mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

This provides a way for the front end to ask how a particular key should be labelled right now (specifically, for a given game_state and game_ui). This is useful on feature phones where it's conventional to put a small caption above each soft key indicating what it currently does. The function currently provides labels only for CURSOR_SELECT and CURSOR_SELECT2. This is because these are the only keys that need labelling on KaiOS. The concept of labelling keys also turns up in the request_keys() call, but there are quite a few differences. The labels returned by current_key_label() are dynamic and likely to vary with each move, while the labels provided by request_keys() are constant for a given game_params. Also, the keys returned by request_keys() don't generally include CURSOR_SELECT and CURSOR_SELECT2, because those aren't necessary on platforms with pointing devices. It might be possible to provide a unified API covering both of this, but I think it would be quite difficult to work with. Where a key is to be unlabelled, current_key_label() is expected to return an empty string. This leaves open the possibility of NULL indicating a fallback to button2label or the label specified by request_keys() in the future. It's tempting to try to implement current_key_label() by calling interpret_move() and parsing its output. This doesn't work for two reasons. One is that interpret_move() is entitled to modify the game_ui, and there isn't really a practical way to back those changes out. The other is that the information returned by interpret_move() isn't sufficient to generate a label. For instance, in many puzzles it generates moves that toggle the state of a square, but we want the label to reflect which state the square will be toggled to. The result is that I've generally ended up pulling bits of code from interpret_move() and execute_move() together to implement current_key_label(). Alongside the back-end function, there's a midend_current_key_label() that's a thin wrapper around the back-end function. It just adds an assertion about which key's being requested and a default null implementation so that back-ends can avoid defining the function if it will do nothing useful.
1709 lines
49 KiB
C
1709 lines
49 KiB
C
/*
|
|
* 'same game' -- try to remove all the coloured squares by
|
|
* selecting regions of contiguous colours.
|
|
*/
|
|
|
|
/*
|
|
* TODO on grid generation:
|
|
*
|
|
* - Generation speed could still be improved.
|
|
* * 15x10c3 is the only really difficult one of the existing
|
|
* presets. The others are all either small enough, or have
|
|
* the great flexibility given by four colours, that they
|
|
* don't take long at all.
|
|
* * I still suspect many problems arise from separate
|
|
* subareas. I wonder if we can also somehow prioritise left-
|
|
* or rightmost insertions so as to avoid area splitting at
|
|
* all where feasible? It's not easy, though, because the
|
|
* current shuffle-then-try-all-options approach to move
|
|
* choice doesn't leave room for `soft' probabilistic
|
|
* prioritisation: we either try all class A moves before any
|
|
* class B ones, or we don't.
|
|
*
|
|
* - The current generation algorithm inserts exactly two squares
|
|
* at a time, with a single exception at the beginning of
|
|
* generation for grids of odd overall size. An obvious
|
|
* extension would be to permit larger inverse moves during
|
|
* generation.
|
|
* * this might reduce the number of failed generations by
|
|
* making the insertion algorithm more flexible
|
|
* * on the other hand, it would be significantly more complex
|
|
* * if I do this I'll need to take out the odd-subarea
|
|
* avoidance
|
|
* * a nice feature of the current algorithm is that the
|
|
* computer's `intended' solution always receives the minimum
|
|
* possible score, so that pretty much the player's entire
|
|
* score represents how much better they did than the
|
|
* computer.
|
|
*
|
|
* - Is it possible we can _temporarily_ tolerate neighbouring
|
|
* squares of the same colour, until we've finished setting up
|
|
* our inverse move?
|
|
* * or perhaps even not choose the colour of our inserted
|
|
* region until we have finished placing it, and _then_ look
|
|
* at what colours border on it?
|
|
* * I don't think this is currently meaningful unless we're
|
|
* placing more than a domino at a time.
|
|
*
|
|
* - possibly write out a full solution so that Solve can somehow
|
|
* show it step by step?
|
|
* * aux_info would have to encode the click points
|
|
* * solve_game() would have to encode not only those click
|
|
* points but also give a move string which reconstructed the
|
|
* initial state
|
|
* * the game_state would include a pointer to a solution move
|
|
* list, plus an index into that list
|
|
* * game_changed_state would auto-select the next move if
|
|
* handed a new state which had a solution move list active
|
|
* * execute_move, if passed such a state as input, would check
|
|
* to see whether the move being made was the same as the one
|
|
* stated by the solution, and if so would advance the move
|
|
* index. Failing that it would return a game_state without a
|
|
* solution move list active at all.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define TILE_INNER (ds->tileinner)
|
|
#define TILE_GAP (ds->tilegap)
|
|
#define TILE_SIZE (TILE_INNER + TILE_GAP)
|
|
#define PREFERRED_TILE_SIZE 32
|
|
#define BORDER (TILE_SIZE / 2)
|
|
#define HIGHLIGHT_WIDTH 2
|
|
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define X(state, i) ( (i) % (state)->params.w )
|
|
#define Y(state, i) ( (i) / (state)->params.w )
|
|
#define C(state, x, y) ( (y) * (state)->w + (x) )
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8, COL_9,
|
|
COL_IMPOSSIBLE, COL_SEL, COL_HIGHLIGHT, COL_LOWLIGHT,
|
|
NCOLOURS
|
|
};
|
|
|
|
/* scoresub is 1 or 2 (for (n-1)^2 or (n-2)^2) */
|
|
struct game_params {
