buf), "%sU%d,%d", sep, ui->srcx, ui->srcy);
|
|
sep = ";";
|
|
}
|
|
|
|
/*
|
|
* ... and if the square we're moving it _to_ is valid, we
|
|
* add one there instead.
|
|
*/
|
|
if (INUI(state, px, py)) {
|
|
sp = &SPACE(state, px, py);
|
|
dot = &SPACE(state, ui->dotx, ui->doty);
|
|
|
|
/*
|
|
* Exception: if it's not actually legal to add an arrow
|
|
* and its opposite at this position, we don't try,
|
|
* because otherwise we'd append an empty entry to the
|
|
* undo chain.
|
|
*/
|
|
if (ok_to_add_assoc_with_opposite(state, sp, dot))
|
|
sprintf(buf + strlen(buf), "%sA%d,%d,%d,%d",
|
|
sep, px, py, ui->dotx, ui->doty);
|
|
}
|
|
|
|
if (buf[0])
|
|
return dupstr(buf);
|
|
else
|
|
return UI_UPDATE;
|
|
} else if (IS_CURSOR_MOVE(button)) {
|
|
move_cursor(button, &ui->cur_x, &ui->cur_y, state->sx-1, state->sy-1, false);
|
|
if (ui->cur_x < 1) ui->cur_x = 1;
|
|
if (ui->cur_y < 1) ui->cur_y = 1;
|
|
ui->cur_visible = true;
|
|
if (ui->dragging) {
|
|
ui->dx = SCOORD(ui->cur_x);
|
|
ui->dy = SCOORD(ui->cur_y);
|
|
}
|
|
return UI_UPDATE;
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = true;
|
|
return UI_UPDATE;
|
|
}
|
|
sp = &SPACE(state, ui->cur_x, ui->cur_y);
|
|
if (ui->dragging) {
|
|
px = ui->cur_x; py = ui->cur_y;
|
|
goto dropped;
|
|
} else if (sp->flags & F_DOT) {
|
|
ui->dragging = true;
|
|
ui->dx = SCOORD(ui->cur_x);
|
|
ui->dy = SCOORD(ui->cur_y);
|
|
ui->dotx = ui->srcx = ui->cur_x;
|
|
ui->doty = ui->srcy = ui->cur_y;
|
|
return UI_UPDATE;
|
|
} else if (sp->flags & F_TILE_ASSOC) {
|
|
assert(sp->type == s_tile);
|
|
ui->dragging = true;
|
|
ui->dx = SCOORD(ui->cur_x);
|
|
ui->dy = SCOORD(ui->cur_y);
|
|
ui->dotx = sp->dotx;
|
|
ui->doty = sp->doty;
|
|
ui->srcx = ui->cur_x;
|
|
ui->srcy = ui->cur_y;
|
|
return UI_UPDATE;
|
|
} else if (sp->type == s_edge &&
|
|
edge_placement_legal(state, ui->cur_x, ui->cur_y)) {
|
|
sprintf(buf, "E%d,%d", ui->cur_x, ui->cur_y);
|
|
return dupstr(buf);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static bool check_complete(const game_state *state, int *dsf, int *colours)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int x, y, i;
|
|
bool ret;
|
|
|
|
bool free_dsf;
|
|
struct sqdata {
|
|
int minx, miny, maxx, maxy;
|
|
int cx, cy;
|
|
bool valid;
|
|
int colour;
|
|
} *sqdata;
|
|
|
|
if (!dsf) {
|
|
dsf = snew_dsf(w*h);
|
|
free_dsf = true;
|
|
} else {
|
|
dsf_init(dsf, w*h);
|
|
free_dsf = false;
|
|
}
|
|
|
|
/*
|
|
* During actual game play, completion checking is done on the
|
|
* basis of the edges rather than the square associations. So
|
|
* first we must go through the grid figuring out the connected
|
|
* components into which the edges divide it.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
if (y+1 < h && !(SPACE(state, 2*x+1, 2*y+2).flags & F_EDGE_SET))
|
|
dsf_merge(dsf, y*w+x, (y+1)*w+x);
|
|
if (x+1 < w && !(SPACE(state, 2*x+2, 2*y+1).flags & F_EDGE_SET))
|
|
dsf_merge(dsf, y*w+x, y*w+(x+1));
|
|
}
|
|
|
|
/*
|
|
* That gives us our connected components. Now, for each
|
|
* component, decide whether it's _valid_. A valid component is
|
|
* one which:
|
|
*
|
|
* - is 180-degree rotationally symmetric
|
|
* - has a dot at its centre of symmetry
|
|
* - has no other dots anywhere within it (including on its
|
|
* boundary)
|
|
* - contains no internal edges (i.e. edges separating two
|
|
* squares which are both part of the component).
|
|
*/
|
|
|
|
/*
|
|
* First, go through the grid finding the bounding box of each
|
|
* component.
|
|
*/
|
|
sqdata = snewn(w*h, struct sqdata);
|
|
for (i = 0; i < w*h; i++) {
|
|
sqdata[i].minx = w+1;
|
|
sqdata[i].miny = h+1;
|
|
sqdata[i].maxx = sqdata[i].maxy = -1;
|
|
sqdata[i].valid = false;
|
|
}
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
i = dsf_canonify(dsf, y*w+x);
|
|
if (sqdata[i].minx > x)
|
|
sqdata[i].minx = x;
|
|
if (sqdata[i].maxx < x)
|
|
sqdata[i].maxx = x;
|
|
if (sqdata[i].miny > y)
|
|
sqdata[i].miny = y;
|
|
if (sqdata[i].maxy < y)
|
|
sqdata[i].maxy = y;
|
|
sqdata[i].valid = true;
|
|
}
|
|
|
|
/*
|
|
* Now we're in a position to loop over each actual component
|
|
* and figure out where its centre of symmetry has to be if
|
|
* it's anywhere.
|
|
*/
|
|
for (i = 0; i < w*h; i++)
|
|
if (sqdata[i].valid) {
|
|
int cx, cy;
|
|
cx = sqdata[i].cx = sqdata[i].minx + sqdata[i].maxx + 1;
|
|
cy = sqdata[i].cy = sqdata[i].miny + sqdata[i].maxy + 1;
|
|
if (!(SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT))
|
|
sqdata[i].valid = false; /* no dot at centre of symmetry */
|
|
if (dsf_canonify(dsf, (cy-1)/2*w+(cx-1)/2) != i ||
|
|
dsf_canonify(dsf, (cy)/2*w+(cx-1)/2) != i ||
|
|
dsf_canonify(dsf, (cy-1)/2*w+(cx)/2) != i ||
|
|
dsf_canonify(dsf, (cy)/2*w+(cx)/2) != i)
|
|
sqdata[i].valid = false; /* dot at cx,cy isn't ours */
|
|
if (SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT_BLACK)
|
|
sqdata[i].colour = 2;
|
|
else
|
|
sqdata[i].colour = 1;
|
|
}
|
|
|
|
/*
|
|
* Now we loop over the whole grid again, this time finding
|
|
* extraneous dots (any dot which wholly or partially overlaps
|
|
* a square and is not at the centre of symmetry of that
|
|
* square's component disqualifies the component from validity)
|
|
* and extraneous edges (any edge separating two squares
|
|
* belonging to the same component also disqualifies that
|
|
* component).
