mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files
3178 lines
79 KiB
C
3178 lines
79 KiB
C
/*
|
|
* mines.c: Minesweeper clone with sophisticated grid generation.
|
|
*
|
|
* Still TODO:
|
|
*
|
|
* - think about configurably supporting question marks. Once,
|
|
* that is, we've thought about configurability in general!
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "tree234.h"
|
|
#include "puzzles.h"
|
|
|
|
enum {
|
|
COL_BACKGROUND, COL_BACKGROUND2,
|
|
COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8,
|
|
COL_MINE, COL_BANG, COL_CROSS, COL_FLAG, COL_FLAGBASE, COL_QUERY,
|
|
COL_HIGHLIGHT, COL_LOWLIGHT,
|
|
COL_WRONGNUMBER,
|
|
NCOLOURS
|
|
};
|
|
|
|
#define PREFERRED_TILE_SIZE 20
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE * 3 / 2)
|
|
#define HIGHLIGHT_WIDTH (TILE_SIZE / 10)
|
|
#define OUTER_HIGHLIGHT_WIDTH (BORDER / 10)
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
struct game_params {
|
|
int w, h, n;
|
|
int unique;
|
|
};
|
|
|
|
struct mine_layout {
|
|
/*
|
|
* This structure is shared between all the game_states for a
|
|
* given instance of the puzzle, so we reference-count it.
|
|
*/
|
|
int refcount;
|
|
char *mines;
|
|
/*
|
|
* If we haven't yet actually generated the mine layout, here's
|
|
* all the data we will need to do so.
|
|
*/
|
|
int n, unique;
|
|
random_state *rs;
|
|
midend *me; /* to give back the new game desc */
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h, n, dead, won;
|
|
int used_solve;
|
|
struct mine_layout *layout; /* real mine positions */
|
|
signed char *grid; /* player knowledge */
|
|
/*
|
|
* Each item in the `grid' array is one of the following values:
|
|
*
|
|
* - 0 to 8 mean the square is open and has a surrounding mine
|
|
* count.
|
|
*
|
|
* - -1 means the square is marked as a mine.
|
|
*
|
|
* - -2 means the square is unknown.
|
|
*
|
|
* - -3 means the square is marked with a question mark
|
|
* (FIXME: do we even want to bother with this?).
|
|
*
|
|
* - 64 means the square has had a mine revealed when the game
|
|
* was lost.
|
|
*
|
|
* - 65 means the square had a mine revealed and this was the
|
|
* one the player hits.
|
|
*
|
|
* - 66 means the square has a crossed-out mine because the
|
|
* player had incorrectly marked it.
|
|
*/
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 9;
|
|
ret->n = 10;
|
|
ret->unique = TRUE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params mines_presets[] = {
|
|
{9, 9, 10, TRUE},
|
|
{9, 9, 35, TRUE},
|
|
{16, 16, 40, TRUE},
|
|
{16, 16, 99, TRUE},
|
|
{30, 16, 99, TRUE},
|
|
{30, 16, 170, TRUE},
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(mines_presets))
|
|
return FALSE;
|
|
|
|
ret = snew(game_params);
|
|
*ret = mines_presets[i];
|
|
|
|
sprintf(str, "%dx%d, %d mines", ret->w, ret->h, ret->n);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
params->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
params->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->h = params->w;
|
|
}
|
|
if (*p == 'n') {
|
|
p++;
|
|
params->n = atoi(p);
|
|
while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
|
|
} else {
|
|
params->n = params->w * params->h / 10;
|
|
}
|
|
|
|
while (*p) {
|
|
if (*p == 'a') {
|
|
p++;
|
|
params->unique = FALSE;
|
|
} else
|
|
p++; /* skip any other gunk */
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char ret[400];
|
|
int len;
|
|
|
|
len = sprintf(ret, "%dx%d", params->w, params->h);
|
|
/*
|
|
* Mine count is a generation-time parameter, since it can be
|
|
* deduced from the mine bitmap!
|
|
*/
|
|
if (full)
|
|
len += sprintf(ret+len, "n%d", params->n);
|
|
if (full && !params->unique)
|
|
ret[len++] = 'a';
|
|
assert(len < lenof(ret));
|
|
ret[len] = '\0';
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Mines";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = "Ensure solubility";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = params->unique;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->n = atoi(cfg[2].sval);
|
|
if (strchr(cfg[2].sval, '%'))
|
|
ret->n = ret->n * (ret->w * ret->h) / 100;
|
|
ret->unique = cfg[3].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
/*
|
|
* Lower limit on grid size: each dimension must be at least 3.
|
|
* 1 is theoretically workable if rather boring, but 2 is a
|
|
* real problem: there is often _no_ way to generate a uniquely
|
|
* solvable 2xn Mines grid. You either run into two mines
|
|
* blocking the way and no idea what's behind them, or one mine
|
|
* and no way to know which of the two rows it's in. If the
|
|
* mine count is even you can create a soluble grid by packing
|
|
* all the mines at one end (so what when you hit a two-mine
|
|
* wall there are only as many covered squares left as there
|
|
* are mines); but if it's odd, you are doomed, because you
|
|
* _have_ to have a gap somewhere which you can't determine the
|
|
* position of.
|
|
*/
|
|
if (full && params->unique && (params->w <= 2 || params->h <= 2))
|
|
return "Width and height must both be greater than two";
|
|
if (params->n > params->w * params->h - 9)
|
|
return "Too many mines for grid size";
|
|
|
|
/*
|
|
* FIXME: Need more constraints here. Not sure what the
|
|
* sensible limits for Minesweeper actually are. The limits
|
|
* probably ought to change, however, depending on uniqueness.
|
|
*/
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Minesweeper solver, used to ensure the generated grids are
|
|
* solvable without having to take risks.
|
|
*/
|
|
|
|
/*
|
|
* Count the bits in a word. Only needs to cope with 16 bits.
|
|
*/
|
|
static int bitcount16(int inword)
|
|
{
|
|
unsigned int word = inword;
|
|
|
|
word = ((word & 0xAAAA) >> 1) + (word & 0x5555);
|
|
word = ((word & 0xCCCC) >> 2) + (word & 0x3333);
|
|
word = ((word & 0xF0F0) >> 4) + (word & 0x0F0F);
|
|
word = ((word & 0xFF00) >> 8) + (word & 0x00FF);
|
|
|
|
return (int)word;
|
|
}
|
|
|
|
/*
|
|
* We use a tree234 to store a large number of small localised
|
|
* sets, each with a mine count. We also keep some of those sets
|
|
* linked together into a to-do list.
|
|
*/
|
|
struct set {
|
|
short x, y, mask, mines;
|
|
int todo;
|
|
struct set *prev, *next;
|
|
};
|
|
|
|
static int setcmp(void *av, void *bv)
|
|
{
|
|
struct set *a = (struct set *)av;
|
|
struct set *b = (struct set *)bv;
|
|
|
|
if (a->y < b->y)
|
|
return -1;
|
|
else if (a->y > b->y)
|
|
return +1;
|
|
else if (a->x < b->x)
|
|
return -1;
|
|
else if (a->x > b->x)
|
|
return +1;
|
|
else if (a->mask < b->mask)
|
|
return -1;
|
|
else if (a->mask > b->mask)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
struct setstore {
|
|
tree234 *sets;
|
|
struct set *todo_head, *todo_tail;
|
|
};
|
|
|
|
static struct setstore *ss_new(void)
|
|
{
|
|
struct setstore *ss = snew(struct setstore);
|
|
ss->sets = newtree234(setcmp);
|
|
ss->todo_head = ss->todo_tail = NULL;
|
|
return ss;
|
|
}
|
|
|
|
/*
|
|
* Take two input sets, in the form (x,y,mask). Munge the first by
|
|
* taking either its intersection with the second or its difference
|
|
* with the second. Return the new mask part of the first set.
|
|
*/
|
|
static int setmunge(int x1, int y1, int mask1, int x2, int y2, int mask2,
|
|
int diff)
|
|
{
|
|
/*
|
|
* Adjust the second set so that it has the same x,y
|
|
* coordinates as the first.
|
|
*/
|
|
if (abs(x2-x1) >= 3 || abs(y2-y1) >= 3) {
|
|
mask2 = 0;
|
|
} else {
|
|
while (x2 > x1) {
|
|
mask2 &= ~(4|32|256);
|
|
mask2 <<= 1;
|
|
x2--;
|
|
}
|
|
while (x2 < x1) {
|
|
mask2 &= ~(1|8|64);
|
|
mask2 >>= 1;
|
|
x2++;
|
|
}
|
|
while (y2 > y1) {
|
|
mask2 &= ~(64|128|256);
|
|
mask2 <<= 3;
|
|
y2--;
|
|
}
|
|
while (y2 < y1) {
|
|
mask2 &= ~(1|2|4);
|
|
mask2 >>= 3;
|
|
y2++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the second set if `diff' is set (we're after A &~ B
|
|
* rather than A & B).
|
|
*/
|
|
if (diff)
|
|
mask2 ^= 511;
|
|
|
|
/*
|
|
* Now all that's left is a logical AND.
|
|
*/
|
|
return mask1 & mask2;
|
|
}
|
|
|
|
static void ss_add_todo(struct setstore *ss, struct set *s)
|
|
{
|
|
if (s->todo)
|
|
return; /* already on it */
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("adding set on todo list: %d,%d %03x %d\n",
|
|
s->x, s->y, s->mask, s->mines);
|
|
#endif
|
|
|
|
s->prev = ss->todo_tail;
|
|
if (s->prev)
|
|
s->prev->next = s;
|
|
else
|
|
ss->todo_head = s;
|
|
ss->todo_tail = s;
|
|
s->next = NULL;
|
|
s->todo = TRUE;
|
|
}
|
|
|
|
static void ss_add(struct setstore *ss, int x, int y, int mask, int mines)
|
|
{
|
|
struct set *s;
|
|
|
|
assert(mask != 0);
|
|
|
|
/*
|
|
* Normalise so that x and y are genuinely the bounding
|
|
* rectangle.
|
|
*/
|
|
while (!(mask & (1|8|64)))
|
|
mask >>= 1, x++;
|
|
while (!(mask & (1|2|4)))
|
|
mask >>= 3, y++;
|
|
|
|
/*
|
|
* Create a set structure and add it to the tree.
|
|
*/
|
|
s = snew(struct set);
|
|
s->x = x;
|
|
s->y = y;
|
|
s->mask = mask;
|
|
s->mines = mines;
|
|
s->todo = FALSE;
|
|
if (add234(ss->sets, s) != s) {
|
|
/*
|
|
* This set already existed! Free it and return.
|
|
*/
|
|
sfree(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We've added a new set to the tree, so put it on the todo
|
|
* list.
|
|
*/
|
|
ss_add_todo(ss, s);
|
|
}
|
|
|
|
static void ss_remove(struct setstore *ss, struct set *s)
|
|
{
|
|
struct set *next = s->next, *prev = s->prev;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("removing set %d,%d %03x\n", s->x, s->y, s->mask);
|
|
#endif
|
|
/*
|
|
* Remove s from the todo list.
|
|
*/
|
|
if (prev)
|
|
prev->next = next;
|
|
else if (s == ss->todo_head)
|
|
ss->todo_head = next;
|
|
|
|
if (next)
|
|
next->prev = prev;
|
|
else if (s == ss->todo_tail)
|
|
ss->todo_tail = prev;
|
|
|
|
s->todo = FALSE;
|
|
|
|
/*
|
|
* Remove s from the tree.
|
|
*/
|
|
del234(ss->sets, s);
|
|
|
|
/*
|
|
* Destroy the actual set structure.
|
|
*/
|
|
sfree(s);
|
|
}
|
|
|
|
/*
|
|
* Return a dynamically allocated list of all the sets which
|
|
* overlap a provided input set.