|
|
int w, h, ncols, scoresub;
|
|
bool soluble; /* choose generation algorithm */
|
|
};
|
|
|
|
/* These flags must be unique across all uses; in the game_state,
|
|
* the game_ui, and the drawstate (as they all get combined in the
|
|
* drawstate). */
|
|
#define TILE_COLMASK 0x00ff
|
|
#define TILE_SELECTED 0x0100 /* used in ui and drawstate */
|
|
#define TILE_JOINRIGHT 0x0200 /* used in drawstate */
|
|
#define TILE_JOINDOWN 0x0400 /* used in drawstate */
|
|
#define TILE_JOINDIAG 0x0800 /* used in drawstate */
|
|
#define TILE_HASSEL 0x1000 /* used in drawstate */
|
|
#define TILE_IMPOSSIBLE 0x2000 /* used in drawstate */
|
|
|
|
#define TILE(gs,x,y) ((gs)->tiles[(gs)->params.w*(y)+(x)])
|
|
#define COL(gs,x,y) (TILE(gs,x,y) & TILE_COLMASK)
|
|
#define ISSEL(gs,x,y) (TILE(gs,x,y) & TILE_SELECTED)
|
|
|
|
#define SWAPTILE(gs,x1,y1,x2,y2) do { \
|
|
int t = TILE(gs,x1,y1); \
|
|
TILE(gs,x1,y1) = TILE(gs,x2,y2); \
|
|
TILE(gs,x2,y2) = t; \
|
|
} while (0)
|
|
|
|
static int npoints(const game_params *params, int nsel)
|
|
{
|
|
int sdiff = nsel - params->scoresub;
|
|
return (sdiff > 0) ? sdiff * sdiff : 0;
|
|
}
|
|
|
|
struct game_state {
|
|
struct game_params params;
|
|
int n;
|
|
int *tiles; /* colour only */
|
|
int score;
|
|
bool complete, impossible;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
ret->w = 5;
|
|
ret->h = 5;
|
|
ret->ncols = 3;
|
|
ret->scoresub = 2;
|
|
ret->soluble = true;
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params samegame_presets[] = {
|
|
{ 5, 5, 3, 2, true },
|
|
{ 10, 5, 3, 2, true },
|
|
#ifdef SLOW_SYSTEM
|
|
{ 10, 10, 3, 2, true },
|
|
#else
|
|
{ 15, 10, 3, 2, true },
|
|
#endif
|
|
{ 15, 10, 4, 2, true },
|
|
{ 20, 15, 4, 2, true }
|
|
};
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(samegame_presets))
|
|
return false;
|
|
|
|
ret = snew(game_params);
|
|
*ret = samegame_presets[i];
|
|
|
|
sprintf(str, "%dx%d, %d colours", ret->w, ret->h, ret->ncols);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
params->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
params->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->h = params->w;
|
|
}
|
|
if (*p == 'c') {
|
|
p++;
|
|
params->ncols = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->ncols = 3;
|
|
}
|
|
if (*p == 's') {
|
|
p++;
|
|
params->scoresub = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->scoresub = 2;
|
|
}
|
|
if (*p == 'r') {
|
|
p++;
|
|
params->soluble = false;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char ret[80];
|
|
|
|
sprintf(ret, "%dx%dc%ds%d%s",
|
|
params->w, params->h, params->ncols, params->scoresub,
|
|
full && !params->soluble ? "r" : "");
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(6, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = "No. of colours";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->ncols);
|
|
ret[2].u.string.sval = dupstr(buf);
|
|
|
|
ret[3].name = "Scoring system";
|
|
ret[3].type = C_CHOICES;
|
|
ret[3].u.choices.choicenames = ":(n-1)^2:(n-2)^2";
|
|
ret[3].u.choices.selected = params->scoresub-1;
|
|
|
|
ret[4].name = "Ensure solubility";
|
|
ret[4].type = C_BOOLEAN;
|
|
ret[4].u.boolean.bval = params->soluble;
|
|
|
|
ret[5].name = NULL;
|
|
ret[5].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->h = atoi(cfg[1].u.string.sval);
|
|
ret->ncols = atoi(cfg[2].u.string.sval);
|
|
ret->scoresub = cfg[3].u.choices.selected + 1;
|
|
ret->soluble = cfg[4].u.boolean.bval;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 1 || params->h < 1)
|
|
return "Width and height must both be positive";
|
|
|
|
if (params->ncols > 9)
|
|
return "Maximum of 9 colours";
|
|
|
|
if (params->soluble) {
|
|
if (params->ncols < 3)
|
|
return "Number of colours must be at least three";
|
|
if (params->w * params->h <= 1)
|
|
return "Grid area must be greater than 1";
|
|
} else {
|
|
if (params->ncols < 2)
|
|
return "Number of colours must be at least three";
|
|
/* ...and we must make sure we can generate at least 2 squares
|
|
* of each colour so it's theoretically soluble. */
|
|
if ((params->w * params->h) < (params->ncols * 2))
|
|
return "Too many colours makes given grid size impossible";
|
|
}
|
|
|
|
if ((params->scoresub < 1) || (params->scoresub > 2))
|
|
return "Scoring system not recognised";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Guaranteed-soluble grid generator.
|
|
*/
|
|
static void gen_grid(int w, int h, int nc, int *grid, random_state *rs)
|
|
{
|
|
int wh = w*h, tc = nc+1;
|
|
int i, j, k, c, x, y, pos, n;
|
|
int *list, *grid2;
|
|
bool ok;
|
|
int failures = 0;
|
|
|
|
/*
|
|
* We'll use `list' to track the possible places to put our
|
|
* next insertion. There are up to h places to insert in each
|
|
* column: in a column of height n there are n+1 places because
|
|
* we can insert at the very bottom or the very top, but a
|
|
* column of height h can't have anything at all inserted in it
|
|
* so we have up to h in each column. Likewise, with n columns
|
|
* present there are n+1 places to fit a new one in between but
|
|
* we can't insert a column if there are already w; so there
|
|
* are a maximum of w new columns too. Total is wh + w.
|
|
*/
|
|
list = snewn(wh + w, int);
|
|
grid2 = snewn(wh, int);
|
|
|
|
do {
|
|
/*
|
|
* Start with two or three squares - depending on parity of w*h
|
|
* - of a random colour.
|
|
*/
|
|
for (i = 0; i < wh; i++)
|
|
grid[i] = 0;
|
|
j = 2 + (wh % 2);
|
|
c = 1 + random_upto(rs, nc);
|
|
if (j <= w) {
|
|
for (i = 0; i < j; i++)
|
|
grid[(h-1)*w+i] = c;
|
|
} else {
|
|
assert(j <= h);
|
|
for (i = 0; i < j; i++)
|
|
grid[(h-1-i)*w] = c;
|
|
}
|
|
|
|
/*
|
|
* Now repeatedly insert a two-square blob in the grid, of
|
|
* whatever colour will go at the position we chose.
|
|
*/
|
|
while (1) {
|
|
n = 0;
|
|
|
|
/*
|
|
* Build up a list of insertion points. Each point is
|
|
* encoded as y*w+x; insertion points between columns are
|
|
* encoded as h*w+x.