|
|
*/
|
|
for (y = 1; y < state->sy-1; y++)
|
|
for (x = 1; x < state->sx-1; x++) {
|
|
space *sp = &SPACE(state, x, y);
|
|
|
|
if (sp->flags & F_DOT) {
|
|
/*
|
|
* There's a dot here. Use it to disqualify any
|
|
* component which deserves it.
|
|
*/
|
|
int cx, cy;
|
|
for (cy = (y-1) >> 1; cy <= y >> 1; cy++)
|
|
for (cx = (x-1) >> 1; cx <= x >> 1; cx++) {
|
|
i = dsf_canonify(dsf, cy*w+cx);
|
|
if (x != sqdata[i].cx || y != sqdata[i].cy)
|
|
sqdata[i].valid = false;
|
|
}
|
|
}
|
|
|
|
if (sp->flags & F_EDGE_SET) {
|
|
/*
|
|
* There's an edge here. Use it to disqualify a
|
|
* component if necessary.
|
|
*/
|
|
int cx1 = (x-1) >> 1, cx2 = x >> 1;
|
|
int cy1 = (y-1) >> 1, cy2 = y >> 1;
|
|
assert((cx1==cx2) ^ (cy1==cy2));
|
|
i = dsf_canonify(dsf, cy1*w+cx1);
|
|
if (i == dsf_canonify(dsf, cy2*w+cx2))
|
|
sqdata[i].valid = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* And finally we test rotational symmetry: for each square in
|
|
* the grid, find which component it's in, test that that
|
|
* component also has a square in the symmetric position, and
|
|
* disqualify it if it doesn't.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int x2, y2;
|
|
|
|
i = dsf_canonify(dsf, y*w+x);
|
|
|
|
x2 = sqdata[i].cx - 1 - x;
|
|
y2 = sqdata[i].cy - 1 - y;
|
|
if (i != dsf_canonify(dsf, y2*w+x2))
|
|
sqdata[i].valid = false;
|
|
}
|
|
|
|
/*
|
|
* That's it. We now have all the connected components marked
|
|
* as valid or not valid. So now we return a `colours' array if
|
|
* we were asked for one, and also we return an overall
|
|
* true/false value depending on whether _every_ square in the
|
|
* grid is part of a valid component.
|
|
*/
|
|
ret = true;
|
|
for (i = 0; i < w*h; i++) {
|
|
int ci = dsf_canonify(dsf, i);
|
|
bool thisok = sqdata[ci].valid;
|
|
if (colours)
|
|
colours[i] = thisok ? sqdata[ci].colour : 0;
|
|
ret = ret && thisok;
|
|
}
|
|
|
|
sfree(sqdata);
|
|
if (free_dsf)
|
|
sfree(dsf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int x, y, ax, ay, n, dx, dy;
|
|
game_state *ret = dup_game(state);
|
|
space *sp, *dot;
|
|
bool currently_solving = false;
|
|
|
|
debug(("%s\n", move));
|
|
|
|
while (*move) {
|
|
char c = *move;
|
|
if (c == 'E' || c == 'U' || c == 'M'
|
|
#ifdef EDITOR
|
|
|| c == 'D' || c == 'd'
|
|
#endif
|
|
) {
|
|
move++;
|
|
if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
|
|
!INUI(ret, x, y))
|
|
goto badmove;
|
|
|
|
sp = &SPACE(ret, x, y);
|
|
#ifdef EDITOR
|
|
if (c == 'D' || c == 'd') {
|
|
unsigned int currf, newf, maskf;
|
|
|
|
if (!dot_is_possible(ret, sp, 1)) goto badmove;
|
|
|
|
newf = F_DOT | (c == 'd' ? F_DOT_BLACK : 0);
|
|
currf = GRID(ret, grid, x, y).flags;
|
|
maskf = F_DOT | F_DOT_BLACK;
|
|
/* if we clicked 'white dot':
|
|
* white --> empty, empty --> white, black --> white.
|
|
* if we clicked 'black dot':
|
|
* black --> empty, empty --> black, white --> black.
|
|
*/
|
|
if (currf & maskf) {
|
|
sp->flags &= ~maskf;
|
|
if ((currf & maskf) != newf)
|
|
sp->flags |= newf;
|
|
} else
|
|
sp->flags |= newf;
|
|
sp->nassoc = 0; /* edit-mode disallows associations. */
|
|
game_update_dots(ret);
|
|
} else
|
|
#endif
|
|
if (c == 'E') {
|
|
if (sp->type != s_edge) goto badmove;
|
|
sp->flags ^= F_EDGE_SET;
|
|
} else if (c == 'U') {
|
|
if (sp->type != s_tile || !(sp->flags & F_TILE_ASSOC))
|
|
goto badmove;
|
|
/* The solver doesn't assume we'll mirror things */
|
|
if (currently_solving)
|
|
remove_assoc(ret, sp);
|
|
else
|
|
remove_assoc_with_opposite(ret, sp);
|
|
} else if (c == 'M') {
|
|
if (!(sp->flags & F_DOT)) goto badmove;
|
|
sp->flags ^= F_DOT_HOLD;
|
|
}
|
|
move += n;
|
|
} else if (c == 'A' || c == 'a') {
|
|
move++;
|
|
if (sscanf(move, "%d,%d,%d,%d%n", &x, &y, &ax, &ay, &n) != 4 ||
|
|
x < 1 || y < 1 || x >= (ret->sx-1) || y >= (ret->sy-1) ||
|
|
ax < 1 || ay < 1 || ax >= (ret->sx-1) || ay >= (ret->sy-1))
|
|
goto badmove;
|
|
|
|
dot = &GRID(ret, grid, ax, ay);
|
|
if (!(dot->flags & F_DOT))goto badmove;
|
|
if (dot->flags & F_DOT_HOLD) goto badmove;
|
|
|
|
for (dx = -1; dx <= 1; dx++) {
|
|
for (dy = -1; dy <= 1; dy++) {
|
|
sp = &GRID(ret, grid, x+dx, y+dy);
|
|
if (sp->type != s_tile) continue;
|
|
if (sp->flags & F_TILE_ASSOC) {
|
|
space *dot = &SPACE(ret, sp->dotx, sp->doty);
|
|
if (dot->flags & F_DOT_HOLD) continue;
|
|
}
|
|
/* The solver doesn't assume we'll mirror things */
|
|
if (currently_solving)
|
|
add_assoc(ret, sp, dot);
|
|
else
|
|
add_assoc_with_opposite(ret, sp, dot);
|
|
}
|
|
}
|
|
move += n;
|
|
#ifdef EDITOR
|
|
} else if (c == 'C') {
|
|
move++;
|
|
clear_game(ret, true);
|
|
} else if (c == 'i') {
|
|
int diff;
|
|
move++;
|
|
for (diff = 0; diff <= DIFF_UNREASONABLE; diff++)
|
|
if (*move == galaxies_diffchars[diff])
|
|
break;
|
|
if (diff > DIFF_UNREASONABLE)
|
|
goto badmove;
|
|
|
|
ret->cdiff = diff;
|
|
move++;
|
|
} else if (c == 'I') {
|
|
int diff;
|
|
move++;
|
|
switch (*move) {
|
|
case 'A':
|
|
diff = DIFF_AMBIGUOUS;
|
|
break;
|
|
case 'I':
|
|
diff = DIFF_IMPOSSIBLE;
|
|
break;
|
|
case 'U':
|
|
diff = DIFF_UNFINISHED;
|
|
break;
|
|
default:
|
|
goto badmove;
|
|
}
|
|
ret->cdiff = diff;
|
|
move++;
|
|
#endif
|
|
} else if (c == 'S') {
|
|
move++;
|
|
ret->used_solve = true;
|
|
currently_solving = true;
|
|
} else
|
|
goto badmove;
|
|
|
|
if (*move == ';')
|
|
move++;
|
|
else if (*move)
|
|
goto badmove;
|
|
}
|
|
if (check_complete(ret, NULL, NULL))
|
|
ret->completed = true;
|
|
return ret;
|
|
|
|
badmove:
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
/* Lines will be much smaller size than squares; say, 1/8 the size?