|
|
*/
|
|
static struct set **ss_overlap(struct setstore *ss, int x, int y, int mask)
|
|
{
|
|
struct set **ret = NULL;
|
|
int nret = 0, retsize = 0;
|
|
int xx, yy;
|
|
|
|
for (xx = x-3; xx < x+3; xx++)
|
|
for (yy = y-3; yy < y+3; yy++) {
|
|
struct set stmp, *s;
|
|
int pos;
|
|
|
|
/*
|
|
* Find the first set with these top left coordinates.
|
|
*/
|
|
stmp.x = xx;
|
|
stmp.y = yy;
|
|
stmp.mask = 0;
|
|
|
|
if (findrelpos234(ss->sets, &stmp, NULL, REL234_GE, &pos)) {
|
|
while ((s = index234(ss->sets, pos)) != NULL &&
|
|
s->x == xx && s->y == yy) {
|
|
/*
|
|
* This set potentially overlaps the input one.
|
|
* Compute the intersection to see if they
|
|
* really overlap, and add it to the list if
|
|
* so.
|
|
*/
|
|
if (setmunge(x, y, mask, s->x, s->y, s->mask, FALSE)) {
|
|
/*
|
|
* There's an overlap.
|
|
*/
|
|
if (nret >= retsize) {
|
|
retsize = nret + 32;
|
|
ret = sresize(ret, retsize, struct set *);
|
|
}
|
|
ret[nret++] = s;
|
|
}
|
|
|
|
pos++;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = sresize(ret, nret+1, struct set *);
|
|
ret[nret] = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get an element from the head of the set todo list.
|
|
*/
|
|
static struct set *ss_todo(struct setstore *ss)
|
|
{
|
|
if (ss->todo_head) {
|
|
struct set *ret = ss->todo_head;
|
|
ss->todo_head = ret->next;
|
|
if (ss->todo_head)
|
|
ss->todo_head->prev = NULL;
|
|
else
|
|
ss->todo_tail = NULL;
|
|
ret->next = ret->prev = NULL;
|
|
ret->todo = FALSE;
|
|
return ret;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
struct squaretodo {
|
|
int *next;
|
|
int head, tail;
|
|
};
|
|
|
|
static void std_add(struct squaretodo *std, int i)
|
|
{
|
|
if (std->tail >= 0)
|
|
std->next[std->tail] = i;
|
|
else
|
|
std->head = i;
|
|
std->tail = i;
|
|
std->next[i] = -1;
|
|
}
|
|
|
|
typedef int (*open_cb)(void *, int, int);
|
|
|
|
static void known_squares(int w, int h, struct squaretodo *std,
|
|
signed char *grid,
|
|
open_cb open, void *openctx,
|
|
int x, int y, int mask, int mine)
|
|
{
|
|
int xx, yy, bit;
|
|
|
|
bit = 1;
|
|
|
|
for (yy = 0; yy < 3; yy++)
|
|
for (xx = 0; xx < 3; xx++) {
|
|
if (mask & bit) {
|
|
int i = (y + yy) * w + (x + xx);
|
|
|
|
/*
|
|
* It's possible that this square is _already_
|
|
* known, in which case we don't try to add it to
|
|
* the list twice.
|
|
*/
|
|
if (grid[i] == -2) {
|
|
|
|
if (mine) {
|
|
grid[i] = -1; /* and don't open it! */
|
|
} else {
|
|
grid[i] = open(openctx, x + xx, y + yy);
|
|
assert(grid[i] != -1); /* *bang* */
|
|
}
|
|
std_add(std, i);
|
|
|
|
}
|
|
}
|
|
bit <<= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is data returned from the `perturb' function. It details
|
|
* which squares have become mines and which have become clear. The
|
|
* solver is (of course) expected to honourably not use that
|
|
* knowledge directly, but to efficently adjust its internal data
|
|
* structures and proceed based on only the information it
|
|
* legitimately has.
|
|
*/
|
|
struct perturbation {
|
|
int x, y;
|
|
int delta; /* +1 == become a mine; -1 == cleared */
|
|
};
|
|
struct perturbations {
|
|
int n;
|
|
struct perturbation *changes;
|
|
};
|
|
|
|
/*
|
|
* Main solver entry point. You give it a grid of existing
|
|
* knowledge (-1 for a square known to be a mine, 0-8 for empty
|
|
* squares with a given number of neighbours, -2 for completely
|
|
* unknown), plus a function which you can call to open new squares
|
|
* once you're confident of them. It fills in as much more of the
|
|
* grid as it can.
|
|
*
|
|
* Return value is:
|
|
*
|
|
* - -1 means deduction stalled and nothing could be done
|
|
* - 0 means deduction succeeded fully
|
|
* - >0 means deduction succeeded but some number of perturbation
|
|
* steps were required; the exact return value is the number of
|
|
* perturb calls.
|
|
*/
|
|
|
|
typedef struct perturbations *(*perturb_cb) (void *, signed char *, int, int, int);
|
|
|
|
static int minesolve(int w, int h, int n, signed char *grid,
|
|
open_cb open,
|
|
perturb_cb perturb,
|
|
void *ctx, random_state *rs)
|
|
{
|
|
struct setstore *ss = ss_new();
|
|
struct set **list;
|
|
struct squaretodo astd, *std = &astd;
|
|
int x, y, i, j;
|
|
int nperturbs = 0;
|
|
|
|
/*
|
|
* Set up a linked list of squares with known contents, so that
|
|
* we can process them one by one.
|
|
*/
|
|
std->next = snewn(w*h, int);
|
|
std->head = std->tail = -1;
|
|
|
|
/*
|
|
* Initialise that list with all known squares in the input
|
|
* grid.
|
|
*/
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
i = y*w+x;
|
|
if (grid[i] != -2)
|
|
std_add(std, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Main deductive loop.
|
|
*/
|
|
while (1) {
|
|
int done_something = FALSE;
|
|
struct set *s;
|
|
|
|
/*
|
|
* If there are any known squares on the todo list, process
|
|
* them and construct a set for each.
|
|
*/
|
|
while (std->head != -1) {
|
|
i = std->head;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("known square at %d,%d [%d]\n", i%w, i/w, grid[i]);
|
|
#endif
|
|
std->head = std->next[i];
|
|
if (std->head == -1)
|
|
std->tail = -1;
|
|
|
|
x = i % w;
|
|
y = i / w;
|
|
|
|
if (grid[i] >= 0) {
|
|
int dx, dy, mines, bit, val;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("creating set around this square\n");
|
|
#endif
|
|
/*
|
|
* Empty square. Construct the set of non-known squares
|
|
* around this one, and determine its mine count.
|
|
*/
|
|
mines = grid[i];
|
|
bit = 1;
|
|
val = 0;
|
|
for (dy = -1; dy <= +1; dy++) {
|
|
for (dx = -1; dx <= +1; dx++) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("grid %d,%d = %d\n", x+dx, y+dy, grid[i+dy*w+dx]);
|
|
#endif
|
|
if (x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= h)
|
|
/* ignore this one */;
|
|
else if (grid[i+dy*w+dx] == -1)
|
|
mines--;
|
|
else if (grid[i+dy*w+dx] == -2)
|
|
val |= bit;
|
|
bit <<= 1;
|
|
}
|
|
}
|
|
if (val)
|
|
ss_add(ss, x-1, y-1, val, mines);
|
|
}
|
|
|
|
/*
|
|
* Now, whether the square is empty or full, we must
|
|
* find any set which contains it and replace it with
|
|
* one which does not.
|
|
*/
|
|
{
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("finding sets containing known square %d,%d\n", x, y);
|
|
#endif
|
|
list = ss_overlap(ss, x, y, 1);
|
|
|
|
for (j = 0; list[j]; j++) {
|
|
int newmask, newmines;
|
|
|
|
s = list[j];
|
|
|
|
/*
|
|
* Compute the mask for this set minus the
|
|
* newly known square.
|
|
*/
|
|
newmask = setmunge(s->x, s->y, s->mask, x, y, 1, TRUE);
|
|
|
|
/*
|
|
* Compute the new mine count.
|
|
*/
|
|
newmines = s->mines - (grid[i] == -1);
|
|
|
|
/*
|
|
* Insert the new set into the collection,
|
|
* unless it's been whittled right down to
|
|
* nothing.
|
|
*/
|
|
if (newmask)
|
|
ss_add(ss, s->x, s->y, newmask, newmines);
|
|
|
|
/*
|
|
* Destroy the old one; it is actually obsolete.
|
|
*/
|
|
ss_remove(ss, s);
|
|
}
|
|
|
|
sfree(list);
|
|
}
|
|
|
|
/*
|
|
* Marking a fresh square as known certainly counts as
|
|
* doing something.
|
|
*/
|
|
done_something = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Now pick a set off the to-do list and attempt deductions
|
|
* based on it.
|
|
*/
|
|
if ((s = ss_todo(ss)) != NULL) {
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("set to do: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
|
|
#endif
|
|
/*
|
|
* Firstly, see if this set has a mine count of zero or
|
|
* of its own cardinality.
|
|
*/
|
|
if (s->mines == 0 || s->mines == bitcount16(s->mask)) {
|
|
/*
|
|
* If so, we can immediately mark all the squares
|
|
* in the set as known.
|
|
*/
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("easy\n");
|
|
#endif
|
|
known_squares(w, h, std, grid, open, ctx,
|
|
s->x, s->y, s->mask, (s->mines != 0));
|
|
|
|
/*
|
|
* Having done that, we need do nothing further
|
|
* with this set; marking all the squares in it as
|
|
* known will eventually eliminate it, and will
|
|
* also permit further deductions about anything
|
|
* that overlaps it.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Failing that, we now search through all the sets
|
|
* which overlap this one.
|
|
*/
|
|
list = ss_overlap(ss, s->x, s->y, s->mask);
|
|
|
|
for (j = 0; list[j]; j++) {
|
|
struct set *s2 = list[j];
|
|
int swing, s2wing, swc, s2wc;
|
|
|
|
/*
|
|
* Find the non-overlapping parts s2-s and s-s2,
|
|
* and their cardinalities.
|
|
*
|
|
* I'm going to refer to these parts as `wings'
|
|
* surrounding the central part common to both
|
|
* sets. The `s wing' is s-s2; the `s2 wing' is
|
|
* s2-s.
|
|
*/
|
|
swing = setmunge(s->x, s->y, s->mask, s2->x, s2->y, s2->mask,
|
|
TRUE);
|
|
s2wing = setmunge(s2->x, s2->y, s2->mask, s->x, s->y, s->mask,
|
|
TRUE);
|
|
swc = bitcount16(swing);
|
|
s2wc = bitcount16(s2wing);
|
|
|
|
/*
|
|
* If one set has more mines than the other, and
|
|
* the number of extra mines is equal to the
|
|
* cardinality of that set's wing, then we can mark
|
|
* every square in the wing as a known mine, and
|
|
* every square in the other wing as known clear.
|
|
*/
|
|
if (swc == s->mines - s2->mines ||
|
|
s2wc == s2->mines - s->mines) {
|
|
known_squares(w, h, std, grid, open, ctx,
|
|
s->x, s->y, swing,
|
|
(swc == s->mines - s2->mines));
|
|
known_squares(w, h, std, grid, open, ctx,
|
|
s2->x, s2->y, s2wing,
|
|
(s2wc == s2->mines - s->mines));
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Failing that, see if one set is a subset of the
|
|
* other. If so, we can divide up the mine count of
|
|
* the larger set between the smaller set and its
|
|
* complement, even if neither smaller set ends up
|
|
* being immediately clearable.
|
|
*/
|
|
if (swc == 0 && s2wc != 0) {
|
|
/* s is a subset of s2. */
|
|
assert(s2->mines > s->mines);
|
|
ss_add(ss, s2->x, s2->y, s2wing, s2->mines - s->mines);
|
|
} else if (s2wc == 0 && swc != 0) {
|
|
/* s2 is a subset of s. */
|
|
assert(s->mines > s2->mines);
|
|
ss_add(ss, s->x, s->y, swing, s->mines - s2->mines);
|
|
}
|
|
}
|
|
|
|
sfree(list);
|
|
|
|
/*
|
|
* In this situation we have definitely done
|
|
* _something_, even if it's only reducing the size of
|
|
* our to-do list.