|
|
*/
|
|
|
|
if (grid[wh - 1] == 0) {
|
|
/*
|
|
* The final column is empty, so we can insert new
|
|
* columns.
|
|
*/
|
|
for (i = 0; i < w; i++) {
|
|
list[n++] = wh + i;
|
|
if (grid[(h-1)*w + i] == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now look for places to insert within columns.
|
|
*/
|
|
for (i = 0; i < w; i++) {
|
|
if (grid[(h-1)*w+i] == 0)
|
|
break; /* no more columns */
|
|
|
|
if (grid[i] != 0)
|
|
continue; /* this column is full */
|
|
|
|
for (j = h; j-- > 0 ;) {
|
|
list[n++] = j*w+i;
|
|
if (grid[j*w+i] == 0)
|
|
break; /* this column is exhausted */
|
|
}
|
|
}
|
|
|
|
if (n == 0)
|
|
break; /* we're done */
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("initial grid:\n");
|
|
{
|
|
int x,y;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (grid[y*w+x] == 0)
|
|
printf("-");
|
|
else
|
|
printf("%d", grid[y*w+x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Now go through the list one element at a time in
|
|
* random order, and actually attempt to insert
|
|
* something there.
|
|
*/
|
|
while (n-- > 0) {
|
|
int dirs[4], ndirs, dir;
|
|
|
|
i = random_upto(rs, n+1);
|
|
pos = list[i];
|
|
list[i] = list[n];
|
|
|
|
x = pos % w;
|
|
y = pos / w;
|
|
|
|
memcpy(grid2, grid, wh * sizeof(int));
|
|
|
|
if (y == h) {
|
|
/*
|
|
* Insert a column at position x.
|
|
*/
|
|
for (i = w-1; i > x; i--)
|
|
for (j = 0; j < h; j++)
|
|
grid2[j*w+i] = grid2[j*w+(i-1)];
|
|
/*
|
|
* Clear the new column.
|
|
*/
|
|
for (j = 0; j < h; j++)
|
|
grid2[j*w+x] = 0;
|
|
/*
|
|
* Decrement y so that our first square is actually
|
|
* inserted _in_ the grid rather than just below it.
|
|
*/
|
|
y--;
|
|
}
|
|
|
|
/*
|
|
* Insert a square within column x at position y.
|
|
*/
|
|
for (i = 0; i+1 <= y; i++)
|
|
grid2[i*w+x] = grid2[(i+1)*w+x];
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("trying at n=%d (%d,%d)\n", n, x, y);
|
|
grid2[y*w+x] = tc;
|
|
{
|
|
int x,y;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (grid2[y*w+x] == 0)
|
|
printf("-");
|
|
else if (grid2[y*w+x] <= nc)
|
|
printf("%d", grid2[y*w+x]);
|
|
else
|
|
printf("*");
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pick our square colour so that it doesn't match any
|
|
* of its neighbours.
|
|
*/
|
|
{
|
|
int wrongcol[4], nwrong = 0;
|
|
|
|
/*
|
|
* List the neighbouring colours.
|
|
*/
|
|
if (x > 0)
|
|
wrongcol[nwrong++] = grid2[y*w+(x-1)];
|
|
if (x+1 < w)
|
|
wrongcol[nwrong++] = grid2[y*w+(x+1)];
|
|
if (y > 0)
|
|
wrongcol[nwrong++] = grid2[(y-1)*w+x];
|
|
if (y+1 < h)
|
|
wrongcol[nwrong++] = grid2[(y+1)*w+x];
|
|
|
|
/*
|
|
* Eliminate duplicates. We can afford a shoddy
|
|
* algorithm here because the problem size is
|
|
* bounded.
|
|
*/
|
|
for (i = j = 0 ;; i++) {
|
|
int pos = -1, min = 0;
|
|
if (j > 0)
|
|
min = wrongcol[j-1];
|
|
for (k = i; k < nwrong; k++)
|
|
if (wrongcol[k] > min &&
|
|
(pos == -1 || wrongcol[k] < wrongcol[pos]))
|
|
pos = k;
|
|
if (pos >= 0) {
|
|
int v = wrongcol[pos];
|
|
wrongcol[pos] = wrongcol[j];
|
|
wrongcol[j++] = v;
|
|
} else
|
|
break;
|
|
}
|
|
nwrong = j;
|
|
|
|
/*
|
|
* If no colour will go here, stop trying.
|
|
*/
|
|
if (nwrong == nc)
|
|
continue;
|
|
|
|
/*
|
|
* Otherwise, pick a colour from the remaining
|
|
* ones.
|
|
*/
|
|
c = 1 + random_upto(rs, nc - nwrong);
|
|
for (i = 0; i < nwrong; i++) {
|
|
if (c >= wrongcol[i])
|
|
c++;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Place the new square.
|
|
*
|
|
* Although I've _chosen_ the new region's colour
|
|
* (so that we can check adjacency), I'm going to
|
|
* actually place it as an invalid colour (tc)
|
|
* until I'm sure it's viable. This is so that I
|
|
* can conveniently check that I really have made a
|
|
* _valid_ inverse move later on.
|
|
*/
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("picked colour %d\n", c);
|
|
#endif
|
|
grid2[y*w+x] = tc;
|
|
|
|
/*
|
|
* Now attempt to extend it in one of three ways: left,
|
|
* right or up.
|
|
*/
|
|
ndirs = 0;
|
|
if (x > 0 &&
|
|
grid2[y*w+(x-1)] != c &&
|
|
grid2[x-1] == 0 &&
|
|
(y+1 >= h || grid2[(y+1)*w+(x-1)] != c) &&
|
|
(y+1 >= h || grid2[(y+1)*w+(x-1)] != 0) &&
|
|
(x <= 1 || grid2[y*w+(x-2)] != c))
|
|
dirs[ndirs++] = -1; /* left */
|
|
if (x+1 < w &&
|
|
grid2[y*w+(x+1)] != c &&
|
|
grid2[x+1] == 0 &&
|
|
(y+1 >= h || grid2[(y+1)*w+(x+1)] != c) &&
|
|
(y+1 >= h || grid2[(y+1)*w+(x+1)] != 0) &&
|
|
(x+2 >= w || grid2[y*w+(x+2)] != c))
|
|
dirs[ndirs++] = +1; /* right */
|
|
if (y > 0 &&
|
|
grid2[x] == 0 &&
|
|
(x <= 0 || grid2[(y-1)*w+(x-1)] != c) &&
|
|
(x+1 >= w || grid2[(y-1)*w+(x+1)] != c)) {
|
|
/*
|
|
* We add this possibility _twice_, so that the
|
|
* probability of placing a vertical domino is
|
|
* about the same as that of a horizontal. This
|
|
* should yield less bias in the generated
|
|
* grids.