|
|
*
|
|
* Need a 'top-left corner of location XxY' to take this into account;
|
|
* alternaticaly, that could give the middle of that location, and the
|
|
* drawing code would just know the expected dimensions.
|
|
*
|
|
* We also need something to take a click and work out what it was
|
|
* we were interested in. Clicking on vertices is required because
|
|
* we may want to drag from them, for example.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int sz,
|
|
int *x, int *y)
|
|
{
|
|
struct { int tilesize, w, h; } ads, *ds = &ads;
|
|
|
|
ds->tilesize = sz;
|
|
ds->w = params->w;
|
|
ds->h = params->h;
|
|
|
|
*x = DRAW_WIDTH;
|
|
*y = DRAW_HEIGHT;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int sz)
|
|
{
|
|
ds->tilesize = sz;
|
|
|
|
assert(TILE_SIZE > 0);
|
|
|
|
assert(!ds->bl);
|
|
ds->bl = blitter_new(dr, TILE_SIZE, TILE_SIZE);
|
|
|
|
assert(!ds->blmirror);
|
|
ds->blmirror = blitter_new(dr, TILE_SIZE, TILE_SIZE);
|
|
|
|
assert(!ds->cur_bl);
|
|
ds->cur_bl = blitter_new(dr, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
/*
|
|
* We call game_mkhighlight to ensure the background colour
|
|
* isn't completely white. We don't actually use the high- and
|
|
* lowlight colours it generates.
|
|
*/
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_WHITEBG, COL_BLACKBG);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
/*
|
|
* Currently, white dots and white-background squares are
|
|
* both pure white.
|
|
*/
|
|
ret[COL_WHITEDOT * 3 + i] = 1.0F;
|
|
ret[COL_WHITEBG * 3 + i] = 1.0F;
|
|
|
|
/*
|
|
* But black-background squares are a dark grey, whereas
|
|
* black dots are really black.
|
|
*/
|
|
ret[COL_BLACKDOT * 3 + i] = 0.0F;
|
|
ret[COL_BLACKBG * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.3F;
|
|
|
|
/*
|
|
* In unfilled squares, we draw a faint gridwork.
|
|
*/
|
|
ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
|
|
|
|
/*
|
|
* Edges and arrows are filled in in pure black.
|
|
*/
|
|
ret[COL_EDGE * 3 + i] = 0.0F;
|
|
ret[COL_ARROW * 3 + i] = 0.0F;
|
|
}
|
|
|
|
#ifdef EDITOR
|
|
/* tinge the edit background to bluey */
|
|
ret[COL_BACKGROUND * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
|
|
ret[COL_BACKGROUND * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
|
|
ret[COL_BACKGROUND * 3 + 2] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
|
|
#endif
|
|
|
|
ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
|
|
ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
|
|
ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = false;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
|
|
ds->grid = snewn(ds->w*ds->h, unsigned long);
|
|
for (i = 0; i < ds->w*ds->h; i++)
|
|
ds->grid[i] = 0xFFFFFFFFUL;
|
|
ds->dx = snewn(ds->w*ds->h, int);
|
|
ds->dy = snewn(ds->w*ds->h, int);
|
|
|
|
ds->bl = NULL;
|
|
ds->blmirror = NULL;
|
|
ds->dragging = false;
|
|
ds->dragx = ds->dragy = ds->oppx = ds->oppy = 0;
|
|
|
|
ds->colour_scratch = snewn(ds->w * ds->h, int);
|
|
|
|
ds->cur_bl = NULL;
|
|
ds->cx = ds->cy = 0;
|
|
ds->cur_visible = false;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
if (ds->cur_bl) blitter_free(dr, ds->cur_bl);
|
|
sfree(ds->colour_scratch);
|
|
if (ds->blmirror) blitter_free(dr, ds->blmirror);
|
|
if (ds->bl) blitter_free(dr, ds->bl);
|
|
sfree(ds->dx);
|
|
sfree(ds->dy);
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
#define DRAW_EDGE_L 0x0001
|
|
#define DRAW_EDGE_R 0x0002
|
|
#define DRAW_EDGE_U 0x0004
|
|
#define DRAW_EDGE_D 0x0008
|
|
#define DRAW_CORNER_UL 0x0010
|
|
#define DRAW_CORNER_UR 0x0020
|
|
#define DRAW_CORNER_DL 0x0040
|
|
#define DRAW_CORNER_DR 0x0080
|
|
#define DRAW_WHITE 0x0100
|
|
#define DRAW_BLACK 0x0200
|
|
#define DRAW_ARROW 0x0400
|
|
#define DRAW_CURSOR 0x0800
|
|
#define DOT_SHIFT_C 12
|
|
#define DOT_SHIFT_M 2
|
|
#define DOT_WHITE 1UL
|
|
#define DOT_BLACK 2UL
|
|
|
|
/*
|
|
* Draw an arrow centred on (cx,cy), pointing in the direction
|
|
* (ddx,ddy). (I.e. pointing at the point (cx+ddx, cy+ddy).