|
|
*/
|
|
done_something = TRUE;
|
|
} else if (n >= 0) {
|
|
/*
|
|
* We have nothing left on our todo list, which means
|
|
* all localised deductions have failed. Our next step
|
|
* is to resort to global deduction based on the total
|
|
* mine count. This is computationally expensive
|
|
* compared to any of the above deductions, which is
|
|
* why we only ever do it when all else fails, so that
|
|
* hopefully it won't have to happen too often.
|
|
*
|
|
* If you pass n<0 into this solver, that informs it
|
|
* that you do not know the total mine count, so it
|
|
* won't even attempt these deductions.
|
|
*/
|
|
|
|
int minesleft, squaresleft;
|
|
int nsets, setused[10], cursor;
|
|
|
|
/*
|
|
* Start by scanning the current grid state to work out
|
|
* how many unknown squares we still have, and how many
|
|
* mines are to be placed in them.
|
|
*/
|
|
squaresleft = 0;
|
|
minesleft = n;
|
|
for (i = 0; i < w*h; i++) {
|
|
if (grid[i] == -1)
|
|
minesleft--;
|
|
else if (grid[i] == -2)
|
|
squaresleft++;
|
|
}
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("global deduction time: squaresleft=%d minesleft=%d\n",
|
|
squaresleft, minesleft);
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = grid[y*w+x];
|
|
if (v == -1)
|
|
putchar('*');
|
|
else if (v == -2)
|
|
putchar('?');
|
|
else if (v == 0)
|
|
putchar('-');
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If there _are_ no unknown squares, we have actually
|
|
* finished.
|
|
*/
|
|
if (squaresleft == 0) {
|
|
assert(minesleft == 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* First really simple case: if there are no more mines
|
|
* left, or if there are exactly as many mines left as
|
|
* squares to play them in, then it's all easy.
|
|
*/
|
|
if (minesleft == 0 || minesleft == squaresleft) {
|
|
for (i = 0; i < w*h; i++)
|
|
if (grid[i] == -2)
|
|
known_squares(w, h, std, grid, open, ctx,
|
|
i % w, i / w, 1, minesleft != 0);
|
|
continue; /* now go back to main deductive loop */
|
|
}
|
|
|
|
/*
|
|
* Failing that, we have to do some _real_ work.
|
|
* Ideally what we do here is to try every single
|
|
* combination of the currently available sets, in an
|
|
* attempt to find a disjoint union (i.e. a set of
|
|
* squares with a known mine count between them) such
|
|
* that the remaining unknown squares _not_ contained
|
|
* in that union either contain no mines or are all
|
|
* mines.
|
|
*
|
|
* Actually enumerating all 2^n possibilities will get
|
|
* a bit slow for large n, so I artificially cap this
|
|
* recursion at n=10 to avoid too much pain.
|
|
*/
|
|
nsets = count234(ss->sets);
|
|
if (nsets <= lenof(setused)) {
|
|
/*
|
|
* Doing this with actual recursive function calls
|
|
* would get fiddly because a load of local
|
|
* variables from this function would have to be
|
|
* passed down through the recursion. So instead
|
|
* I'm going to use a virtual recursion within this
|
|
* function. The way this works is:
|
|
*
|
|
* - we have an array `setused', such that
|
|
* setused[n] is 0 or 1 depending on whether set
|
|
* n is currently in the union we are
|
|
* considering.
|
|
*
|
|
* - we have a value `cursor' which indicates how
|
|
* much of `setused' we have so far filled in.
|
|
* It's conceptually the recursion depth.
|
|
*
|
|
* We begin by setting `cursor' to zero. Then:
|
|
*
|
|
* - if cursor can advance, we advance it by one.
|
|
* We set the value in `setused' that it went
|
|
* past to 1 if that set is disjoint from
|
|
* anything else currently in `setused', or to 0
|
|
* otherwise.
|
|
*
|
|
* - If cursor cannot advance because it has
|
|
* reached the end of the setused list, then we
|
|
* have a maximal disjoint union. Check to see
|
|
* whether its mine count has any useful
|
|
* properties. If so, mark all the squares not
|
|
* in the union as known and terminate.
|
|
*
|
|
* - If cursor has reached the end of setused and
|
|
* the algorithm _hasn't_ terminated, back
|
|
* cursor up to the nearest 1, turn it into a 0
|
|
* and advance cursor just past it.
|
|
*
|
|
* - If we attempt to back up to the nearest 1 and
|
|
* there isn't one at all, then we have gone
|
|
* through all disjoint unions of sets in the
|
|
* list and none of them has been helpful, so we
|
|
* give up.
|
|
*/
|
|
struct set *sets[lenof(setused)];
|
|
for (i = 0; i < nsets; i++)
|
|
sets[i] = index234(ss->sets, i);
|
|
|
|
cursor = 0;
|
|
while (1) {
|
|
|
|
if (cursor < nsets) {
|
|
int ok = TRUE;
|
|
|
|
/* See if any existing set overlaps this one. */
|
|
for (i = 0; i < cursor; i++)
|
|
if (setused[i] &&
|
|
setmunge(sets[cursor]->x,
|
|
sets[cursor]->y,
|
|
sets[cursor]->mask,
|
|
sets[i]->x, sets[i]->y, sets[i]->mask,
|
|
FALSE)) {
|
|
ok = FALSE;
|
|
break;
|
|
}
|
|
|
|
if (ok) {
|
|
/*
|
|
* We're adding this set to our union,
|
|
* so adjust minesleft and squaresleft
|
|
* appropriately.
|
|
*/
|
|
minesleft -= sets[cursor]->mines;
|
|
squaresleft -= bitcount16(sets[cursor]->mask);
|
|
}
|
|
|
|
setused[cursor++] = ok;
|
|
} else {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("trying a set combination with %d %d\n",
|
|
squaresleft, minesleft);
|
|
#endif /* SOLVER_DIAGNOSTICS */
|
|
|
|
/*
|
|
* We've reached the end. See if we've got
|
|
* anything interesting.
|
|
*/
|
|
if (squaresleft > 0 &&
|
|
(minesleft == 0 || minesleft == squaresleft)) {
|
|
/*
|
|
* We have! There is at least one
|
|
* square not contained within the set
|
|
* union we've just found, and we can
|
|
* deduce that either all such squares
|
|
* are mines or all are not (depending
|
|
* on whether minesleft==0). So now all
|
|
* we have to do is actually go through
|
|
* the grid, find those squares, and
|
|
* mark them.
|
|
*/
|
|
for (i = 0; i < w*h; i++)
|
|
if (grid[i] == -2) {
|
|
int outside = TRUE;
|
|
y = i / w;
|
|
x = i % w;
|
|
for (j = 0; j < nsets; j++)
|
|
if (setused[j] &&
|
|
setmunge(sets[j]->x, sets[j]->y,
|
|
sets[j]->mask, x, y, 1,
|
|
FALSE)) {
|
|
outside = FALSE;
|
|
break;
|
|
}
|
|
if (outside)
|
|
known_squares(w, h, std, grid,
|
|
open, ctx,
|
|
x, y, 1, minesleft != 0);
|
|
}
|
|
|
|
done_something = TRUE;
|
|
break; /* return to main deductive loop */
|
|
}
|
|
|
|
/*
|
|
* If we reach here, then this union hasn't
|
|
* done us any good, so move on to the
|
|
* next. Backtrack cursor to the nearest 1,
|
|
* change it to a 0 and continue.
|
|
*/
|
|
while (--cursor >= 0 && !setused[cursor]);
|
|
if (cursor >= 0) {
|
|
assert(setused[cursor]);
|
|
|
|
/*
|
|
* We're removing this set from our
|
|
* union, so re-increment minesleft and
|
|
* squaresleft.
|
|
*/
|
|
minesleft += sets[cursor]->mines;
|
|
squaresleft += bitcount16(sets[cursor]->mask);
|
|
|
|
setused[cursor++] = 0;
|
|
} else {
|
|
/*
|
|
* We've backtracked all the way to the
|
|
* start without finding a single 1,
|
|
* which means that our virtual
|
|
* recursion is complete and nothing
|
|
* helped.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
/*
|
|
* Dump the current known state of the grid.
|
|
*/
|
|
printf("solver ran out of steam, ret=%d, grid:\n", nperturbs);
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = grid[y*w+x];
|
|
if (v == -1)
|
|
putchar('*');
|
|
else if (v == -2)
|
|
putchar('?');
|
|
else if (v == 0)
|
|
putchar('-');
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
{
|
|
struct set *s;
|
|
|
|
for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
|
|
printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Now we really are at our wits' end as far as solving
|
|
* this grid goes. Our only remaining option is to call
|
|
* a perturb function and ask it to modify the grid to
|
|
* make it easier.
|
|
*/
|
|
if (perturb) {
|
|
struct perturbations *ret;
|
|
struct set *s;
|
|
|
|
nperturbs++;
|
|
|
|
/*
|
|
* Choose a set at random from the current selection,
|
|
* and ask the perturb function to either fill or empty
|
|
* it.
|
|
*
|
|
* If we have no sets at all, we must give up.
|
|
*/
|
|
if (count234(ss->sets) == 0) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("perturbing on entire unknown set\n");
|
|
#endif
|
|
ret = perturb(ctx, grid, 0, 0, 0);
|
|
} else {
|
|
s = index234(ss->sets, random_upto(rs, count234(ss->sets)));
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("perturbing on set %d,%d %03x\n", s->x, s->y, s->mask);
|
|
#endif
|
|
ret = perturb(ctx, grid, s->x, s->y, s->mask);
|
|
}
|
|
|
|
if (ret) {
|
|
assert(ret->n > 0); /* otherwise should have been NULL */
|
|
|
|
/*
|
|
* A number of squares have been fiddled with, and
|
|
* the returned structure tells us which. Adjust
|
|
* the mine count in any set which overlaps one of
|
|
* those squares, and put them back on the to-do
|
|
* list. Also, if the square itself is marked as a
|
|
* known non-mine, put it back on the squares-to-do
|
|
* list.
|
|
*/
|
|
for (i = 0; i < ret->n; i++) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("perturbation %s mine at %d,%d\n",
|
|
ret->changes[i].delta > 0 ? "added" : "removed",
|
|
ret->changes[i].x, ret->changes[i].y);
|
|
#endif
|
|
|
|
if (ret->changes[i].delta < 0 &&
|
|
grid[ret->changes[i].y*w+ret->changes[i].x] != -2) {
|
|
std_add(std, ret->changes[i].y*w+ret->changes[i].x);
|
|
}
|
|
|
|
list = ss_overlap(ss,
|
|
ret->changes[i].x, ret->changes[i].y, 1);
|
|
|
|
for (j = 0; list[j]; j++) {
|
|
list[j]->mines += ret->changes[i].delta;
|
|
ss_add_todo(ss, list[j]);
|
|
}
|
|
|
|
sfree(list);
|
|
}
|
|
|
|
/*
|
|
* Now free the returned data.
|
|
*/
|
|
sfree(ret->changes);
|
|
sfree(ret);
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
/*
|
|
* Dump the current known state of the grid.
|
|
*/
|
|
printf("state after perturbation:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = grid[y*w+x];
|
|
if (v == -1)
|
|
putchar('*');
|
|
else if (v == -2)
|
|
putchar('?');
|
|
else if (v == 0)
|
|
putchar('-');
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
{
|
|
struct set *s;
|
|
|
|
for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
|
|
printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* And now we can go back round the deductive loop.
|
|
*/
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we get here, even that didn't work (either we didn't
|
|
* have a perturb function or it returned failure), so we
|
|
* give up entirely.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* See if we've got any unknown squares left.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (grid[y*w+x] == -2) {
|
|
nperturbs = -1; /* failed to complete */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Free the set list and square-todo list.