|
|
*/
|
|
dirs[ndirs++] = 0; /* up */
|
|
dirs[ndirs++] = 0; /* up */
|
|
}
|
|
|
|
if (ndirs == 0)
|
|
continue;
|
|
|
|
dir = dirs[random_upto(rs, ndirs)];
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("picked dir %d\n", dir);
|
|
#endif
|
|
|
|
/*
|
|
* Insert a square within column (x+dir) at position y.
|
|
*/
|
|
for (i = 0; i+1 <= y; i++)
|
|
grid2[i*w+x+dir] = grid2[(i+1)*w+x+dir];
|
|
grid2[y*w+x+dir] = tc;
|
|
|
|
/*
|
|
* See if we've divided the remaining grid squares
|
|
* into sub-areas. If so, we need every sub-area to
|
|
* have an even area or we won't be able to
|
|
* complete generation.
|
|
*
|
|
* If the height is odd and not all columns are
|
|
* present, we can increase the area of a subarea
|
|
* by adding a new column in it, so in that
|
|
* situation we don't mind having as many odd
|
|
* subareas as there are spare columns.
|
|
*
|
|
* If the height is even, we can't fix it at all.
|
|
*/
|
|
{
|
|
int nerrs = 0, nfix = 0;
|
|
k = 0; /* current subarea size */
|
|
for (i = 0; i < w; i++) {
|
|
if (grid2[(h-1)*w+i] == 0) {
|
|
if (h % 2)
|
|
nfix++;
|
|
continue;
|
|
}
|
|
for (j = 0; j < h && grid2[j*w+i] == 0; j++);
|
|
assert(j < h);
|
|
if (j == 0) {
|
|
/*
|
|
* End of previous subarea.
|
|
*/
|
|
if (k % 2)
|
|
nerrs++;
|
|
k = 0;
|
|
} else {
|
|
k += j;
|
|
}
|
|
}
|
|
if (k % 2)
|
|
nerrs++;
|
|
if (nerrs > nfix)
|
|
continue; /* try a different placement */
|
|
}
|
|
|
|
/*
|
|
* We've made a move. Verify that it is a valid
|
|
* move and that if made it would indeed yield the
|
|
* previous grid state. The criteria are:
|
|
*
|
|
* (a) removing all the squares of colour tc (and
|
|
* shuffling the columns up etc) from grid2
|
|
* would yield grid
|
|
* (b) no square of colour tc is adjacent to one
|
|
* of colour c
|
|
* (c) all the squares of colour tc form a single
|
|
* connected component
|
|
*
|
|
* We verify the latter property at the same time
|
|
* as checking that removing all the tc squares
|
|
* would yield the previous grid. Then we colour
|
|
* the tc squares in colour c by breadth-first
|
|
* search, which conveniently permits us to test
|
|
* that they're all connected.
|
|
*/
|
|
{
|
|
int x1, x2, y1, y2;
|
|
bool ok = true;
|
|
int fillstart = -1, ntc = 0;
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
{
|
|
int x,y;
|
|
printf("testing move (new, old):\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (grid2[y*w+x] == 0)
|
|
printf("-");
|
|
else if (grid2[y*w+x] <= nc)
|
|
printf("%d", grid2[y*w+x]);
|
|
else
|
|
printf("*");
|
|
}
|
|
printf(" ");
|
|
for (x = 0; x < w; x++) {
|
|
if (grid[y*w+x] == 0)
|
|
printf("-");
|
|
else
|
|
printf("%d", grid[y*w+x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (x1 = x2 = 0; x2 < w; x2++) {
|
|
bool usedcol = false;
|
|
|
|
for (y1 = y2 = h-1; y2 >= 0; y2--) {
|
|
if (grid2[y2*w+x2] == tc) {
|
|
ntc++;
|
|
if (fillstart == -1)
|
|
fillstart = y2*w+x2;
|
|
if ((y2+1 < h && grid2[(y2+1)*w+x2] == c) ||
|
|
(y2-1 >= 0 && grid2[(y2-1)*w+x2] == c) ||
|
|
(x2+1 < w && grid2[y2*w+x2+1] == c) ||
|
|
(x2-1 >= 0 && grid2[y2*w+x2-1] == c)) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("adjacency failure at %d,%d\n",
|
|
x2, y2);
|
|
#endif
|
|
ok = false;
|
|
}
|
|
continue;
|
|
}
|
|
if (grid2[y2*w+x2] == 0)
|
|
break;
|
|
usedcol = true;
|
|
if (grid2[y2*w+x2] != grid[y1*w+x1]) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("matching failure at %d,%d vs %d,%d\n",
|
|
x2, y2, x1, y1);
|
|
#endif
|
|
ok = false;
|
|
}
|
|
y1--;
|
|
}
|
|
|
|
/*
|
|
* If we've reached the top of the column
|
|
* in grid2, verify that we've also reached
|
|
* the top of the column in `grid'.
|
|
*/
|
|
if (usedcol) {
|
|
while (y1 >= 0) {
|
|
if (grid[y1*w+x1] != 0) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("junk at column top (%d,%d)\n",
|
|
x1, y1);
|
|
#endif
|
|
ok = false;
|
|
}
|
|
y1--;
|
|
}
|
|
}
|
|
|
|
if (!ok)
|
|
break;
|
|
|
|
if (usedcol)
|
|
x1++;
|
|
}
|
|
|
|
if (!ok) {
|
|
assert(!"This should never happen");
|
|
|
|
/*
|
|
* If this game is compiled NDEBUG so that
|
|
* the assertion doesn't bring it to a
|
|
* crashing halt, the only thing we can do
|
|
* is to give up, loop round again, and
|
|
* hope to randomly avoid making whatever
|
|
* type of move just caused this failure.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now use bfs to fill in the tc section as
|
|
* colour c. We use `list' to store the set of
|
|
* squares we have to process.