|
|
*/
|
|
static void draw_arrow(drawing *dr, game_drawstate *ds,
|
|
int cx, int cy, int ddx, int ddy, int col)
|
|
{
|
|
int sqdist = ddx*ddx+ddy*ddy;
|
|
if (sqdist == 0)
|
|
return; /* avoid division by zero */
|
|
float vlen = (float)sqrt(sqdist);
|
|
float xdx = ddx/vlen, xdy = ddy/vlen;
|
|
float ydx = -xdy, ydy = xdx;
|
|
int e1x = cx + (int)(xdx*TILE_SIZE/3), e1y = cy + (int)(xdy*TILE_SIZE/3);
|
|
int e2x = cx - (int)(xdx*TILE_SIZE/3), e2y = cy - (int)(xdy*TILE_SIZE/3);
|
|
int adx = (int)((ydx-xdx)*TILE_SIZE/8), ady = (int)((ydy-xdy)*TILE_SIZE/8);
|
|
int adx2 = (int)((-ydx-xdx)*TILE_SIZE/8), ady2 = (int)((-ydy-xdy)*TILE_SIZE/8);
|
|
|
|
draw_line(dr, e1x, e1y, e2x, e2y, col);
|
|
draw_line(dr, e1x, e1y, e1x+adx, e1y+ady, col);
|
|
draw_line(dr, e1x, e1y, e1x+adx2, e1y+ady2, col);
|
|
}
|
|
|
|
static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
|
|
unsigned long flags, int ddx, int ddy)
|
|
{
|
|
int lx = COORD(x), ly = COORD(y);
|
|
int dx, dy;
|
|
int gridcol;
|
|
|
|
clip(dr, lx, ly, TILE_SIZE, TILE_SIZE);
|
|
|
|
/*
|
|
* Draw the tile background.
|
|
*/
|
|
draw_rect(dr, lx, ly, TILE_SIZE, TILE_SIZE,
|
|
(flags & DRAW_WHITE ? COL_WHITEBG :
|
|
flags & DRAW_BLACK ? COL_BLACKBG : COL_BACKGROUND));
|
|
|
|
/*
|
|
* Draw the grid.
|
|
*/
|
|
gridcol = (flags & DRAW_BLACK ? COL_BLACKDOT : COL_GRID);
|
|
draw_rect(dr, lx, ly, 1, TILE_SIZE, gridcol);
|
|
draw_rect(dr, lx, ly, TILE_SIZE, 1, gridcol);
|
|
|
|
/*
|
|
* Draw the arrow, if present, or the cursor, if here.
|
|
*/
|
|
if (flags & DRAW_ARROW)
|
|
draw_arrow(dr, ds, lx + TILE_SIZE/2, ly + TILE_SIZE/2, ddx, ddy,
|
|
(flags & DRAW_CURSOR) ? COL_CURSOR : COL_ARROW);
|
|
else if (flags & DRAW_CURSOR)
|
|
draw_rect_outline(dr,
|
|
lx + TILE_SIZE/2 - CURSOR_SIZE,
|
|
ly + TILE_SIZE/2 - CURSOR_SIZE,
|
|
2*CURSOR_SIZE+1, 2*CURSOR_SIZE+1,
|
|
COL_CURSOR);
|
|
|
|
/*
|
|
* Draw the edges.
|
|
*/
|
|
if (flags & DRAW_EDGE_L)
|
|
draw_rect(dr, lx, ly, EDGE_THICKNESS, TILE_SIZE, COL_EDGE);
|
|
if (flags & DRAW_EDGE_R)
|
|
draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
|
|
EDGE_THICKNESS - 1, TILE_SIZE, COL_EDGE);
|
|
if (flags & DRAW_EDGE_U)
|
|
draw_rect(dr, lx, ly, TILE_SIZE, EDGE_THICKNESS, COL_EDGE);
|
|
if (flags & DRAW_EDGE_D)
|
|
draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
|
|
TILE_SIZE, EDGE_THICKNESS - 1, COL_EDGE);
|
|
if (flags & DRAW_CORNER_UL)
|
|
draw_rect(dr, lx, ly, EDGE_THICKNESS, EDGE_THICKNESS, COL_EDGE);
|
|
if (flags & DRAW_CORNER_UR)
|
|
draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
|
|
EDGE_THICKNESS - 1, EDGE_THICKNESS, COL_EDGE);
|
|
if (flags & DRAW_CORNER_DL)
|
|
draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
|
|
EDGE_THICKNESS, EDGE_THICKNESS - 1, COL_EDGE);
|
|
if (flags & DRAW_CORNER_DR)
|
|
draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1,
|
|
ly + TILE_SIZE - EDGE_THICKNESS + 1,
|
|
EDGE_THICKNESS - 1, EDGE_THICKNESS - 1, COL_EDGE);
|
|
|
|
/*
|
|
* Draw the dots.
|
|
*/
|
|
for (dy = 0; dy < 3; dy++)
|
|
for (dx = 0; dx < 3; dx++) {
|
|
int dotval = (flags >> (DOT_SHIFT_C + DOT_SHIFT_M*(dy*3+dx)));
|
|
dotval &= (1 << DOT_SHIFT_M)-1;
|
|
|
|
if (dotval)
|
|
draw_circle(dr, lx+dx*TILE_SIZE/2, ly+dy*TILE_SIZE/2,
|
|
DOT_SIZE,
|
|
(dotval == 1 ? COL_WHITEDOT : COL_BLACKDOT),
|
|
COL_BLACKDOT);
|
|
}
|
|
|
|
unclip(dr);
|
|
draw_update(dr, lx, ly, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void calculate_opposite_point(const game_ui *ui,
|
|
const game_drawstate *ds, const int x,
|
|
const int y, int *oppositex,
|
|
int *oppositey)
|
|
{
|
|
/* oppositex - dotx = dotx - x <=> oppositex = 2 * dotx - x */
|
|
*oppositex = 2 * SCOORD(ui->dotx) - x;
|
|
*oppositey = 2 * SCOORD(ui->doty) - y;
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = ds->w, h = ds->h;
|
|
int x, y;
|
|
bool flashing = false;
|
|
|
|
if (flashtime > 0) {
|
|
int frame = (int)(flashtime / FLASH_TIME);
|
|
flashing = (frame % 2 == 0);
|
|
}
|
|
|
|
if (ds->dragging) {
|
|
assert(ds->bl);
|
|
assert(ds->blmirror);
|
|
blitter_load(dr, ds->blmirror, ds->oppx, ds->oppy);
|
|
draw_update(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE);
|
|
blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
|
|
draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
|
|
ds->dragging = false;
|
|
}
|
|
if (ds->cur_visible) {
|
|
assert(ds->cur_bl);
|
|
blitter_load(dr, ds->cur_bl, ds->cx, ds->cy);
|
|
draw_update(dr, ds->cx, ds->cy, CURSOR_SIZE*2+1, CURSOR_SIZE*2+1);
|
|
ds->cur_visible = false;
|
|
}
|
|
|
|
if (!ds->started) {
|
|
draw_rect(dr, BORDER - EDGE_THICKNESS + 1, BORDER - EDGE_THICKNESS + 1,
|
|
w*TILE_SIZE + EDGE_THICKNESS*2 - 1,
|
|
h*TILE_SIZE + EDGE_THICKNESS*2 - 1, COL_EDGE);
|
|
draw_update(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT);
|
|
ds->started = true;
|
|
}
|
|
|
|
check_complete(state, NULL, ds->colour_scratch);
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
unsigned long flags = 0;
|
|
int ddx = 0, ddy = 0;
|
|
space *sp, *opp;
|
|
int dx, dy;
|
|
|
|
/*
|
|
* Set up the flags for this square. Firstly, see if we
|
|
* have edges.