|
|
*/
|
|
{
|
|
struct set *s;
|
|
while ((s = delpos234(ss->sets, 0)) != NULL)
|
|
sfree(s);
|
|
freetree234(ss->sets);
|
|
sfree(ss);
|
|
sfree(std->next);
|
|
}
|
|
|
|
return nperturbs;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Grid generator which uses the above solver.
|
|
*/
|
|
|
|
struct minectx {
|
|
char *grid;
|
|
int w, h;
|
|
int sx, sy;
|
|
int allow_big_perturbs;
|
|
random_state *rs;
|
|
};
|
|
|
|
static int mineopen(void *vctx, int x, int y)
|
|
{
|
|
struct minectx *ctx = (struct minectx *)vctx;
|
|
int i, j, n;
|
|
|
|
assert(x >= 0 && x < ctx->w && y >= 0 && y < ctx->h);
|
|
if (ctx->grid[y * ctx->w + x])
|
|
return -1; /* *bang* */
|
|
|
|
n = 0;
|
|
for (i = -1; i <= +1; i++) {
|
|
if (x + i < 0 || x + i >= ctx->w)
|
|
continue;
|
|
for (j = -1; j <= +1; j++) {
|
|
if (y + j < 0 || y + j >= ctx->h)
|
|
continue;
|
|
if (i == 0 && j == 0)
|
|
continue;
|
|
if (ctx->grid[(y+j) * ctx->w + (x+i)])
|
|
n++;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Structure used internally to mineperturb(). */
|
|
struct square {
|
|
int x, y, type, random;
|
|
};
|
|
static int squarecmp(const void *av, const void *bv)
|
|
{
|
|
const struct square *a = (const struct square *)av;
|
|
const struct square *b = (const struct square *)bv;
|
|
if (a->type < b->type)
|
|
return -1;
|
|
else if (a->type > b->type)
|
|
return +1;
|
|
else if (a->random < b->random)
|
|
return -1;
|
|
else if (a->random > b->random)
|
|
return +1;
|
|
else if (a->y < b->y)
|
|
return -1;
|
|
else if (a->y > b->y)
|
|
return +1;
|
|
else if (a->x < b->x)
|
|
return -1;
|
|
else if (a->x > b->x)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Normally this function is passed an (x,y,mask) set description.
|
|
* On occasions, though, there is no _localised_ set being used,
|
|
* and the set being perturbed is supposed to be the entirety of
|
|
* the unreachable area. This is signified by the special case
|
|
* mask==0: in this case, anything labelled -2 in the grid is part
|
|
* of the set.
|
|
*
|
|
* Allowing perturbation in this special case appears to make it
|
|
* guaranteeably possible to generate a workable grid for any mine
|
|
* density, but they tend to be a bit boring, with mines packed
|
|
* densely into far corners of the grid and the remainder being
|
|
* less dense than one might like. Therefore, to improve overall
|
|
* grid quality I disable this feature for the first few attempts,
|
|
* and fall back to it after no useful grid has been generated.
|
|
*/
|
|
static struct perturbations *mineperturb(void *vctx, signed char *grid,
|
|
int setx, int sety, int mask)
|
|
{
|
|
struct minectx *ctx = (struct minectx *)vctx;
|
|
struct square *sqlist;
|
|
int x, y, dx, dy, i, n, nfull, nempty;
|
|
struct square **tofill, **toempty, **todo;
|
|
int ntofill, ntoempty, ntodo, dtodo, dset;
|
|
struct perturbations *ret;
|
|
int *setlist;
|
|
|
|
if (!mask && !ctx->allow_big_perturbs)
|
|
return NULL;
|
|
|
|
/*
|
|
* Make a list of all the squares in the grid which we can
|
|
* possibly use. This list should be in preference order, which
|
|
* means
|
|
*
|
|
* - first, unknown squares on the boundary of known space
|
|
* - next, unknown squares beyond that boundary
|
|
* - as a very last resort, known squares, but not within one
|
|
* square of the starting position.
|
|
*
|
|
* Each of these sections needs to be shuffled independently.
|
|
* We do this by preparing list of all squares and then sorting
|
|
* it with a random secondary key.
|
|
*/
|
|
sqlist = snewn(ctx->w * ctx->h, struct square);
|
|
n = 0;
|
|
for (y = 0; y < ctx->h; y++)
|
|
for (x = 0; x < ctx->w; x++) {
|
|
/*
|
|
* If this square is too near the starting position,
|
|
* don't put it on the list at all.
|
|
*/
|
|
if (abs(y - ctx->sy) <= 1 && abs(x - ctx->sx) <= 1)
|
|
continue;
|
|
|
|
/*
|
|
* If this square is in the input set, also don't put
|
|
* it on the list!
|
|
*/
|
|
if ((mask == 0 && grid[y*ctx->w+x] == -2) ||
|
|
(x >= setx && x < setx + 3 &&
|
|
y >= sety && y < sety + 3 &&
|
|
mask & (1 << ((y-sety)*3+(x-setx)))))
|
|
continue;
|
|
|
|
sqlist[n].x = x;
|
|
sqlist[n].y = y;
|
|
|
|
if (grid[y*ctx->w+x] != -2) {
|
|
sqlist[n].type = 3; /* known square */
|
|
} else {
|
|
/*
|
|
* Unknown square. Examine everything around it and
|
|
* see if it borders on any known squares. If it
|
|
* does, it's class 1, otherwise it's 2.
|
|
*/
|
|
|
|
sqlist[n].type = 2;
|
|
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++)
|
|
if (x+dx >= 0 && x+dx < ctx->w &&
|
|
y+dy >= 0 && y+dy < ctx->h &&
|
|
grid[(y+dy)*ctx->w+(x+dx)] != -2) {
|
|
sqlist[n].type = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, a random number to cause qsort to
|
|
* shuffle within each group.
|
|
*/
|
|
sqlist[n].random = random_bits(ctx->rs, 31);
|
|
|
|
n++;
|
|
}
|
|
|
|
qsort(sqlist, n, sizeof(struct square), squarecmp);
|
|
|
|
/*
|
|
* Now count up the number of full and empty squares in the set
|
|
* we've been provided.
|
|
*/
|
|
nfull = nempty = 0;
|
|
if (mask) {
|
|
for (dy = 0; dy < 3; dy++)
|
|
for (dx = 0; dx < 3; dx++)
|
|
if (mask & (1 << (dy*3+dx))) {
|
|
assert(setx+dx <= ctx->w);
|
|
assert(sety+dy <= ctx->h);
|
|
if (ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
|
|
nfull++;
|
|
else
|
|
nempty++;
|
|
}
|
|
} else {
|
|
for (y = 0; y < ctx->h; y++)
|
|
for (x = 0; x < ctx->w; x++)
|
|
if (grid[y*ctx->w+x] == -2) {
|
|
if (ctx->grid[y*ctx->w+x])
|
|
nfull++;
|
|
else
|
|
nempty++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now go through our sorted list until we find either `nfull'
|
|
* empty squares, or `nempty' full squares; these will be
|
|
* swapped with the appropriate squares in the set to either
|
|
* fill or empty the set while keeping the same number of mines
|
|
* overall.
|
|
*/
|
|
ntofill = ntoempty = 0;
|
|
if (mask) {
|
|
tofill = snewn(9, struct square *);
|
|
toempty = snewn(9, struct square *);
|
|
} else {
|
|
tofill = snewn(ctx->w * ctx->h, struct square *);
|
|
toempty = snewn(ctx->w * ctx->h, struct square *);
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
struct square *sq = &sqlist[i];
|
|
if (ctx->grid[sq->y * ctx->w + sq->x])
|
|
toempty[ntoempty++] = sq;
|
|
else
|
|
tofill[ntofill++] = sq;
|
|
if (ntofill == nfull || ntoempty == nempty)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we haven't found enough empty squares outside the set to
|
|
* empty it into _or_ enough full squares outside it to fill it
|
|
* up with, we'll have to settle for doing only a partial job.
|
|
* In this case we choose to always _fill_ the set (because
|
|
* this case will tend to crop up when we're working with very
|
|
* high mine densities and the only way to get a solvable grid
|
|
* is going to be to pack most of the mines solidly around the
|
|
* edges). So now our job is to make a list of the empty
|
|
* squares in the set, and shuffle that list so that we fill a
|
|
* random selection of them.
|
|
*/
|
|
if (ntofill != nfull && ntoempty != nempty) {
|
|
int k;
|
|
|
|
assert(ntoempty != 0);
|
|
|
|
setlist = snewn(ctx->w * ctx->h, int);
|
|
i = 0;
|
|
if (mask) {
|
|
for (dy = 0; dy < 3; dy++)
|
|
for (dx = 0; dx < 3; dx++)
|
|
if (mask & (1 << (dy*3+dx))) {
|
|
assert(setx+dx <= ctx->w);
|
|
assert(sety+dy <= ctx->h);
|
|
if (!ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
|
|
setlist[i++] = (sety+dy)*ctx->w+(setx+dx);
|
|
}
|
|
} else {
|
|
for (y = 0; y < ctx->h; y++)
|
|
for (x = 0; x < ctx->w; x++)
|
|
if (grid[y*ctx->w+x] == -2) {
|
|
if (!ctx->grid[y*ctx->w+x])
|
|
setlist[i++] = y*ctx->w+x;
|
|
}
|
|
}
|
|
assert(i > ntoempty);
|
|
/*
|
|
* Now pick `ntoempty' items at random from the list.
|
|
*/
|
|
for (k = 0; k < ntoempty; k++) {
|
|
int index = k + random_upto(ctx->rs, i - k);
|
|
int tmp;
|
|
|
|
tmp = setlist[k];
|
|
setlist[k] = setlist[index];
|
|
setlist[index] = tmp;
|
|
}
|
|
} else
|
|
setlist = NULL;
|
|
|
|
/*
|
|
* Now we're pretty much there. We need to either
|
|
* (a) put a mine in each of the empty squares in the set, and
|
|
* take one out of each square in `toempty'
|
|
* (b) take a mine out of each of the full squares in the set,
|
|
* and put one in each square in `tofill'
|
|
* depending on which one we've found enough squares to do.
|
|
*
|
|
* So we start by constructing our list of changes to return to
|
|
* the solver, so that it can update its data structures
|
|
* efficiently rather than having to rescan the whole grid.
|
|
*/
|
|
ret = snew(struct perturbations);
|
|
if (ntofill == nfull) {
|
|
todo = tofill;
|
|
ntodo = ntofill;
|
|
dtodo = +1;
|
|
dset = -1;
|
|
sfree(toempty);
|
|
} else {
|
|
/*
|
|
* (We also fall into this case if we've constructed a
|
|
* setlist.)
|
|
*/
|
|
todo = toempty;
|
|
ntodo = ntoempty;
|
|
dtodo = -1;
|
|
dset = +1;
|
|
sfree(tofill);
|
|
}
|
|
ret->n = 2 * ntodo;
|
|
ret->changes = snewn(ret->n, struct perturbation);
|
|
for (i = 0; i < ntodo; i++) {
|
|
ret->changes[i].x = todo[i]->x;
|
|
ret->changes[i].y = todo[i]->y;
|
|
ret->changes[i].delta = dtodo;
|
|
}
|
|
/* now i == ntodo */
|
|
if (setlist) {
|
|
int j;
|
|
assert(todo == toempty);
|
|
for (j = 0; j < ntoempty; j++) {
|
|
ret->changes[i].x = setlist[j] % ctx->w;
|
|
ret->changes[i].y = setlist[j] / ctx->w;
|
|
ret->changes[i].delta = dset;
|
|
i++;
|
|
}
|
|
sfree(setlist);
|
|
} else if (mask) {
|
|
for (dy = 0; dy < 3; dy++)
|
|
for (dx = 0; dx < 3; dx++)
|
|
if (mask & (1 << (dy*3+dx))) {
|
|
int currval = (ctx->grid[(sety+dy)*ctx->w+(setx+dx)] ? +1 : -1);
|
|
if (dset == -currval) {
|
|
ret->changes[i].x = setx + dx;
|
|
ret->changes[i].y = sety + dy;
|
|
ret->changes[i].delta = dset;
|
|
i++;
|
|
}
|
|
}
|
|
} else {
|
|
for (y = 0; y < ctx->h; y++)
|
|
for (x = 0; x < ctx->w; x++)
|
|
if (grid[y*ctx->w+x] == -2) {
|
|
int currval = (ctx->grid[y*ctx->w+x] ? +1 : -1);
|
|
if (dset == -currval) {
|
|
ret->changes[i].x = x;
|
|
ret->changes[i].y = y;
|
|
ret->changes[i].delta = dset;
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
assert(i == ret->n);
|
|
|
|
sfree(sqlist);
|
|
sfree(todo);
|
|
|
|
/*
|
|
* Having set up the precise list of changes we're going to
|
|
* make, we now simply make them and return.