|
|
*/
|
|
i = j = 0;
|
|
assert(fillstart >= 0);
|
|
list[i++] = fillstart;
|
|
#ifdef OUTPUT_SOLUTION
|
|
printf("M");
|
|
#endif
|
|
while (j < i) {
|
|
k = list[j];
|
|
x = k % w;
|
|
y = k / w;
|
|
#ifdef OUTPUT_SOLUTION
|
|
printf("%s%d", j ? "," : "", k);
|
|
#endif
|
|
j++;
|
|
|
|
assert(grid2[k] == tc);
|
|
grid2[k] = c;
|
|
|
|
if (x > 0 && grid2[k-1] == tc)
|
|
list[i++] = k-1;
|
|
if (x+1 < w && grid2[k+1] == tc)
|
|
list[i++] = k+1;
|
|
if (y > 0 && grid2[k-w] == tc)
|
|
list[i++] = k-w;
|
|
if (y+1 < h && grid2[k+w] == tc)
|
|
list[i++] = k+w;
|
|
}
|
|
#ifdef OUTPUT_SOLUTION
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Check that we've filled the same number of
|
|
* tc squares as we originally found.
|
|
*/
|
|
assert(j == ntc);
|
|
}
|
|
|
|
memcpy(grid, grid2, wh * sizeof(int));
|
|
|
|
break; /* done it! */
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
{
|
|
int x,y;
|
|
printf("n=%d\n", n);
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (grid[y*w+x] == 0)
|
|
printf("-");
|
|
else
|
|
printf("%d", grid[y*w+x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (n < 0)
|
|
break;
|
|
}
|
|
|
|
ok = true;
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] == 0) {
|
|
ok = false;
|
|
failures++;
|
|
#if defined GENERATION_DIAGNOSTICS || defined SHOW_INCOMPLETE
|
|
{
|
|
int x,y;
|
|
printf("incomplete grid:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (grid[y*w+x] == 0)
|
|
printf("-");
|
|
else
|
|
printf("%d", grid[y*w+x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
} while (!ok);
|
|
|
|
#if defined GENERATION_DIAGNOSTICS || defined COUNT_FAILURES
|
|
printf("%d failures\n", failures);
|
|
#endif
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
{
|
|
int x,y;
|
|
printf("final grid:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
printf("%d", grid[y*w+x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
sfree(grid2);
|
|
sfree(list);
|
|
}
|
|
|
|
/*
|
|
* Not-guaranteed-soluble grid generator; kept as a legacy, and in
|
|
* case someone finds the slightly odd quality of the guaranteed-
|
|
* soluble grids to be aesthetically displeasing or finds its CPU
|
|
* utilisation to be excessive.
|
|
*/
|
|
static void gen_grid_random(int w, int h, int nc, int *grid, random_state *rs)
|
|
{
|
|
int i, j, c;
|
|
int n = w * h;
|
|
|
|
for (i = 0; i < n; i++)
|
|
grid[i] = 0;
|
|
|
|
/*
|
|
* Our sole concession to not gratuitously generating insoluble
|
|
* grids is to ensure we have at least two of every colour.
|
|
*/
|
|
for (c = 1; c <= nc; c++) {
|
|
for (j = 0; j < 2; j++) {
|
|
do {
|
|
i = (int)random_upto(rs, n);
|
|
} while (grid[i] != 0);
|
|
grid[i] = c;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in the rest of the grid at random.
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
if (grid[i] == 0)
|
|
grid[i] = (int)random_upto(rs, nc)+1;
|
|
}
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
char *ret;
|
|
int n, i, retlen, *tiles;
|
|
|
|
n = params->w * params->h;
|
|
tiles = snewn(n, int);
|
|
|
|
if (params->soluble)
|
|
gen_grid(params->w, params->h, params->ncols, tiles, rs);
|
|
else
|
|
gen_grid_random(params->w, params->h, params->ncols, tiles, rs);
|
|
|
|
ret = NULL;
|
|
retlen = 0;
|
|
for (i = 0; i < n; i++) {
|
|
char buf[80];
|
|
int k;
|
|
|
|
k = sprintf(buf, "%d,", tiles[i]);
|
|
ret = sresize(ret, retlen + k + 1, char);
|
|
strcpy(ret + retlen, buf);
|
|
retlen += k;
|
|
}
|
|
ret[retlen-1] = '\0'; /* delete last comma */
|
|
|
|
sfree(tiles);
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int area = params->w * params->h, i;
|
|
const char *p = desc;
|
|
|
|
for (i = 0; i < area; i++) {
|
|
const char *q = p;
|
|
int n;
|
|
|
|
if (!isdigit((unsigned char)*p))
|
|
return "Not enough numbers in string";
|
|
while (isdigit((unsigned char)*p)) p++;
|
|
|
|
if (i < area-1 && *p != ',')
|
|
return "Expected comma after number";
|
|
else if (i == area-1 && *p)
|
|
return "Excess junk at end of string";
|
|
|
|
n = atoi(q);
|
|
if (n < 0 || n > params->ncols)
|
|
return "Colour out of range";
|
|
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
const char *p = desc;
|
|
int i;
|
|
|
|
state->params = *params; /* struct copy */
|
|
state->n = state->params.w * state->params.h;
|
|
state->tiles = snewn(state->n, int);
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
assert(*p);
|
|
state->tiles[i] = atoi(p);
|
|
while (*p && *p != ',')
|
|
p++;
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
state->complete = false;
|
|
state->impossible = false;
|
|
state->score = 0;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
*ret = *state; /* structure copy, except... */
|
|
|
|
ret->tiles = snewn(state->n, int);
|
|
memcpy(ret->tiles, state->tiles, state->n * sizeof(int));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->tiles);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
char *ret, *p;
|
|
int x, y, maxlen;
|
|
|
|
maxlen = state->params.h * (state->params.w + 1);
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->params.h; y++) {
|
|
for (x = 0; x < state->params.w; x++) {
|
|
int t = TILE(state,x,y);
|
|
if (t <= 0) *p++ = ' ';
|
|
else if (t < 10) *p++ = '0'+t;
|
|
else *p++ = 'a'+(t-10);
|
|
}
|
|
*p++ = '\n';
|
|
}
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
struct game_params params;
|
|
int *tiles; /* selected-ness only */
|
|
int nselected;
|
|
int xsel, ysel;
|
|
bool displaysel;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
|
|
ui->params = state->params; /* structure copy */
|
|
ui->tiles = snewn(state->n, int);
|
|
memset(ui->tiles, 0, state->n*sizeof(int));
|
|
ui->nselected = 0;
|
|
|
|
ui->xsel = ui->ysel = 0;
|
|
ui->displaysel = false;
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui->tiles);
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void sel_clear(game_ui *ui, const game_state *state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < state->n; i++)
|
|
ui->tiles[i] &= ~TILE_SELECTED;
|
|
ui->nselected = 0;
|
|
}
|
|
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
sel_clear(ui, newstate);
|
|
|
|
/*
|
|
* If the game state has just changed into an unplayable one
|
|
* (either completed or impossible), we vanish the keyboard-
|
|
* control cursor.