|
|
*/
|
|
if (SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
|
|
flags |= DRAW_EDGE_L;
|
|
if (SPACE(state, x*2+2, y*2+1).flags & F_EDGE_SET)
|
|
flags |= DRAW_EDGE_R;
|
|
if (SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
|
|
flags |= DRAW_EDGE_U;
|
|
if (SPACE(state, x*2+1, y*2+2).flags & F_EDGE_SET)
|
|
flags |= DRAW_EDGE_D;
|
|
|
|
/*
|
|
* Also, mark corners of neighbouring edges.
|
|
*/
|
|
if ((x > 0 && SPACE(state, x*2-1, y*2).flags & F_EDGE_SET) ||
|
|
(y > 0 && SPACE(state, x*2, y*2-1).flags & F_EDGE_SET))
|
|
flags |= DRAW_CORNER_UL;
|
|
if ((x+1 < w && SPACE(state, x*2+3, y*2).flags & F_EDGE_SET) ||
|
|
(y > 0 && SPACE(state, x*2+2, y*2-1).flags & F_EDGE_SET))
|
|
flags |= DRAW_CORNER_UR;
|
|
if ((x > 0 && SPACE(state, x*2-1, y*2+2).flags & F_EDGE_SET) ||
|
|
(y+1 < h && SPACE(state, x*2, y*2+3).flags & F_EDGE_SET))
|
|
flags |= DRAW_CORNER_DL;
|
|
if ((x+1 < w && SPACE(state, x*2+3, y*2+2).flags & F_EDGE_SET) ||
|
|
(y+1 < h && SPACE(state, x*2+2, y*2+3).flags & F_EDGE_SET))
|
|
flags |= DRAW_CORNER_DR;
|
|
|
|
/*
|
|
* If this square is part of a valid region, paint it
|
|
* that region's colour. Exception: if we're flashing,
|
|
* everything goes briefly back to background colour.
|
|
*/
|
|
sp = &SPACE(state, x*2+1, y*2+1);
|
|
if (sp->flags & F_TILE_ASSOC) {
|
|
opp = tile_opposite(state, sp);
|
|
} else {
|
|
opp = NULL;
|
|
}
|
|
if (ds->colour_scratch[y*w+x] && !flashing) {
|
|
flags |= (ds->colour_scratch[y*w+x] == 2 ?
|
|
DRAW_BLACK : DRAW_WHITE);
|
|
}
|
|
|
|
/*
|
|
* If this square is associated with a dot but it isn't
|
|
* part of a valid region, draw an arrow in it pointing
|
|
* in the direction of that dot.
|
|
*
|
|
* Exception: if this is the source point of an active
|
|
* drag, we don't draw the arrow.
|
|
*/
|
|
if ((sp->flags & F_TILE_ASSOC) && !ds->colour_scratch[y*w+x]) {
|
|
if (ui->dragging && ui->srcx == x*2+1 && ui->srcy == y*2+1) {
|
|
/* tile is the source, don't do it */
|
|
} else if (ui->dragging && opp && ui->srcx == opp->x && ui->srcy == opp->y) {
|
|
/* opposite tile is the source, don't do it */
|
|
} else if (sp->doty != y*2+1 || sp->dotx != x*2+1) {
|
|
flags |= DRAW_ARROW;
|
|
ddy = sp->doty - (y*2+1);
|
|
ddx = sp->dotx - (x*2+1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now go through the nine possible places we could
|
|
* have dots.
|
|
*/
|
|
for (dy = 0; dy < 3; dy++)
|
|
for (dx = 0; dx < 3; dx++) {
|
|
sp = &SPACE(state, x*2+dx, y*2+dy);
|
|
if (sp->flags & F_DOT) {
|
|
unsigned long dotval = (sp->flags & F_DOT_BLACK ?
|
|
DOT_BLACK : DOT_WHITE);
|
|
flags |= dotval << (DOT_SHIFT_C +
|
|
DOT_SHIFT_M*(dy*3+dx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now work out if we have to draw a cursor for this square;
|
|
* cursors-on-lines are taken care of below.
|
|
*/
|
|
if (ui->cur_visible &&
|
|
ui->cur_x == x*2+1 && ui->cur_y == y*2+1 &&
|
|
!(SPACE(state, x*2+1, y*2+1).flags & F_DOT))
|
|
flags |= DRAW_CURSOR;
|
|
|
|
/*
|
|
* Now we have everything we're going to need. Draw the
|
|
* square.
|
|
*/
|
|
if (ds->grid[y*w+x] != flags ||
|
|
ds->dx[y*w+x] != ddx ||
|
|
ds->dy[y*w+x] != ddy) {
|
|
draw_square(dr, ds, x, y, flags, ddx, ddy);
|
|
ds->grid[y*w+x] = flags;
|
|
ds->dx[y*w+x] = ddx;
|
|
ds->dy[y*w+x] = ddy;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw a cursor. This secondary blitter is much less invasive than trying
|
|
* to fix up all of the rest of the code with sufficient flags to be able to
|
|
* display this sensibly.