|
|
*/
|
|
for (i = 0; i < ret->n; i++) {
|
|
int delta;
|
|
|
|
x = ret->changes[i].x;
|
|
y = ret->changes[i].y;
|
|
delta = ret->changes[i].delta;
|
|
|
|
/*
|
|
* Check we're not trying to add an existing mine or remove
|
|
* an absent one.
|
|
*/
|
|
assert((delta < 0) ^ (ctx->grid[y*ctx->w+x] == 0));
|
|
|
|
/*
|
|
* Actually make the change.
|
|
*/
|
|
ctx->grid[y*ctx->w+x] = (delta > 0);
|
|
|
|
/*
|
|
* Update any numbers already present in the grid.
|
|
*/
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++)
|
|
if (x+dx >= 0 && x+dx < ctx->w &&
|
|
y+dy >= 0 && y+dy < ctx->h &&
|
|
grid[(y+dy)*ctx->w+(x+dx)] != -2) {
|
|
if (dx == 0 && dy == 0) {
|
|
/*
|
|
* The square itself is marked as known in
|
|
* the grid. Mark it as a mine if it's a
|
|
* mine, or else work out its number.
|
|
*/
|
|
if (delta > 0) {
|
|
grid[y*ctx->w+x] = -1;
|
|
} else {
|
|
int dx2, dy2, minecount = 0;
|
|
for (dy2 = -1; dy2 <= +1; dy2++)
|
|
for (dx2 = -1; dx2 <= +1; dx2++)
|
|
if (x+dx2 >= 0 && x+dx2 < ctx->w &&
|
|
y+dy2 >= 0 && y+dy2 < ctx->h &&
|
|
ctx->grid[(y+dy2)*ctx->w+(x+dx2)])
|
|
minecount++;
|
|
grid[y*ctx->w+x] = minecount;
|
|
}
|
|
} else {
|
|
if (grid[(y+dy)*ctx->w+(x+dx)] >= 0)
|
|
grid[(y+dy)*ctx->w+(x+dx)] += delta;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
{
|
|
int yy, xx;
|
|
printf("grid after perturbing:\n");
|
|
for (yy = 0; yy < ctx->h; yy++) {
|
|
for (xx = 0; xx < ctx->w; xx++) {
|
|
int v = ctx->grid[yy*ctx->w+xx];
|
|
if (yy == ctx->sy && xx == ctx->sx) {
|
|
assert(!v);
|
|
putchar('S');
|
|
} else if (v) {
|
|
putchar('*');
|
|
} else {
|
|
putchar('-');
|
|
}
|
|
}
|
|
putchar('\n');
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *minegen(int w, int h, int n, int x, int y, int unique,
|
|
random_state *rs)
|
|
{
|
|
char *ret = snewn(w*h, char);
|
|
int success;
|
|
int ntries = 0;
|
|
|
|
do {
|
|
success = FALSE;
|
|
ntries++;
|
|
|
|
memset(ret, 0, w*h);
|
|
|
|
/*
|
|
* Start by placing n mines, none of which is at x,y or within
|
|
* one square of it.
|
|
*/
|
|
{
|
|
int *tmp = snewn(w*h, int);
|
|
int i, j, k, nn;
|
|
|
|
/*
|
|
* Write down the list of possible mine locations.
|
|
*/
|
|
k = 0;
|
|
for (i = 0; i < h; i++)
|
|
for (j = 0; j < w; j++)
|
|
if (abs(i - y) > 1 || abs(j - x) > 1)
|
|
tmp[k++] = i*w+j;
|
|
|
|
/*
|
|
* Now pick n off the list at random.
|
|
*/
|
|
nn = n;
|
|
while (nn-- > 0) {
|
|
i = random_upto(rs, k);
|
|
ret[tmp[i]] = 1;
|
|
tmp[i] = tmp[--k];
|
|
}
|
|
|
|
sfree(tmp);
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
{
|
|
int yy, xx;
|
|
printf("grid after initial generation:\n");
|
|
for (yy = 0; yy < h; yy++) {
|
|
for (xx = 0; xx < w; xx++) {
|
|
int v = ret[yy*w+xx];
|
|
if (yy == y && xx == x) {
|
|
assert(!v);
|
|
putchar('S');
|
|
} else if (v) {
|
|
putchar('*');
|
|
} else {
|
|
putchar('-');
|
|
}
|
|
}
|
|
putchar('\n');
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Now set up a results grid to run the solver in, and a
|
|
* context for the solver to open squares. Then run the solver
|
|
* repeatedly; if the number of perturb steps ever goes up or
|
|
* it ever returns -1, give up completely.
|
|
*
|
|
* We bypass this bit if we're not after a unique grid.
|
|
*/
|
|
if (unique) {
|
|
signed char *solvegrid = snewn(w*h, signed char);
|
|
struct minectx actx, *ctx = &actx;
|
|
int solveret, prevret = -2;
|
|
|
|
ctx->grid = ret;
|
|
ctx->w = w;
|
|
ctx->h = h;
|
|
ctx->sx = x;
|
|
ctx->sy = y;
|
|
ctx->rs = rs;
|
|
ctx->allow_big_perturbs = (ntries > 100);
|
|
|
|
while (1) {
|
|
memset(solvegrid, -2, w*h);
|
|
solvegrid[y*w+x] = mineopen(ctx, x, y);
|
|
assert(solvegrid[y*w+x] == 0); /* by deliberate arrangement */
|
|
|
|
solveret =
|
|
minesolve(w, h, n, solvegrid, mineopen, mineperturb, ctx, rs);
|
|
if (solveret < 0 || (prevret >= 0 && solveret >= prevret)) {
|
|
success = FALSE;
|
|
break;
|
|
} else if (solveret == 0) {
|
|
success = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sfree(solvegrid);
|
|
} else {
|
|
success = TRUE;
|
|
}
|
|
|
|
} while (!success);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *describe_layout(char *grid, int area, int x, int y,
|
|
int obfuscate)
|
|
{
|
|
char *ret, *p;
|
|
unsigned char *bmp;
|
|
int i;
|
|
|
|
/*
|
|
* Set up the mine bitmap and obfuscate it.
|
|
*/
|
|
bmp = snewn((area + 7) / 8, unsigned char);
|
|
memset(bmp, 0, (area + 7) / 8);
|
|
for (i = 0; i < area; i++) {
|
|
if (grid[i])
|
|
bmp[i / 8] |= 0x80 >> (i % 8);
|
|
}
|
|
if (obfuscate)
|
|
obfuscate_bitmap(bmp, area, FALSE);
|
|
|
|
/*
|
|
* Now encode the resulting bitmap in hex. We can work to
|
|
* nibble rather than byte granularity, since the obfuscation
|
|
* function guarantees to return a bit string of the same
|
|
* length as its input.
|
|
*/
|
|
ret = snewn((area+3)/4 + 100, char);
|
|
p = ret + sprintf(ret, "%d,%d,%s", x, y,
|
|
obfuscate ? "m" : "u"); /* 'm' == masked */
|
|
for (i = 0; i < (area+3)/4; i++) {
|
|
int v = bmp[i/2];
|
|
if (i % 2 == 0)
|
|
v >>= 4;
|
|
*p++ = "0123456789abcdef"[v & 0xF];
|
|
}
|
|
*p = '\0';
|
|
|
|
sfree(bmp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *new_mine_layout(int w, int h, int n, int x, int y, int unique,
|
|
random_state *rs, char **game_desc)
|
|
{
|
|
char *grid;
|
|
|
|
#ifdef TEST_OBFUSCATION
|
|
static int tested_obfuscation = FALSE;
|
|
if (!tested_obfuscation) {
|
|
/*
|
|
* A few simple test vectors for the obfuscator.
|
|
*
|
|
* First test: the 28-bit stream 1234567. This divides up
|
|
* into 1234 and 567[0]. The SHA of 56 70 30 (appending
|
|
* "0") is 15ce8ab946640340bbb99f3f48fd2c45d1a31d30. Thus,
|
|
* we XOR the 16-bit string 15CE into the input 1234 to get
|
|
* 07FA. Next, we SHA that with "0": the SHA of 07 FA 30 is
|
|
* 3370135c5e3da4fed937adc004a79533962b6391. So we XOR the
|
|
* 12-bit string 337 into the input 567 to get 650. Thus
|
|
* our output is 07FA650.
|
|
*/
|
|
{
|
|
unsigned char bmp1[] = "\x12\x34\x56\x70";
|
|
obfuscate_bitmap(bmp1, 28, FALSE);
|
|
printf("test 1 encode: %s\n",
|
|
memcmp(bmp1, "\x07\xfa\x65\x00", 4) ? "failed" : "passed");
|
|
obfuscate_bitmap(bmp1, 28, TRUE);
|
|
printf("test 1 decode: %s\n",
|
|
memcmp(bmp1, "\x12\x34\x56\x70", 4) ? "failed" : "passed");
|
|
}
|
|
/*
|
|
* Second test: a long string to make sure we switch from
|
|
* one SHA to the next correctly. My input string this time
|
|
* is simply fifty bytes of zeroes.
|
|
*/
|
|
{
|
|
unsigned char bmp2[50];
|
|
unsigned char bmp2a[50];
|
|
memset(bmp2, 0, 50);
|
|
memset(bmp2a, 0, 50);
|
|
obfuscate_bitmap(bmp2, 50 * 8, FALSE);
|
|
/*
|
|
* SHA of twenty-five zero bytes plus "0" is
|
|
* b202c07b990c01f6ff2d544707f60e506019b671. SHA of
|
|
* twenty-five zero bytes plus "1" is
|
|
* fcb1d8b5a2f6b592fe6780b36aa9d65dd7aa6db9. Thus our
|
|
* first half becomes
|
|
* b202c07b990c01f6ff2d544707f60e506019b671fcb1d8b5a2.
|
|
*
|
|
* SHA of that lot plus "0" is
|
|
* 10b0af913db85d37ca27f52a9f78bba3a80030db. SHA of the
|
|
* same string plus "1" is
|
|
* 3d01d8df78e76d382b8106f480135a1bc751d725. So the
|
|
* second half becomes
|
|
* 10b0af913db85d37ca27f52a9f78bba3a80030db3d01d8df78.