|
|
*/
|
|
if (newstate->complete || newstate->impossible)
|
|
ui->displaysel = false;
|
|
}
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
if (IS_CURSOR_SELECT(button)) {
|
|
int x = ui->xsel, y = ui->ysel, c = COL(state,x,y);
|
|
if (c == 0) return "";
|
|
if (ISSEL(ui, x, y))
|
|
return button == CURSOR_SELECT2 ? "Unselect" : "Remove";
|
|
if ((x > 0 && COL(state,x-1,y) == c) ||
|
|
(x+1 < state->params.w && COL(state,x+1,y) == c) ||
|
|
(y > 0 && COL(state,x,y-1) == c) ||
|
|
(y+1 < state->params.h && COL(state,x,y+1) == c))
|
|
return "Select";
|
|
/* Cursor is over a lone square, so we can't select it. */
|
|
if (ui->nselected) return "Unselect";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static char *sel_movedesc(game_ui *ui, const game_state *state)
|
|
{
|
|
int i;
|
|
char *ret, buf[80];
|
|
const char *sep;
|
|
int retlen, retsize;
|
|
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = 0;
|
|
ret[retlen++] = 'M';
|
|
sep = "";
|
|
|
|
for (i = 0; i < state->n; i++) {
|
|
if (ui->tiles[i] & TILE_SELECTED) {
|
|
sprintf(buf, "%s%d", sep, i);
|
|
sep = ",";
|
|
if (retlen + (int)strlen(buf) >= retsize) {
|
|
retsize = retlen + strlen(buf) + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += strlen(buf);
|
|
|
|
ui->tiles[i] &= ~TILE_SELECTED;
|
|
}
|
|
}
|
|
ui->nselected = 0;
|
|
|
|
assert(retlen < retsize);
|
|
ret[retlen++] = '\0';
|
|
return sresize(ret, retlen, char);
|
|
}
|
|
|
|
static void sel_expand(game_ui *ui, const game_state *state, int tx, int ty)
|
|
{
|
|
int ns = 1, nadded, x, y, c;
|
|
|
|
TILE(ui,tx,ty) |= TILE_SELECTED;
|
|
do {
|
|
nadded = 0;
|
|
|
|
for (x = 0; x < state->params.w; x++) {
|
|
for (y = 0; y < state->params.h; y++) {
|
|
if (x == tx && y == ty) continue;
|
|
if (ISSEL(ui,x,y)) continue;
|
|
|
|
c = COL(state,x,y);
|
|
if ((x > 0) &&
|
|
ISSEL(ui,x-1,y) && COL(state,x-1,y) == c) {
|
|
TILE(ui,x,y) |= TILE_SELECTED;
|
|
nadded++;
|
|
continue;
|
|
}
|
|
|
|
if ((x+1 < state->params.w) &&
|
|
ISSEL(ui,x+1,y) && COL(state,x+1,y) == c) {
|
|
TILE(ui,x,y) |= TILE_SELECTED;
|
|
nadded++;
|
|
continue;
|
|
}
|
|
|
|
if ((y > 0) &&
|
|
ISSEL(ui,x,y-1) && COL(state,x,y-1) == c) {
|
|
TILE(ui,x,y) |= TILE_SELECTED;
|
|
nadded++;
|
|
continue;
|
|
}
|
|
|
|
if ((y+1 < state->params.h) &&
|
|
ISSEL(ui,x,y+1) && COL(state,x,y+1) == c) {
|
|
TILE(ui,x,y) |= TILE_SELECTED;
|
|
nadded++;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
ns += nadded;
|
|
} while (nadded > 0);
|
|
|
|
if (ns > 1) {
|
|
ui->nselected = ns;
|
|
} else {
|
|
sel_clear(ui, state);
|
|
}
|
|
}
|
|
|
|
static bool sg_emptycol(game_state *ret, int x)
|
|
{
|
|
int y;
|
|
for (y = 0; y < ret->params.h; y++) {
|
|
if (COL(ret,x,y)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static void sg_snuggle(game_state *ret)
|
|
{
|
|
int x,y, ndone;
|
|
|
|
/* make all unsupported tiles fall down. */
|
|
do {
|
|
ndone = 0;
|
|
for (x = 0; x < ret->params.w; x++) {
|
|
for (y = ret->params.h-1; y > 0; y--) {
|
|
if (COL(ret,x,y) != 0) continue;
|
|
if (COL(ret,x,y-1) != 0) {
|
|
SWAPTILE(ret,x,y,x,y-1);
|
|
ndone++;
|
|
}
|
|
}
|
|
}
|
|
} while (ndone);
|
|
|
|
/* shuffle all columns as far left as they can go. */
|
|
do {
|
|
ndone = 0;
|
|
for (x = 0; x < ret->params.w-1; x++) {
|
|
if (sg_emptycol(ret,x) && !sg_emptycol(ret,x+1)) {
|
|
ndone++;
|
|
for (y = 0; y < ret->params.h; y++) {
|
|
SWAPTILE(ret,x,y,x+1,y);
|
|
}
|
|
}
|
|
}
|
|
} while (ndone);
|
|
}
|
|
|
|
static void sg_check(game_state *ret)
|
|
{
|
|
int x,y;
|
|
bool complete = true, impossible = true;
|
|
|
|
for (x = 0; x < ret->params.w; x++) {
|
|
for (y = 0; y < ret->params.h; y++) {
|
|
if (COL(ret,x,y) == 0)
|
|
continue;
|
|
complete = false;
|
|
if (x+1 < ret->params.w) {
|
|
if (COL(ret,x,y) == COL(ret,x+1,y))
|
|
impossible = false;
|
|
}
|
|
if (y+1 < ret->params.h) {
|
|
if (COL(ret,x,y) == COL(ret,x,y+1))
|
|
impossible = false;
|
|
}
|
|
}
|
|
}
|
|
ret->complete = complete;
|
|
ret->impossible = impossible;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
bool started;
|
|
int bgcolour;
|
|
int tileinner, tilegap;
|
|
int *tiles; /* contains colour and SELECTED. */
|
|
};
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int tx, ty;
|
|
char *ret = UI_UPDATE;
|
|
|
|
ui->displaysel = false;
|
|
|
|
if (button == RIGHT_BUTTON || button == LEFT_BUTTON) {
|
|