|
|
*/
|
|
if (ui->cur_visible) {
|
|
space *sp = &SPACE(state, ui->cur_x, ui->cur_y);
|
|
ds->cur_visible = true;
|
|
ds->cx = SCOORD(ui->cur_x) - CURSOR_SIZE;
|
|
ds->cy = SCOORD(ui->cur_y) - CURSOR_SIZE;
|
|
blitter_save(dr, ds->cur_bl, ds->cx, ds->cy);
|
|
if (sp->flags & F_DOT) {
|
|
/* draw a red dot (over the top of whatever would be there already) */
|
|
draw_circle(dr, SCOORD(ui->cur_x), SCOORD(ui->cur_y), DOT_SIZE,
|
|
COL_CURSOR, COL_BLACKDOT);
|
|
} else if (sp->type != s_tile) {
|
|
/* draw an edge/vertex square; tile cursors are dealt with above. */
|
|
int dx = (ui->cur_x % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
|
|
int dy = (ui->cur_y % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
|
|
int x1 = SCOORD(ui->cur_x)-dx, y1 = SCOORD(ui->cur_y)-dy;
|
|
int xs = dx*2+1, ys = dy*2+1;
|
|
|
|
draw_rect(dr, x1, y1, xs, ys, COL_CURSOR);
|
|
}
|
|
draw_update(dr, ds->cx, ds->cy, CURSOR_SIZE*2+1, CURSOR_SIZE*2+1);
|
|
}
|
|
|
|
if (ui->dragging) {
|
|
int oppx, oppy;
|
|
|
|
ds->dragging = true;
|
|
ds->dragx = ui->dx - TILE_SIZE/2;
|
|
ds->dragy = ui->dy - TILE_SIZE/2;
|
|
calculate_opposite_point(ui, ds, ui->dx, ui->dy, &oppx, &oppy);
|
|
ds->oppx = oppx - TILE_SIZE/2;
|
|
ds->oppy = oppy - TILE_SIZE/2;
|
|
|
|
blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
|
|
clip(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
|
|
draw_arrow(dr, ds, ui->dx, ui->dy, SCOORD(ui->dotx) - ui->dx,
|
|
SCOORD(ui->doty) - ui->dy, COL_ARROW);
|
|
unclip(dr);
|
|
draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
|
|
|
|
blitter_save(dr, ds->blmirror, ds->oppx, ds->oppy);
|
|
clip(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE);
|
|
draw_arrow(dr, ds, oppx, oppy, SCOORD(ui->dotx) - oppx,
|
|
SCOORD(ui->doty) - oppy, COL_ARROW);
|
|
unclip(dr);
|
|
draw_update(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
#ifdef EDITOR
|
|
{
|
|
char buf[256];
|
|
if (state->cdiff != -1)
|
|
sprintf(buf, "Puzzle is %s.", galaxies_diffnames[state->cdiff]);
|
|
else
|
|
buf[0] = '\0';
|
|
status_bar(dr, buf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if ((!oldstate->completed && newstate->completed) &&
|
|
!(newstate->used_solve))
|
|
return 3 * FLASH_TIME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->cur_visible) {
|
|
space *sp = &SPACE(state, ui->cur_x, ui->cur_y);
|
|
|
|
if(sp->flags & F_DOT) {
|
|
*x = SCOORD(ui->cur_x) - DOT_SIZE;
|
|
*y = SCOORD(ui->cur_y) - DOT_SIZE;
|
|
*w = *h = 2 * DOT_SIZE + 1;
|
|
} else if(sp->type != s_tile) {
|
|
int dx = (ui->cur_x % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
|
|
int dy = (ui->cur_y % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
|
|
int x1 = SCOORD(ui->cur_x)-dx, y1 = SCOORD(ui->cur_y)-dy;
|
|
int xs = dx*2+1, ys = dy*2+1;
|
|
|
|
*x = x1;
|
|
*y = y1;
|
|
*w = xs;
|
|
*h = ys;
|
|
} else {
|
|
*x = SCOORD(ui->cur_x) - CURSOR_SIZE;
|
|
*y = SCOORD(ui->cur_y) - CURSOR_SIZE;
|
|
*w = *h = 2 * CURSOR_SIZE + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
#ifndef EDITOR
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* 8mm squares by default. (There isn't all that much detail
|
|
* that needs to go in each square.)
|
|
*/
|
|
game_compute_size(params, 800, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int sz)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int white, black, blackish;
|
|
int x, y, i, j;
|
|
int *colours, *dsf;
|
|
int *coords = NULL;
|
|
int ncoords = 0, coordsize = 0;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
ds->tilesize = sz;
|
|
|
|
white = print_mono_colour(dr, 1);
|
|
black = print_mono_colour(dr, 0);
|
|
blackish = print_hatched_colour(dr, HATCH_X);
|
|
|
|
/*
|
|
* Get the completion information.
|
|
*/
|
|
dsf = snewn(w * h, int);
|
|
colours = snewn(w * h, int);
|
|
check_complete(state, dsf, colours);
|
|
|
|
/*
|
|
* Draw the grid.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 64);
|
|
for (x = 1; x < w; x++)
|
|
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
|
|
for (y = 1; y < h; y++)
|
|
draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
|
|
|
|
/*
|
|
* Shade the completed regions. Just in case any particular
|
|
* printing platform deals badly with adjacent
|
|
* similarly-hatched regions, we'll fill each one as a single
|
|
* polygon.
|
|
*/
|
|
for (i = 0; i < w*h; i++) {
|
|
j = dsf_canonify(dsf, i);
|
|
if (colours[j] != 0) {
|
|
int dx, dy, t;
|
|
|
|
/*
|
|
* This is the first square we've run into belonging to
|
|
* this polyomino, which means an edge of the polyomino
|
|
* is certain to be to our left. (After we finish
|
|
* tracing round it, we'll set the colours[] entry to
|
|
* zero to prevent accidentally doing it again.)
|
|
*/
|
|
|
|
x = i % w;
|
|
y = i / w;
|
|
dx = -1;
|
|
dy = 0;
|
|
ncoords = 0;
|
|
while (1) {
|
|
/*
|
|
* We are currently sitting on square (x,y), which
|
|
* we know to be in our polyomino, and we also know
|
|
* that (x+dx,y+dy) is not. The way I visualise
|
|
* this is that we're standing to the right of a
|
|
* boundary line, stretching our left arm out to
|
|
* point to the exterior square on the far side.
|
|
*/
|
|
|
|
/*
|
|
* First, check if we've gone round the entire
|
|
* polyomino.
|
|
*/
|
|
if (ncoords > 0 &&
|
|
(x == i%w && y == i/w && dx == -1 && dy == 0))
|
|
break;
|
|
|
|
/*
|
|
* Add to our coordinate list the coordinate
|
|
* backwards and to the left of where we are.
|
|
*/
|
|
if (ncoords + 2 > coordsize) {
|
|
coordsize = (ncoords * 3 / 2) + 64;
|
|
coords = sresize(coords, coordsize, int);
|
|
}
|
|
coords[ncoords++] = COORD((2*x+1 + dx + dy) / 2);
|
|
coords[ncoords++] = COORD((2*y+1 + dy - dx) / 2);
|
|
|
|
/*
|
|
* Follow the edge round. If the square directly in
|
|
* front of us is not part of the polyomino, we
|
|
* turn right; if it is and so is the square in
|
|
* front of (x+dx,y+dy), we turn left; otherwise we
|
|
* go straight on.