|
|
*/
|
|
printf("test 2 encode: %s\n",
|
|
memcmp(bmp2, "\xb2\x02\xc0\x7b\x99\x0c\x01\xf6\xff\x2d\x54"
|
|
"\x47\x07\xf6\x0e\x50\x60\x19\xb6\x71\xfc\xb1\xd8"
|
|
"\xb5\xa2\x10\xb0\xaf\x91\x3d\xb8\x5d\x37\xca\x27"
|
|
"\xf5\x2a\x9f\x78\xbb\xa3\xa8\x00\x30\xdb\x3d\x01"
|
|
"\xd8\xdf\x78", 50) ? "failed" : "passed");
|
|
obfuscate_bitmap(bmp2, 50 * 8, TRUE);
|
|
printf("test 2 decode: %s\n",
|
|
memcmp(bmp2, bmp2a, 50) ? "failed" : "passed");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
grid = minegen(w, h, n, x, y, unique, rs);
|
|
|
|
if (game_desc)
|
|
*game_desc = describe_layout(grid, w * h, x, y, TRUE);
|
|
|
|
return grid;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
/*
|
|
* We generate the coordinates of an initial click even if they
|
|
* aren't actually used. This has the effect of harmonising the
|
|
* random number usage between interactive and batch use: if
|
|
* you use `mines --generate' with an explicit random seed, you
|
|
* should get exactly the same results as if you type the same
|
|
* random seed into the interactive game and click in the same
|
|
* initial location. (Of course you won't get the same grid if
|
|
* you click in a _different_ initial location, but there's
|
|
* nothing to be done about that.)
|
|
*/
|
|
int x = random_upto(rs, params->w);
|
|
int y = random_upto(rs, params->h);
|
|
|
|
if (!interactive) {
|
|
/*
|
|
* For batch-generated grids, pre-open one square.
|
|
*/
|
|
char *grid;
|
|
char *desc;
|
|
|
|
grid = new_mine_layout(params->w, params->h, params->n,
|
|
x, y, params->unique, rs, &desc);
|
|
sfree(grid);
|
|
return desc;
|
|
} else {
|
|
char *rsdesc, *desc;
|
|
|
|
rsdesc = random_state_encode(rs);
|
|
desc = snewn(strlen(rsdesc) + 100, char);
|
|
sprintf(desc, "r%d,%c,%s", params->n, (char)(params->unique ? 'u' : 'a'), rsdesc);
|
|
sfree(rsdesc);
|
|
return desc;
|
|
}
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int wh = params->w * params->h;
|
|
int x, y;
|
|
|
|
if (*desc == 'r') {
|
|
desc++;
|
|
if (!*desc || !isdigit((unsigned char)*desc))
|
|
return "No initial mine count in game description";
|
|
while (*desc && isdigit((unsigned char)*desc))
|
|
desc++; /* skip over mine count */
|
|
if (*desc != ',')
|
|
return "No ',' after initial x-coordinate in game description";
|
|
desc++;
|
|
if (*desc != 'u' && *desc != 'a')
|
|
return "No uniqueness specifier in game description";
|
|
desc++;
|
|
if (*desc != ',')
|
|
return "No ',' after uniqueness specifier in game description";
|
|
/* now ignore the rest */
|
|
} else {
|
|
if (*desc && isdigit((unsigned char)*desc)) {
|
|
x = atoi(desc);
|
|
if (x < 0 || x >= params->w)
|
|
return "Initial x-coordinate was out of range";
|
|
while (*desc && isdigit((unsigned char)*desc))
|
|
desc++; /* skip over x coordinate */
|
|
if (*desc != ',')
|
|
return "No ',' after initial x-coordinate in game description";
|
|
desc++; /* eat comma */
|
|
if (!*desc || !isdigit((unsigned char)*desc))
|
|
return "No initial y-coordinate in game description";
|
|
y = atoi(desc);
|
|
if (y < 0 || y >= params->h)
|
|
return "Initial y-coordinate was out of range";
|
|
while (*desc && isdigit((unsigned char)*desc))
|
|
desc++; /* skip over y coordinate */
|
|
if (*desc != ',')
|
|
return "No ',' after initial y-coordinate in game description";
|
|
desc++; /* eat comma */
|
|
}
|
|
/* eat `m' for `masked' or `u' for `unmasked', if present */
|
|
if (*desc == 'm' || *desc == 'u')
|
|
desc++;
|
|
/* now just check length of remainder */
|
|
if (strlen(desc) != (wh+3)/4)
|
|
return "Game description is wrong length";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int open_square(game_state *state, int x, int y)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int xx, yy, nmines, ncovered;
|
|
|
|
if (!state->layout->mines) {
|
|
/*
|
|
* We have a preliminary game in which the mine layout
|
|
* hasn't been generated yet. Generate it based on the
|
|
* initial click location.
|
|
*/
|
|
char *desc, *privdesc;
|
|
state->layout->mines = new_mine_layout(w, h, state->layout->n,
|
|
x, y, state->layout->unique,
|
|
state->layout->rs,
|
|
&desc);
|
|
/*
|
|
* Find the trailing substring of the game description
|
|
* corresponding to just the mine layout; we will use this
|
|
* as our second `private' game ID for serialisation.
|
|
*/
|
|
privdesc = desc;
|
|
while (*privdesc && isdigit((unsigned char)*privdesc)) privdesc++;
|
|
if (*privdesc == ',') privdesc++;
|
|
while (*privdesc && isdigit((unsigned char)*privdesc)) privdesc++;
|
|
if (*privdesc == ',') privdesc++;
|
|
assert(*privdesc == 'm');
|
|
midend_supersede_game_desc(state->layout->me, desc, privdesc);
|
|
sfree(desc);
|
|
random_free(state->layout->rs);
|
|
state->layout->rs = NULL;
|
|
}
|
|
|
|
if (state->layout->mines[y*w+x]) {
|
|
/*
|
|
* The player has landed on a mine. Bad luck. Expose the
|
|
* mine that killed them, but not the rest (in case they
|
|
* want to Undo and carry on playing).
|
|
*/
|
|
state->dead = TRUE;
|
|
state->grid[y*w+x] = 65;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, the player has opened a safe square. Mark it to-do.
|
|
*/
|
|
state->grid[y*w+x] = -10; /* `todo' value internal to this func */
|
|
|
|
/*
|
|
* Now go through the grid finding all `todo' values and
|
|
* opening them. Every time one of them turns out to have no
|
|
* neighbouring mines, we add all its unopened neighbours to
|
|
* the list as well.
|
|
*
|
|
* FIXME: We really ought to be able to do this better than
|
|
* using repeated N^2 scans of the grid.
|
|
*/
|
|
while (1) {
|
|
int done_something = FALSE;
|
|
|
|
for (yy = 0; yy < h; yy++)
|
|
for (xx = 0; xx < w; xx++)
|
|
if (state->grid[yy*w+xx] == -10) {
|
|
int dx, dy, v;
|
|
|
|
assert(!state->layout->mines[yy*w+xx]);
|
|
|
|
v = 0;
|
|
|
|
for (dx = -1; dx <= +1; dx++)
|
|
for (dy = -1; dy <= +1; dy++)
|
|
if (xx+dx >= 0 && xx+dx < state->w &&
|
|
yy+dy >= 0 && yy+dy < state->h &&
|
|
state->layout->mines[(yy+dy)*w+(xx+dx)])
|
|
v++;
|
|
|
|
state->grid[yy*w+xx] = v;
|
|
|
|
if (v == 0) {
|
|
for (dx = -1; dx <= +1; dx++)
|
|
for (dy = -1; dy <= +1; dy++)
|
|
if (xx+dx >= 0 && xx+dx < state->w &&
|
|
yy+dy >= 0 && yy+dy < state->h &&
|
|
state->grid[(yy+dy)*w+(xx+dx)] == -2)
|
|
state->grid[(yy+dy)*w+(xx+dx)] = -10;
|
|
}
|
|
|
|
done_something = TRUE;
|
|
}
|
|
|
|
if (!done_something)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Finally, scan the grid and see if exactly as many squares
|
|
* are still covered as there are mines. If so, set the `won'
|
|
* flag and fill in mine markers on all covered squares.
|
|
*/
|
|
nmines = ncovered = 0;
|
|
for (yy = 0; yy < h; yy++)
|
|
for (xx = 0; xx < w; xx++) {
|
|
if (state->grid[yy*w+xx] < 0)
|
|
ncovered++;
|
|
if (state->layout->mines[yy*w+xx])
|
|
nmines++;
|
|
}
|
|
assert(ncovered >= nmines);
|
|
if (ncovered == nmines) {
|
|
for (yy = 0; yy < h; yy++)
|
|
for (xx = 0; xx < w; xx++) {
|
|
if (state->grid[yy*w+xx] < 0)
|
|
state->grid[yy*w+xx] = -1;
|
|
}
|
|
state->won = TRUE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int i, wh, x, y, ret, masked;
|
|
unsigned char *bmp;
|
|
|
|
state->w = params->w;
|
|
state->h = params->h;
|
|
state->n = params->n;
|
|
state->dead = state->won = FALSE;
|
|
state->used_solve = FALSE;
|
|
|
|
wh = state->w * state->h;
|
|
|
|
state->layout = snew(struct mine_layout);
|
|
memset(state->layout, 0, sizeof(struct mine_layout));
|
|
state->layout->refcount = 1;
|
|
|
|
state->grid = snewn(wh, signed char);
|
|
memset(state->grid, -2, wh);
|
|
|
|
if (*desc == 'r') {
|
|
desc++;
|
|
state->layout->n = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc))
|
|
desc++; /* skip over mine count */
|
|
if (*desc) desc++; /* eat comma */
|
|
if (*desc == 'a')
|
|
state->layout->unique = FALSE;
|
|
else
|
|
state->layout->unique = TRUE;
|
|
desc++;
|
|
if (*desc) desc++; /* eat comma */
|
|
|
|
state->layout->mines = NULL;
|
|
state->layout->rs = random_state_decode(desc);
|
|
state->layout->me = me;
|
|
|
|
} else {
|
|
state->layout->rs = NULL;
|
|
state->layout->me = NULL;
|
|
state->layout->mines = snewn(wh, char);
|
|
|
|
if (*desc && isdigit((unsigned char)*desc)) {
|
|
x = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc))
|
|
desc++; /* skip over x coordinate */
|
|
if (*desc) desc++; /* eat comma */
|
|
y = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc))
|
|
desc++; /* skip over y coordinate */
|
|
if (*desc) desc++; /* eat comma */
|
|
} else {
|
|
x = y = -1;
|
|
}
|
|
|
|
if (*desc == 'm') {
|
|
masked = TRUE;
|
|
desc++;
|
|
} else {
|
|
if (*desc == 'u')
|
|
desc++;
|
|
/*
|
|
* We permit game IDs to be entered by hand without the
|
|
* masking transformation.
|
|
*/
|
|
masked = FALSE;
|
|
}
|
|
|
|
bmp = snewn((wh + 7) / 8, unsigned char);
|
|
memset(bmp, 0, (wh + 7) / 8);
|
|
for (i = 0; i < (wh+3)/4; i++) {
|
|
int c = desc[i];
|
|
int v;
|
|
|
|
assert(c != 0); /* validate_desc should have caught */
|
|
if (c >= '0' && c <= '9')
|
|
v = c - '0';
|
|
else if (c >= 'a' && c <= 'f')
|
|
v = c - 'a' + 10;
|
|
else if (c >= 'A' && c <= 'F')
|
|
v = c - 'A' + 10;
|
|
else
|
|
v = 0;
|
|
|
|
bmp[i / 2] |= v << (4 * (1 - (i % 2)));
|
|
}
|
|
|
|
if (masked)
|
|
obfuscate_bitmap(bmp, wh, TRUE);
|
|
|
|
memset(state->layout->mines, 0, wh);
|
|
for (i = 0; i < wh; i++) {
|
|
if (bmp[i / 8] & (0x80 >> (i % 8)))
|
|
state->layout->mines[i] = 1;
|
|
}
|
|
|
|
if (x >= 0 && y >= 0)
|
|
ret = open_square(state, x, y);
|
|
sfree(bmp);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->n = state->n;
|
|
ret->dead = state->dead;
|
|
ret->won = state->won;
|
|
ret->used_solve = state->used_solve;
|
|
ret->layout = state->layout;
|
|
ret->layout->refcount++;
|
|
ret->grid = snewn(ret->w * ret->h, signed char);
|
|
memcpy(ret->grid, state->grid, ret->w * ret->h);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->layout->refcount <= 0) {
|
|
sfree(state->layout->mines);
|
|
if (state->layout->rs)
|
|
random_free(state->layout->rs);
|
|
sfree(state->layout);
|
|
}
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
if (!state->layout->mines) {
|
|
*error = "Game has not been started yet";
|
|
return NULL;
|
|
}
|
|
|
|
return dupstr("S");
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
char *ret;
|
|
int x, y;
|
|
|
|
ret = snewn((state->w + 1) * state->h + 1, char);
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
int v = state->grid[y*state->w+x];
|
|
if (v == 0)
|
|
v = '-';
|
|
else if (v >= 1 && v <= 8)
|
|
v = '0' + v;
|
|
else if (v == -1)
|
|
v = '*';
|
|
else if (v == -2 || v == -3)
|
|
v = '?';
|
|
else if (v >= 64)
|
|
v = '!';
|
|
ret[y * (state->w+1) + x] = v;
|
|
}
|
|
ret[y * (state->w+1) + state->w] = '\n';
|
|
}
|
|
ret[(state->w + 1) * state->h] = '\0';
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
int hx, hy, hradius; /* for mouse-down highlights */
|
|
int validradius;
|
|
int flash_is_death;
|
|
int deaths, completed;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->hx = ui->hy = -1;
|
|
ui->hradius = ui->validradius = 0;
|
|
ui->deaths = 0;
|
|
ui->completed = FALSE;
|
|
ui->flash_is_death = FALSE; /* *shrug* */
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
char buf[80];
|
|
/*
|
|
* The deaths counter and completion status need preserving
|
|
* across a serialisation.