tx = FROMCOORD(x); ty= FROMCOORD(y);
|
|
} else if (IS_CURSOR_MOVE(button)) {
|
|
int dx = 0, dy = 0;
|
|
ui->displaysel = true;
|
|
dx = (button == CURSOR_LEFT) ? -1 : ((button == CURSOR_RIGHT) ? +1 : 0);
|
|
dy = (button == CURSOR_DOWN) ? +1 : ((button == CURSOR_UP) ? -1 : 0);
|
|
ui->xsel = (ui->xsel + state->params.w + dx) % state->params.w;
|
|
ui->ysel = (ui->ysel + state->params.h + dy) % state->params.h;
|
|
return ret;
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
ui->displaysel = true;
|
|
tx = ui->xsel;
|
|
ty = ui->ysel;
|
|
} else
|
|
return NULL;
|
|
|
|
if (tx < 0 || tx >= state->params.w || ty < 0 || ty >= state->params.h)
|
|
return NULL;
|
|
if (COL(state, tx, ty) == 0) return NULL;
|
|
|
|
if (ISSEL(ui,tx,ty)) {
|
|
if (button == RIGHT_BUTTON || button == CURSOR_SELECT2)
|
|
sel_clear(ui, state);
|
|
else
|
|
ret = sel_movedesc(ui, state);
|
|
} else {
|
|
sel_clear(ui, state); /* might be no-op */
|
|
sel_expand(ui, state, tx, ty);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *from, const char *move)
|
|
{
|
|
int i, n;
|
|
game_state *ret;
|
|
|
|
if (move[0] == 'M') {
|
|
ret = dup_game(from);
|
|
|
|
n = 0;
|
|
move++;
|
|
|
|
while (*move) {
|
|
i = atoi(move);
|
|
if (i < 0 || i >= ret->n) {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
n++;
|
|
ret->tiles[i] = 0;
|
|
|
|
while (*move && isdigit((unsigned char)*move)) move++;
|
|
if (*move == ',') move++;
|
|
}
|
|
|
|
ret->score += npoints(&ret->params, n);
|
|
|
|
sg_snuggle(ret); /* shifts blanks down and to the left */
|
|
sg_check(ret); /* checks for completeness or impossibility */
|
|
|
|
return ret;
|
|
} else
|
|
return NULL; /* couldn't parse move string */
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilegap = 2;
|
|
ds->tileinner = tilesize - ds->tilegap;
|
|
}
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up tile size variables for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(NULL, ds, params, tilesize);
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER - TILE_GAP;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER - TILE_GAP;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_1 * 3 + 0] = 0.0F;
|
|
ret[COL_1 * 3 + 1] = 0.0F;
|
|
ret[COL_1 * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_2 * 3 + 0] = 0.0F;
|
|
ret[COL_2 * 3 + 1] = 0.5F;
|
|
ret[COL_2 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_3 * 3 + 0] = 1.0F;
|
|
ret[COL_3 * 3 + 1] = 0.0F;
|
|
ret[COL_3 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_4 * 3 + 0] = 1.0F;
|
|
ret[COL_4 * 3 + 1] = 1.0F;
|
|
ret[COL_4 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_5 * 3 + 0] = 1.0F;
|
|
ret[COL_5 * 3 + 1] = 0.0F;
|
|
ret[COL_5 * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_6 * 3 + 0] = 0.0F;
|
|
ret[COL_6 * 3 + 1] = 1.0F;
|
|
ret[COL_6 * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_7 * 3 + 0] = 0.5F;
|
|
ret[COL_7 * 3 + 1] = 0.5F;
|
|
ret[COL_7 * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_8 * 3 + 0] = 0.5F;
|
|
ret[COL_8 * 3 + 1] = 1.0F;
|
|
ret[COL_8 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_9 * 3 + 0] = 1.0F;
|
|
ret[COL_9 * 3 + 1] = 0.5F;
|
|
ret[COL_9 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_IMPOSSIBLE * 3 + 0] = 0.0F;
|
|
ret[COL_IMPOSSIBLE * 3 + 1] = 0.0F;
|
|
ret[COL_IMPOSSIBLE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_SEL * 3 + 0] = 1.0F;
|
|
ret[COL_SEL * 3 + 1] = 1.0F;
|
|
ret[COL_SEL * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
|
|
ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
|
|
ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0F / 3.0F;
|
|
ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0F / 3.0F;
|
|
ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0F / 3.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = false;
|
|
ds->tileinner = ds->tilegap = 0; /* not decided yet */
|
|
ds->tiles = snewn(state->n, int);
|
|
ds->bgcolour = -1;
|
|
for (i = 0; i < state->n; i++)
|
|
ds->tiles[i] = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->tiles);
|
|
sfree(ds);
|
|
}
|
|
|
|
/* Drawing routing for the tile at (x,y) is responsible for drawing
|
|
* itself and the gaps to its right and below. If we're the same colour
|
|
* as the tile to our right, then we fill in the gap; ditto below, and if
|
|
* both then we fill the teeny tiny square in the corner as well.