|
|
*/
|
|
if (x-dy < 0 || x-dy >= w || y+dx < 0 || y+dx >= h ||
|
|
dsf_canonify(dsf, (y+dx)*w+(x-dy)) != j) {
|
|
/* Turn right. */
|
|
t = dx;
|
|
dx = -dy;
|
|
dy = t;
|
|
} else if (x+dx-dy >= 0 && x+dx-dy < w &&
|
|
y+dy+dx >= 0 && y+dy+dx < h &&
|
|
dsf_canonify(dsf, (y+dy+dx)*w+(x+dx-dy)) == j) {
|
|
/* Turn left. */
|
|
x += dx;
|
|
y += dy;
|
|
t = dx;
|
|
dx = dy;
|
|
dy = -t;
|
|
x -= dx;
|
|
y -= dy;
|
|
} else {
|
|
/* Straight on. */
|
|
x -= dy;
|
|
y += dx;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we have our polygon complete, so fill it.
|
|
*/
|
|
draw_polygon(dr, coords, ncoords/2,
|
|
colours[j] == 2 ? blackish : -1, black);
|
|
|
|
/*
|
|
* And mark this polyomino as done.
|
|
*/
|
|
colours[j] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the edges.
|
|
*/
|
|
for (y = 0; y <= h; y++)
|
|
for (x = 0; x <= w; x++) {
|
|
if (x < w && SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
|
|
draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
|
|
EDGE_THICKNESS * 2 + TILE_SIZE, EDGE_THICKNESS * 2,
|
|
black);
|
|
if (y < h && SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
|
|
draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
|
|
EDGE_THICKNESS * 2, EDGE_THICKNESS * 2 + TILE_SIZE,
|
|
black);
|
|
}
|
|
|
|
/*
|
|
* Draw the dots.
|
|
*/
|
|
for (y = 0; y <= 2*h; y++)
|
|
for (x = 0; x <= 2*w; x++)
|
|
if (SPACE(state, x, y).flags & F_DOT) {
|
|
draw_circle(dr, (int)COORD(x/2.0), (int)COORD(y/2.0), DOT_SIZE,
|
|
(SPACE(state, x, y).flags & F_DOT_BLACK ?
|
|
black : white), black);
|
|
}
|
|
|
|
sfree(dsf);
|
|
sfree(colours);
|
|
sfree(coords);
|
|
}
|
|
#endif
|
|
|
|
#ifdef COMBINED
|
|
#define thegame galaxies
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Galaxies", "games.galaxies", "galaxies",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
#ifdef EDITOR
|
|
false, NULL,
|
|
#else
|
|
true, solve_game,
|
|
#endif
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
#ifdef EDITOR
|
|
NULL,
|
|
#else
|
|
current_key_label,
|
|
#endif
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
#ifdef EDITOR
|
|
false, false, NULL, NULL,
|
|
true, /* wants_statusbar */
|
|
#else
|
|
true, false, game_print_size, game_print,
|
|
false, /* wants_statusbar */
|
|
#endif
|
|
false, NULL, /* timing_state */
|
|
REQUIRE_RBUTTON, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
static const char *quis;
|
|
|
|
#include <time.h>
|
|
|
|
static void usage_exit(const char *msg)
|
|
{
|
|
if (msg)
|
|
fprintf(stderr, "%s: %s\n", quis, msg);
|
|
fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis);
|
|
exit(1);
|
|
}
|
|
|
|
static void dump_state(game_state *state)
|
|
{
|
|
char *temp = game_text_format(state);
|
|
printf("%s\n", temp);
|
|
sfree(temp);
|
|
}
|
|
|
|
static int gen(game_params *p, random_state *rs, bool debug)
|
|
{
|
|
char *desc;
|
|
int diff;
|
|
game_state *state;
|
|
|
|
#ifndef DEBUGGING
|
|
solver_show_working = debug;
|
|
#endif
|
|
printf("Generating a %dx%d %s puzzle.\n",
|
|
p->w, p->h, galaxies_diffnames[p->diff]);
|
|
|
|
desc = new_game_desc(p, rs, NULL, false);
|
|
state = new_game(NULL, p, desc);
|
|
dump_state(state);
|
|
|
|
diff = solver_state(state, DIFF_UNREASONABLE);
|
|
printf("Generated %s game %dx%d:%s\n",
|
|
galaxies_diffnames[diff], p->w, p->h, desc);
|
|
dump_state(state);
|
|
|
|
free_game(state);
|
|
sfree(desc);
|
|
|
|
return diff;
|
|
}
|
|
|
|
static void soak(game_params *p, random_state *rs)
|
|
{
|
|
time_t tt_start, tt_now, tt_last;
|
|
char *desc;
|
|
game_state *st;
|
|
int diff, n = 0, i, diffs[DIFF_MAX], ndots = 0, nspaces = 0;
|
|
|
|
#ifndef DEBUGGING
|
|
solver_show_working = false;
|
|
#endif
|
|
tt_start = tt_now = time(NULL);
|
|
for (i = 0; i < DIFF_MAX; i++) diffs[i] = 0;
|
|
one_try = true;
|
|
|
|
printf("Soak-generating a %dx%d grid, max. diff %s.\n",
|
|
p->w, p->h, galaxies_diffnames[p->diff]);
|
|
printf(" [");
|
|
for (i = 0; i < DIFF_MAX; i++)
|
|
printf("%s%s", (i == 0) ? "" : ", ", galaxies_diffnames[i]);
|
|
printf("]\n");
|
|
|
|
while (1) {
|
|
char *aux;
|
|
desc = new_game_desc(p, rs, &aux, false);
|
|
sfree(aux);
|
|
st = new_game(NULL, p, desc);
|
|
diff = solver_state(st, p->diff);
|
|
nspaces += st->w*st->h;
|
|
for (i = 0; i < st->sx*st->sy; i++)
|
|
if (st->grid[i].flags & F_DOT) ndots++;
|
|
free_game(st);
|
|
sfree(desc);
|
|
|
|
diffs[diff]++;
|
|
n++;
|
|
tt_last = time(NULL);
|
|
if (tt_last > tt_now) {
|
|
tt_now = tt_last;
|
|
printf("%d total, %3.1f/s, [",
|
|
n, (double)n / ((double)tt_now - tt_start));
|
|
for (i = 0; i < DIFF_MAX; i++)
|
|
printf("%s%.1f%%", (i == 0) ? "" : ", ",
|
|
100.0 * ((double)diffs[i] / (double)n));
|
|
printf("], %.1f%% dots\n",
|
|
100.0 * ((double)ndots / (double)nspaces));
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
char *id = NULL, *desc;
|
|
const char *err;
|
|
game_state *s;
|
|
int diff;
|
|
bool do_soak = false, verbose = false;
|
|
random_state *rs;
|
|
time_t seed = time(NULL);
|
|
|
|
quis = argv[0];
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (!strcmp(p, "-v")) {
|
|
verbose = true;
|
|