|
|
*/
|
|
sprintf(buf, "D%d", ui->deaths);
|
|
if (ui->completed)
|
|
strcat(buf, "C");
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
int p= 0;
|
|
sscanf(encoding, "D%d%n", &ui->deaths, &p);
|
|
if (encoding[p] == 'C')
|
|
ui->completed = TRUE;
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
if (newstate->won)
|
|
ui->completed = TRUE;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int w, h, started, tilesize, bg;
|
|
signed char *grid;
|
|
/*
|
|
* Items in this `grid' array have all the same values as in
|
|
* the game_state grid, and in addition:
|
|
*
|
|
* - -10 means the tile was drawn `specially' as a result of a
|
|
* flash, so it will always need redrawing.
|
|
*
|
|
* - -22 and -23 mean the tile is highlighted for a possible
|
|
* click.
|
|
*/
|
|
};
|
|
|
|
static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int cx, cy;
|
|
char buf[256];
|
|
|
|
if (from->dead || from->won)
|
|
return NULL; /* no further moves permitted */
|
|
|
|
if (!IS_MOUSE_DOWN(button) && !IS_MOUSE_DRAG(button) &&
|
|
!IS_MOUSE_RELEASE(button))
|
|
return NULL;
|
|
|
|
cx = FROMCOORD(x);
|
|
cy = FROMCOORD(y);
|
|
|
|
if (button == LEFT_BUTTON || button == LEFT_DRAG ||
|
|
button == MIDDLE_BUTTON || button == MIDDLE_DRAG) {
|
|
if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
|
|
return NULL;
|
|
|
|
/*
|
|
* Mouse-downs and mouse-drags just cause highlighting
|
|
* updates.
|
|
*/
|
|
ui->hx = cx;
|
|
ui->hy = cy;
|
|
ui->hradius = (from->grid[cy*from->w+cx] >= 0 ? 1 : 0);
|
|
if (button == LEFT_BUTTON)
|
|
ui->validradius = ui->hradius;
|
|
else if (button == MIDDLE_BUTTON)
|
|
ui->validradius = 1;
|
|
return "";
|
|
}
|
|
|
|
if (button == RIGHT_BUTTON) {
|
|
if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
|
|
return NULL;
|
|
|
|
/*
|
|
* Right-clicking only works on a covered square, and it
|
|
* toggles between -1 (marked as mine) and -2 (not marked
|
|
* as mine).
|
|
*
|
|
* FIXME: question marks.
|
|
*/
|
|
if (from->grid[cy * from->w + cx] != -2 &&
|
|
from->grid[cy * from->w + cx] != -1)
|
|
return NULL;
|
|
|
|
sprintf(buf, "F%d,%d", cx, cy);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
if (button == LEFT_RELEASE || button == MIDDLE_RELEASE) {
|
|
ui->hx = ui->hy = -1;
|
|
ui->hradius = 0;
|
|
|
|
/*
|
|
* At this stage we must never return NULL: we have adjusted
|
|
* the ui, so at worst we return "".
|
|
*/
|
|
if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
|
|
return "";
|
|
|
|
/*
|
|
* Left-clicking on a covered square opens a tile. Not
|
|
* permitted if the tile is marked as a mine, for safety.
|
|
* (Unmark it and _then_ open it.)
|
|
*/
|
|
if (button == LEFT_RELEASE &&
|
|
(from->grid[cy * from->w + cx] == -2 ||
|
|
from->grid[cy * from->w + cx] == -3) &&
|
|
ui->validradius == 0) {
|
|
/* Check if you've killed yourself. */
|
|
if (from->layout->mines && from->layout->mines[cy * from->w + cx])
|
|
ui->deaths++;
|
|
|
|
sprintf(buf, "O%d,%d", cx, cy);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
/*
|
|
* Left-clicking or middle-clicking on an uncovered tile:
|
|
* first we check to see if the number of mine markers
|
|
* surrounding the tile is equal to its mine count, and if
|
|
* so then we open all other surrounding squares.
|
|
*/
|
|
if (from->grid[cy * from->w + cx] > 0 && ui->validradius == 1) {
|
|
int dy, dx, n;
|
|
|
|
/* Count mine markers. */
|
|
n = 0;
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++)
|
|
if (cx+dx >= 0 && cx+dx < from->w &&
|
|
cy+dy >= 0 && cy+dy < from->h) {
|
|
if (from->grid[(cy+dy)*from->w+(cx+dx)] == -1)
|
|
n++;
|
|
}
|
|
|
|
if (n == from->grid[cy * from->w + cx]) {
|
|
|
|
/*
|
|
* Now see if any of the squares we're clearing
|
|
* contains a mine (which will happen iff you've
|
|
* incorrectly marked the mines around the clicked
|
|
* square). If so, we open _just_ those squares, to
|
|
* reveal as little additional information as we
|
|
* can.
|
|
*/
|
|
char *p = buf;
|
|
char *sep = "";
|
|
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++)
|
|
if (cx+dx >= 0 && cx+dx < from->w &&
|
|
cy+dy >= 0 && cy+dy < from->h) {
|
|
if (from->grid[(cy+dy)*from->w+(cx+dx)] != -1 &&
|
|
from->layout->mines &&
|
|
from->layout->mines[(cy+dy)*from->w+(cx+dx)]) {
|
|
p += sprintf(p, "%sO%d,%d", sep, cx+dx, cy+dy);
|
|
sep = ";";
|
|
}
|
|
}
|
|
|
|
if (p > buf) {
|
|
ui->deaths++;
|
|
} else {
|
|
sprintf(buf, "C%d,%d", cx, cy);
|
|
}
|
|
|
|
return dupstr(buf);
|
|
}
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
int cy, cx;
|
|
game_state *ret;
|
|
|
|
if (!strcmp(move, "S")) {
|
|
/*
|
|
* Simply expose the entire grid as if it were a completed
|
|
* solution.
|
|
*/
|
|
int yy, xx;
|
|
|
|
ret = dup_game(from);
|
|
for (yy = 0; yy < ret->h; yy++)
|
|
for (xx = 0; xx < ret->w; xx++) {
|
|
|
|
if (ret->layout->mines[yy*ret->w+xx]) {
|
|
ret->grid[yy*ret->w+xx] = -1;
|
|
} else {
|
|
int dx, dy, v;
|
|
|
|
v = 0;
|
|
|
|
for (dx = -1; dx <= +1; dx++)
|
|
for (dy = -1; dy <= +1; dy++)
|
|
if (xx+dx >= 0 && xx+dx < ret->w &&
|
|
yy+dy >= 0 && yy+dy < ret->h &&
|
|
ret->layout->mines[(yy+dy)*ret->w+(xx+dx)])
|
|
v++;
|
|
|
|
ret->grid[yy*ret->w+xx] = v;
|
|
}
|
|
}
|
|
ret->used_solve = TRUE;
|
|
ret->won = TRUE;
|
|
|
|
return ret;
|
|
} else {
|
|
ret = dup_game(from);
|
|
|
|
while (*move) {
|
|
if (move[0] == 'F' &&
|
|
sscanf(move+1, "%d,%d", &cx, &cy) == 2 &&
|
|
cx >= 0 && cx < from->w && cy >= 0 && cy < from->h) {
|
|
ret->grid[cy * from->w + cx] ^= (-2 ^ -1);
|
|
} else if (move[0] == 'O' &&
|
|
sscanf(move+1, "%d,%d", &cx, &cy) == 2 &&
|
|
cx >= 0 && cx < from->w && cy >= 0 && cy < from->h) {
|
|
open_square(ret, cx, cy);
|
|
} else if (move[0] == 'C' &&
|
|
sscanf(move+1, "%d,%d", &cx, &cy) == 2 &&
|
|
cx >= 0 && cx < from->w && cy >= 0 && cy < from->h) {
|
|
int dx, dy;
|
|
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++)
|
|
if (cx+dx >= 0 && cx+dx < ret->w &&
|
|
cy+dy >= 0 && cy+dy < ret->h &&
|
|
(ret->grid[(cy+dy)*ret->w+(cx+dx)] == -2 ||
|
|
ret->grid[(cy+dy)*ret->w+(cx+dx)] == -3))
|
|
open_square(ret, cx+dx, cy+dy);
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
while (*move && *move != ';') move++;
|
|
if (*move) move++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = BORDER * 2 + TILE_SIZE * params->w;
|
|
*y = BORDER * 2 + TILE_SIZE * params->h;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_BACKGROUND2 * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 19.0 / 20.0;
|
|
ret[COL_BACKGROUND2 * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 19.0 / 20.0;
|
|
ret[COL_BACKGROUND2 * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 19.0 / 20.0;
|
|
|
|
ret[COL_1 * 3 + 0] = 0.0F;
|
|
ret[COL_1 * 3 + 1] = 0.0F;
|
|
ret[COL_1 * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_2 * 3 + 0] = 0.0F;
|
|
ret[COL_2 * 3 + 1] = 0.5F;
|
|
ret[COL_2 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_3 * 3 + 0] = 1.0F;
|
|
ret[COL_3 * 3 + 1] = 0.0F;
|
|
ret[COL_3 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_4 * 3 + 0] = 0.0F;
|
|
ret[COL_4 * 3 + 1] = 0.0F;
|
|
ret[COL_4 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_5 * 3 + 0] = 0.5F;
|
|
ret[COL_5 * 3 + 1] = 0.0F;
|
|
ret[COL_5 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_6 * 3 + 0] = 0.0F;
|
|
ret[COL_6 * 3 + 1] = 0.5F;
|
|
ret[COL_6 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_7 * 3 + 0] = 0.0F;
|
|
ret[COL_7 * 3 + 1] = 0.0F;
|
|
ret[COL_7 * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_8 * 3 + 0] = 0.5F;
|
|
ret[COL_8 * 3 + 1] = 0.5F;
|
|
ret[COL_8 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_MINE * 3 + 0] = 0.0F;
|
|
ret[COL_MINE * 3 + 1] = 0.0F;
|
|
ret[COL_MINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_BANG * 3 + 0] = 1.0F;
|
|
ret[COL_BANG * 3 + 1] = 0.0F;
|
|
ret[COL_BANG * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_CROSS * 3 + 0] = 1.0F;
|
|
ret[COL_CROSS * 3 + 1] = 0.0F;
|
|
ret[COL_CROSS * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_FLAG * 3 + 0] = 1.0F;
|
|
ret[COL_FLAG * 3 + 1] = 0.0F;
|
|
ret[COL_FLAG * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_FLAGBASE * 3 + 0] = 0.0F;
|
|
ret[COL_FLAGBASE * 3 + 1] = 0.0F;
|
|
ret[COL_FLAGBASE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_QUERY * 3 + 0] = 0.0F;
|
|
ret[COL_QUERY * 3 + 1] = 0.0F;
|
|
ret[COL_QUERY * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
|
|
ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
|
|
ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0 / 3.0;
|
|
ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0 / 3.0;
|
|
ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0 / 3.0;
|
|
|
|
ret[COL_WRONGNUMBER * 3 + 0] = 1.0F;
|
|
ret[COL_WRONGNUMBER * 3 + 1] = 0.6F;
|
|
ret[COL_WRONGNUMBER * 3 + 2] = 0.6F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->started = FALSE;
|
|
ds->tilesize = 0; /* not decided yet */
|
|
ds->grid = snewn(ds->w * ds->h, signed char);
|
|
ds->bg = -1;
|
|
|
|
memset(ds->grid, -99, ds->w * ds->h);
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int v, int bg)
|
|
{
|
|
if (v < 0) {
|
|
int coords[12];
|
|
int hl = 0;
|
|
|
|
if (v == -22 || v == -23) {
|
|
v += 20;
|
|
|
|
/*
|
|
* Omit the highlights in this case.