|
|
*/
|
|
|
|
static void tile_redraw(drawing *dr, game_drawstate *ds,
|
|
int x, int y, bool dright, bool dbelow,
|
|
int tile, int bgcolour)
|
|
{
|
|
int outer = bgcolour, inner = outer, col = tile & TILE_COLMASK;
|
|
|
|
if (col) {
|
|
if (tile & TILE_IMPOSSIBLE) {
|
|
outer = col;
|
|
inner = COL_IMPOSSIBLE;
|
|
} else if (tile & TILE_SELECTED) {
|
|
outer = COL_SEL;
|
|
inner = col;
|
|
} else {
|
|
outer = inner = col;
|
|
}
|
|
}
|
|
draw_rect(dr, COORD(x), COORD(y), TILE_INNER, TILE_INNER, outer);
|
|
draw_rect(dr, COORD(x)+TILE_INNER/4, COORD(y)+TILE_INNER/4,
|
|
TILE_INNER/2, TILE_INNER/2, inner);
|
|
|
|
if (dright)
|
|
draw_rect(dr, COORD(x)+TILE_INNER, COORD(y), TILE_GAP, TILE_INNER,
|
|
(tile & TILE_JOINRIGHT) ? outer : bgcolour);
|
|
if (dbelow)
|
|
draw_rect(dr, COORD(x), COORD(y)+TILE_INNER, TILE_INNER, TILE_GAP,
|
|
(tile & TILE_JOINDOWN) ? outer : bgcolour);
|
|
if (dright && dbelow)
|
|
draw_rect(dr, COORD(x)+TILE_INNER, COORD(y)+TILE_INNER, TILE_GAP, TILE_GAP,
|
|
(tile & TILE_JOINDIAG) ? outer : bgcolour);
|
|
|
|
if (tile & TILE_HASSEL) {
|
|
int sx = COORD(x)+2, sy = COORD(y)+2, ssz = TILE_INNER-5;
|
|
int scol = (outer == COL_SEL) ? COL_LOWLIGHT : COL_HIGHLIGHT;
|
|
draw_line(dr, sx, sy, sx+ssz, sy, scol);
|
|
draw_line(dr, sx+ssz, sy, sx+ssz, sy+ssz, scol);
|
|
draw_line(dr, sx+ssz, sy+ssz, sx, sy+ssz, scol);
|
|
draw_line(dr, sx, sy+ssz, sx, sy, scol);
|
|
}
|
|
|
|
draw_update(dr, COORD(x), COORD(y), TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int bgcolour, x, y;
|
|
|
|
/* This was entirely cloned from fifteen.c; it should probably be
|
|
* moved into some generic 'draw-recessed-rectangle' utility fn. */
|
|
if (!ds->started) {
|
|
int coords[10];
|
|
|
|
/*
|
|
* Recessed area containing the whole puzzle.
|
|
*/
|
|
coords[0] = COORD(state->params.w) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
|
|
coords[1] = COORD(state->params.h) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
|
|
coords[2] = COORD(state->params.w) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
|
|
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[4] = coords[2] - TILE_SIZE;
|
|
coords[5] = coords[3] + TILE_SIZE;
|
|
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[9] = COORD(state->params.h) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
|
|
coords[6] = coords[8] + TILE_SIZE;
|
|
coords[7] = coords[9] - TILE_SIZE;
|
|
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
ds->started = true;
|
|
}
|
|
|
|
if (flashtime > 0.0) {
|
|
int frame = (int)(flashtime / FLASH_FRAME);
|
|
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
|
|
} else
|
|
bgcolour = COL_BACKGROUND;
|
|
|
|
for (x = 0; x < state->params.w; x++) {
|
|
for (y = 0; y < state->params.h; y++) {
|
|
int i = (state->params.w * y) + x;
|
|
int col = COL(state,x,y), tile = col;
|
|
bool dright = (x+1 < state->params.w);
|
|
bool dbelow = (y+1 < state->params.h);
|
|
|
|
tile |= ISSEL(ui,x,y);
|
|
if (state->impossible)
|
|
tile |= TILE_IMPOSSIBLE;
|
|
if (dright && COL(state,x+1,y) == col)
|
|
tile |= TILE_JOINRIGHT;
|
|
if (dbelow && COL(state,x,y+1) == col)
|
|
tile |= TILE_JOINDOWN;
|
|
if ((tile & TILE_JOINRIGHT) && (tile & TILE_JOINDOWN) &&
|
|
COL(state,x+1,y+1) == col)
|
|
tile |= TILE_JOINDIAG;
|
|
|
|
if (ui->displaysel && ui->xsel == x && ui->ysel == y)
|
|
tile |= TILE_HASSEL;
|
|
|
|
/* For now we're never expecting oldstate at all (because we have
|
|
* no animation); when we do we might well want to be looking
|
|
* at the tile colours from oldstate, not state. */
|
|
if ((oldstate && COL(oldstate,x,y) != col) ||
|
|
(ds->bgcolour != bgcolour) ||
|
|
(tile != ds->tiles[i])) {
|
|
tile_redraw(dr, ds, x, y, dright, dbelow, tile, bgcolour);
|
|
ds->tiles[i] = tile;
|
|
}
|
|
}
|
|
}
|
|
ds->bgcolour = bgcolour;
|
|
|
|
{
|
|
char status[255], score[80];
|
|
|
|
sprintf(score, "Score: %d", state->score);
|
|
|
|
if (state->complete)
|
|
sprintf(status, "COMPLETE! %s", score);
|
|
else if (state->impossible)
|
|
sprintf(status, "Cannot move! %s", score);
|
|
else if (ui->nselected)
|
|
sprintf(status, "%s Selected: %d (%d)",
|
|
score, ui->nselected, npoints(&state->params, ui->nselected));
|
|
else
|
|
sprintf(status, "%s", score);
|
|
status_bar(dr, status);
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if ((!oldstate->complete && newstate->complete) ||
|
|
(!oldstate->impossible && newstate->impossible))
|
|
return 2 * FLASH_FRAME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->displaysel) {
|
|
*x = COORD(ui->xsel);
|
|
*y = COORD(ui->ysel);
|
|
*w = *h = TILE_SIZE;
|
|
}
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
/*
|
|
* Dead-end situations are assumed to be rescuable by Undo, so we
|
|
* don't bother to identify them and return -1.
|
|
*/
|
|
return state->complete ? +1 : 0;
|
|
}
|
|
|
|
static bool game_timing_state(const game_state *state, game_ui *ui)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame samegame
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Same Game", "games.samegame", "samegame",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
false, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
current_key_label,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
false, false, game_print_size, game_print,
|
|
true, /* wants_statusbar */
|
|
false, game_timing_state,
|
|
0, /* flags */
|
|
};
|