} else if (!strcmp(p, "--seed")) {
|
|
if (argc == 0) usage_exit("--seed needs an argument");
|
|
seed = (time_t)atoi(*++argv);
|
|
argc--;
|
|
} else if (!strcmp(p, "--soak")) {
|
|
do_soak = true;
|
|
} else if (*p == '-') {
|
|
usage_exit("unrecognised option");
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
p = default_params();
|
|
rs = random_new((void*)&seed, sizeof(time_t));
|
|
|
|
if (do_soak) {
|
|
if (!id) usage_exit("need one argument for --soak");
|
|
decode_params(p, *argv);
|
|
soak(p, rs);
|
|
return 0;
|
|
}
|
|
|
|
if (!id) {
|
|
while (1) {
|
|
p->w = random_upto(rs, 15) + 3;
|
|
p->h = random_upto(rs, 15) + 3;
|
|
p->diff = random_upto(rs, DIFF_UNREASONABLE);
|
|
diff = gen(p, rs, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
decode_params(p, id);
|
|
gen(p, rs, verbose);
|
|
} else {
|
|
#ifndef DEBUGGING
|
|
solver_show_working = true;
|
|
#endif
|
|
*desc++ = '\0';
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
exit(1);
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
diff = solver_state(s, DIFF_UNREASONABLE);
|
|
dump_state(s);
|
|
printf("Puzzle is %s.\n", galaxies_diffnames[diff]);
|
|
free_game(s);
|
|
}
|
|
|
|
free_params(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef STANDALONE_PICTURE_GENERATOR
|
|
|
|
/*
|
|
* Main program for the standalone picture generator. To use it,
|
|
* simply provide it with an XBM-format bitmap file (note XBM, not
|
|
* XPM) on standard input, and it will output a game ID in return.
|
|
* For example:
|
|
*
|
|
* $ ./galaxiespicture < badly-drawn-cat.xbm
|
|
* 11x11:eloMBLzFeEzLNMWifhaWYdDbixCymBbBMLoDdewGg
|
|
*
|
|
* If you want a puzzle with a non-standard difficulty level, pass
|
|
* a partial parameters string as a command-line argument (e.g.
|
|
* `./galaxiespicture du < foo.xbm', where `du' is the same suffix
|
|
* which if it appeared in a random-seed game ID would set the
|
|
* difficulty level to Unreasonable). However, be aware that if the
|
|
* generator fails to produce an adequately difficult puzzle too
|
|
* many times then it will give up and return an easier one (just
|
|
* as it does during normal GUI play). To be sure you really have
|
|
* the difficulty you asked for, use galaxiessolver to
|
|
* double-check.
|
|
*
|
|
* (Perhaps I ought to include an option to make this standalone
|
|
* generator carry on looping until it really does get the right
|
|
* difficulty. Hmmm.)
|
|
*/
|
|
|
|
#include <time.h>
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *par;
|
|
char *params, *desc;
|
|
random_state *rs;
|
|
time_t seed = time(NULL);
|
|
char buf[4096];
|
|
int i;
|
|
int x, y;
|
|
|
|
par = default_params();
|
|
if (argc > 1)
|
|
decode_params(par, argv[1]); /* get difficulty */
|
|
par->w = par->h = -1;
|
|
|
|
/*
|
|
* Now read an XBM file from standard input. This is simple and
|
|
* hacky and will do very little error detection, so don't feed
|
|
* it bogus data.
|
|
*/
|
|
picture = NULL;
|
|
x = y = 0;
|
|
while (fgets(buf, sizeof(buf), stdin)) {
|
|
buf[strcspn(buf, "\r\n")] = '\0';
|
|
if (!strncmp(buf, "#define", 7)) {
|
|
/*
|
|
* Lines starting `#define' give the width and height.
|
|
*/
|
|
char *num = buf + strlen(buf);
|
|
char *symend;
|
|
|
|
while (num > buf && isdigit((unsigned char)num[-1]))
|
|
num--;
|
|
symend = num;
|
|
while (symend > buf && isspace((unsigned char)symend[-1]))
|
|
symend--;
|
|
|
|
if (symend-5 >= buf && !strncmp(symend-5, "width", 5))
|
|
par->w = atoi(num);
|
|
else if (symend-6 >= buf && !strncmp(symend-6, "height", 6))
|
|
par->h = atoi(num);
|
|
} else {
|
|
/*
|
|
* Otherwise, break the string up into words and take
|
|
* any word of the form `0x' plus hex digits to be a
|
|
* byte.
|
|
*/
|
|
char *p, *wordstart;
|
|
|
|
if (!picture) {
|
|
if (par->w < 0 || par->h < 0) {
|
|
printf("failed to read width and height\n");
|
|
return 1;
|
|
}
|
|
picture = snewn(par->w * par->h, int);
|
|
for (i = 0; i < par->w * par->h; i++)
|
|
picture[i] = -1;
|
|
}
|
|
|
|
p = buf;
|
|
while (*p) {
|
|
while (*p && (*p == ',' || isspace((unsigned char)*p)))
|
|
p++;
|
|
wordstart = p;
|
|
while (*p && !(*p == ',' || *p == '}' ||
|
|
isspace((unsigned char)*p)))
|
|
p++;
|
|
if (*p)
|
|
*p++ = '\0';
|
|
|
|
if (wordstart[0] == '0' &&
|
|
(wordstart[1] == 'x' || wordstart[1] == 'X') &&
|
|
!wordstart[2 + strspn(wordstart+2,
|
|
"0123456789abcdefABCDEF")]) {
|
|
unsigned long byte = strtoul(wordstart+2, NULL, 16);
|
|
for (i = 0; i < 8; i++) {
|
|
int bit = (byte >> i) & 1;
|
|
if (y < par->h && x < par->w)
|
|
picture[y * par->w + x] = bit;
|
|
x++;
|
|
}
|
|
|
|
if (x >= par->w) {
|
|
x = 0;
|
|
y++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < par->w * par->h; i++)
|
|
if (picture[i] < 0) {
|
|
fprintf(stderr, "failed to read enough bitmap data\n");
|
|
return 1;
|
|
}
|
|
|
|
rs = random_new((void*)&seed, sizeof(time_t));
|
|
|
|
desc = new_game_desc(par, rs, NULL, false);
|
|
params = encode_params(par, false);
|
|
printf("%s:%s\n", params, desc);
|
|
|
|
sfree(desc);
|
|
sfree(params);
|
|
free_params(par);
|
|
random_free(rs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|