|
|
*/
|
|
draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
|
|
bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg);
|
|
draw_line(dr, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
|
|
draw_line(dr, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
|
|
} else {
|
|
/*
|
|
* Draw highlights to indicate the square is covered.
|
|
*/
|
|
coords[0] = x + TILE_SIZE - 1;
|
|
coords[1] = y + TILE_SIZE - 1;
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
coords[4] = x;
|
|
coords[5] = y + TILE_SIZE - 1;
|
|
draw_polygon(dr, coords, 3, COL_LOWLIGHT ^ hl, COL_LOWLIGHT ^ hl);
|
|
|
|
coords[0] = x;
|
|
coords[1] = y;
|
|
draw_polygon(dr, coords, 3, COL_HIGHLIGHT ^ hl,
|
|
COL_HIGHLIGHT ^ hl);
|
|
|
|
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
|
|
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
|
|
bg);
|
|
}
|
|
|
|
if (v == -1) {
|
|
/*
|
|
* Draw a flag.
|
|
*/
|
|
#define SETCOORD(n, dx, dy) do { \
|
|
coords[(n)*2+0] = x + TILE_SIZE * (dx); \
|
|
coords[(n)*2+1] = y + TILE_SIZE * (dy); \
|
|
} while (0)
|
|
SETCOORD(0, 0.6, 0.35);
|
|
SETCOORD(1, 0.6, 0.7);
|
|
SETCOORD(2, 0.8, 0.8);
|
|
SETCOORD(3, 0.25, 0.8);
|
|
SETCOORD(4, 0.55, 0.7);
|
|
SETCOORD(5, 0.55, 0.35);
|
|
draw_polygon(dr, coords, 6, COL_FLAGBASE, COL_FLAGBASE);
|
|
|
|
SETCOORD(0, 0.6, 0.2);
|
|
SETCOORD(1, 0.6, 0.5);
|
|
SETCOORD(2, 0.2, 0.35);
|
|
draw_polygon(dr, coords, 3, COL_FLAG, COL_FLAG);
|
|
#undef SETCOORD
|
|
|
|
} else if (v == -3) {
|
|
/*
|
|
* Draw a question mark.
|
|
*/
|
|
draw_text(dr, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
|
|
FONT_VARIABLE, TILE_SIZE * 6 / 8,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_QUERY, "?");
|
|
}
|
|
} else {
|
|
/*
|
|
* Clear the square to the background colour, and draw thin
|
|
* grid lines along the top and left.
|
|
*
|
|
* Exception is that for value 65 (mine we've just trodden
|
|
* on), we clear the square to COL_BANG.
|
|
*/
|
|
if (v & 32) {
|
|
bg = COL_WRONGNUMBER;
|
|
v &= ~32;
|
|
}
|
|
draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
|
|
(v == 65 ? COL_BANG :
|
|
bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg));
|
|
draw_line(dr, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
|
|
draw_line(dr, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
|
|
|
|
if (v > 0 && v <= 8) {
|
|
/*
|
|
* Mark a number.
|
|
*/
|
|
char str[2];
|
|
str[0] = v + '0';
|
|
str[1] = '\0';
|
|
draw_text(dr, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
|
|
FONT_VARIABLE, TILE_SIZE * 7 / 8,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
(COL_1 - 1) + v, str);
|
|
|
|
} else if (v >= 64) {
|
|
/*
|
|
* Mark a mine.
|
|
*
|
|
* FIXME: this could be done better!
|
|
*/
|
|
#if 0
|
|
draw_text(dr, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
|
|
FONT_VARIABLE, TILE_SIZE * 7 / 8,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_MINE, "*");
|
|
#else
|
|
{
|
|
int cx = x + TILE_SIZE / 2;
|
|
int cy = y + TILE_SIZE / 2;
|
|
int r = TILE_SIZE / 2 - 3;
|
|
int coords[4*5*2];
|
|
int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
|
|
int tdx, tdy, i;
|
|
|
|
for (i = 0; i < 4*5*2; i += 5*2) {
|
|
coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
|
|
coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
|
|
coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
|
|
coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
|
|
coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
|
|
coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
|
|
coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
|
|
coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
|
|
coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
|
|
coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
|
|
|
|
tdx = ydx;
|
|
tdy = ydy;
|
|
ydx = xdx;
|
|
ydy = xdy;
|
|
xdx = -tdx;
|
|
xdy = -tdy;
|
|
}
|
|
|
|
draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
|
|
|
|
draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
|
|
}
|
|
#endif
|
|
|
|
if (v == 66) {
|
|
/*
|
|
* Cross through the mine.
|
|
*/
|
|
int dx;
|
|
for (dx = -1; dx <= +1; dx++) {
|
|
draw_line(dr, x + 3 + dx, y + 2,
|
|
x + TILE_SIZE - 3 + dx,
|
|
y + TILE_SIZE - 2, COL_CROSS);
|
|
draw_line(dr, x + TILE_SIZE - 3 + dx, y + 2,
|
|
x + 3 + dx, y + TILE_SIZE - 2,
|
|
COL_CROSS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int x, y;
|
|
int mines, markers, bg;
|
|
|
|
if (flashtime) {
|
|
int frame = (flashtime / FLASH_FRAME);
|
|
if (frame % 2)
|
|
bg = (ui->flash_is_death ? COL_BACKGROUND : COL_LOWLIGHT);
|
|
else
|
|
bg = (ui->flash_is_death ? COL_BANG : COL_HIGHLIGHT);
|
|
} else
|
|
bg = COL_BACKGROUND;
|
|
|
|
if (!ds->started) {
|
|
int coords[10];
|
|
|
|
draw_rect(dr, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
|
|
draw_update(dr, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER);
|
|
|
|
/*
|
|
* Recessed area containing the whole puzzle.
|
|
*/
|
|
coords[0] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
|
|
coords[1] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
|
|
coords[2] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
|
|
coords[3] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
|
|
coords[4] = coords[2] - TILE_SIZE;
|
|
coords[5] = coords[3] + TILE_SIZE;
|
|
coords[8] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
|
|
coords[9] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
|
|
coords[6] = coords[8] + TILE_SIZE;
|
|
coords[7] = coords[9] - TILE_SIZE;
|
|
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
coords[1] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
|
|
coords[0] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
|
|
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Now draw the tiles. Also in this loop, count up the number
|
|
* of mines and mine markers.
|
|
*/
|
|
mines = markers = 0;
|
|
for (y = 0; y < ds->h; y++)
|
|
for (x = 0; x < ds->w; x++) {
|
|
int v = state->grid[y*ds->w+x];
|
|
|
|
if (v == -1)
|
|
markers++;
|
|
if (state->layout->mines && state->layout->mines[y*ds->w+x])
|
|
mines++;
|
|
|
|
if (v >= 0 && v <= 8) {
|
|
/*
|
|
* Count up the flags around this tile, and if
|
|
* there are too _many_, highlight the tile.
|
|
*/
|
|
int dx, dy, flags = 0;
|
|
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++) {
|
|
int nx = x+dx, ny = y+dy;
|
|
if (nx >= 0 && nx < ds->w &&
|
|
ny >= 0 && ny < ds->h &&
|
|
state->grid[ny*ds->w+nx] == -1)
|
|
flags++;
|
|
}
|
|
|
|
if (flags > v)
|
|
v |= 32;
|
|
}
|
|
|
|
if ((v == -2 || v == -3) &&
|
|
(abs(x-ui->hx) <= ui->hradius && abs(y-ui->hy) <= ui->hradius))
|
|
v -= 20;
|
|
|
|
if (ds->grid[y*ds->w+x] != v || bg != ds->bg) {
|
|
draw_tile(dr, ds, COORD(x), COORD(y), v, bg);
|
|
ds->grid[y*ds->w+x] = v;
|
|
}
|
|
}
|
|
ds->bg = bg;
|
|
|
|
if (!state->layout->mines)
|
|
mines = state->layout->n;
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbar[512];
|
|
if (state->dead) {
|
|
sprintf(statusbar, "DEAD!");
|
|
} else if (state->won) {
|
|
if (state->used_solve)
|
|
sprintf(statusbar, "Auto-solved.");
|
|
else
|
|
sprintf(statusbar, "COMPLETED!");
|
|
} else {
|
|
sprintf(statusbar, "Marked: %d / %d", markers, mines);
|
|
}
|
|
if (ui->deaths)
|
|
sprintf(statusbar + strlen(statusbar),
|
|
" Deaths: %d", ui->deaths);
|
|
status_bar(dr, statusbar);
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (oldstate->used_solve || newstate->used_solve)
|
|
return 0.0F;
|
|
|
|
if (dir > 0 && !oldstate->dead && !oldstate->won) {
|
|
if (newstate->dead) {
|
|
ui->flash_is_death = TRUE;
|
|
return 3 * FLASH_FRAME;
|
|
}
|
|
if (newstate->won) {
|
|
ui->flash_is_death = FALSE;
|
|
return 2 * FLASH_FRAME;
|
|
}
|
|
}
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
if (state->dead || state->won || ui->completed || !state->layout->mines)
|
|
return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame mines
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Mines", "games.mines", "mines",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
FALSE, FALSE, game_print_size, game_print,
|
|
TRUE, /* wants_statusbar */
|
|
TRUE, game_timing_state,
|
|
BUTTON_BEATS(LEFT_BUTTON, RIGHT_BUTTON),
|
|
};
|
|
|
|
#ifdef STANDALONE_OBFUSCATOR
|
|
|
|
/*
|
|
* Vaguely useful stand-alone program which translates between
|
|
* obfuscated and clear Mines game descriptions. Pass in a game
|
|
* description on the command line, and if it's clear it will be
|
|
* obfuscated and vice versa. The output text should also be a
|
|
* valid game ID describing the same game. Like this:
|
|
*
|
|
* $ ./mineobfusc 9x9:4,4,mb071b49fbd1cb6a0d5868
|
|
* 9x9:4,4,004000007c00010022080
|
|
* $ ./mineobfusc 9x9:4,4,004000007c00010022080
|
|
* 9x9:4,4,mb071b49fbd1cb6a0d5868
|
|
*/
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
game_state *s;
|
|
char *id = NULL, *desc, *err;
|
|
int y, x;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
return 1;
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
|
|
x = atoi(desc);
|
|
while (*desc && *desc != ',') desc++;
|
|
if (*desc) desc++;
|
|
y = atoi(desc);
|
|
while (*desc && *desc != ',') desc++;
|
|
if (*desc) desc++;
|
|
|
|
printf("%s:%s\n", id, describe_layout(s->layout->mines,
|
|
p->w * p->h,
|
|
x, y,
|
|
(*desc != 'm')));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|