Files
puzzles/loopy.c
Simon Tatham eb2013efc0 Cleanup: it was absolutely stupid for game_wants_statusbar() to be a
function, since it took no parameters by which to vary its decision,
and in any case it's hard to imagine a game which only
_conditionally_ wants a status bar. Changed it into a boolean data
field in the backend structure.

[originally from svn r6417]
2005-10-22 16:52:16 +00:00

2753 lines
94 KiB
C

/*
* loopy.c: An implementation of the Nikoli game 'Loop the loop'.
* (c) Mike Pinna, 2005
*
* vim: set shiftwidth=4 :set textwidth=80:
*/
/*
* TODO:
*
* - setting very high recursion depth seems to cause memory
* munching: are we recursing before checking completion, by any
* chance?
*
* - there's an interesting deductive technique which makes use of
* topology rather than just graph theory. Each _square_ in the
* grid is either inside or outside the loop; you can tell that
* two squares are on the same side of the loop if they're
* separated by an x (or, more generally, by a path crossing no
* LINE_UNKNOWNs and an even number of LINE_YESes), and on the
* opposite side of the loop if they're separated by a line (or
* an odd number of LINE_YESes and no LINE_UNKNOWNs). Oh, and
* any square separated from the outside of the grid by a
* LINE_YES or a LINE_NO is on the inside or outside
* respectively. So if you can track this for all squares, you
* can occasionally spot that two squares are separated by a
* LINE_UNKNOWN but their relative insideness is known, and
* therefore deduce the state of the edge between them.
* + An efficient way to track this would be by augmenting the
* disjoint set forest data structure. Each element, along
* with a pointer to a parent member of its equivalence
* class, would also carry a one-bit field indicating whether
* it was equal or opposite to its parent. Then you could
* keep flipping a bit as you ascended the tree during
* dsf_canonify(), and hence you'd be able to return the
* relationship of the input value to its ultimate parent
* (and also you could then get all those bits right when you
* went back up the tree rewriting). So you'd be able to
* query whether any two elements were known-equal,
* known-opposite, or not-known, and you could add new
* equalities or oppositenesses to increase your knowledge.
* (Of course the algorithm would have to fail an assertion
* if you tried to tell it two things it already knew to be
* opposite were equal, or vice versa!)
* This data structure would also be useful in the
* graph-theoretic part of the solver, where it could be used
* for storing information about which lines are known-identical
* or known-opposite. (For example if two lines bordering a 3
* are known-identical they must both be LINE_YES, and if they
* are known-opposite, the *other* two lines bordering that clue
* must be LINE_YES, etc). This may duplicate some
* functionality already present in the solver but it is more
* general and we could remove the old code, so that's no bad
* thing.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#include "tree234.h"
#define PREFERRED_TILE_SIZE 32
#define TILE_SIZE (ds->tilesize)
#define LINEWIDTH (ds->linewidth)
#define BORDER (TILE_SIZE / 2)
#define FLASH_TIME 0.5F
#define HL_COUNT(state) ((state)->w * ((state)->h + 1))
#define VL_COUNT(state) (((state)->w + 1) * (state)->h)
#define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1))
#define SQUARE_COUNT(state) ((state)->w * (state)->h)
#define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
#define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1)
#define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
#define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j)
#define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
(i) <= (state)->w && (j) <= (state)->h)
/*
* These macros return rvalues only, but can cope with being passed
* out-of-range coordinates.
*/
#define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
LINE_NO : LV_ABOVE_DOT(state, i, j))
#define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \
LINE_NO : LV_BELOW_DOT(state, i, j))
#define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \
LINE_NO : LV_LEFTOF_DOT(state, i, j))
#define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)?\
LINE_NO : LV_RIGHTOF_DOT(state, i, j))
/*
* These macros expect to be passed valid coordinates, and return
* lvalues.
*/
#define LV_BELOW_DOT(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
#define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1)
#define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
#define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j)
#define CLUE_AT(state, i, j) ((i < 0 || i >= (state)->w || \
j < 0 || j >= (state)->h) ? \
' ' : LV_CLUE_AT(state, i, j))
#define LV_CLUE_AT(state, i, j) ((state)->clues[(i) + (state)->w * (j)])
#define OPP(dir) (dir == LINE_UNKNOWN ? LINE_UNKNOWN : \
dir == LINE_YES ? LINE_NO : LINE_YES)
#define BIT_SET(field, bit) ((field) & (1<<(bit)))
#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
((field) |= (1<<(bit)), TRUE))
#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
((field) &= ~(1<<(bit)), TRUE) : FALSE)
static char *game_text_format(game_state *state);
enum {
COL_BACKGROUND,
COL_FOREGROUND,
COL_HIGHLIGHT,
COL_MISTAKE,
NCOLOURS
};
/*
* Difficulty levels. I do some macro ickery here to ensure that my
* enum and the various forms of my name list always match up.
*/
#define DIFFLIST(A) \
A(EASY,Easy,e) \
A(NORMAL,Normal,n)
#define ENUM(upper,title,lower) DIFF_ ## upper,
#define TITLE(upper,title,lower) #title,
#define ENCODE(upper,title,lower) #lower
#define CONFIG(upper,title,lower) ":" #title
enum { DIFFLIST(ENUM) DIFFCOUNT };
/* static char const *const loopy_diffnames[] = { DIFFLIST(TITLE) }; */
static char const loopy_diffchars[] = DIFFLIST(ENCODE);
#define DIFFCONFIG DIFFLIST(CONFIG)
/* LINE_YES_ERROR is only used in the drawing routine */
enum line_state { LINE_UNKNOWN, LINE_YES, LINE_NO /*, LINE_YES_ERROR*/ };
enum direction { UP, DOWN, LEFT, RIGHT };
struct game_params {
int w, h, diff, rec;
};
struct game_state {
int w, h;
/* Put ' ' in a square that doesn't get a clue */
char *clues;
/* Arrays of line states, stored left-to-right, top-to-bottom */
char *hl, *vl;
int solved;
int cheated;
int recursion_depth;
};
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
ret->h = state->h;
ret->w = state->w;
ret->solved = state->solved;
ret->cheated = state->cheated;
ret->clues = snewn(SQUARE_COUNT(state), char);
memcpy(ret->clues, state->clues, SQUARE_COUNT(state));
ret->hl = snewn(HL_COUNT(state), char);
memcpy(ret->hl, state->hl, HL_COUNT(state));
ret->vl = snewn(VL_COUNT(state), char);
memcpy(ret->vl, state->vl, VL_COUNT(state));
ret->recursion_depth = state->recursion_depth;
return ret;
}
static void free_game(game_state *state)
{
if (state) {
sfree(state->clues);
sfree(state->hl);
sfree(state->vl);
sfree(state);
}
}
enum solver_status {
SOLVER_SOLVED, /* This is the only solution the solver could find */
SOLVER_MISTAKE, /* This is definitely not a solution */
SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
SOLVER_INCOMPLETE /* This may be a partial solution */
};
typedef struct solver_state {
game_state *state;
char *dot_atleastone;
char *dot_atmostone;
/* char *dline_identical; */
int recursion_remaining;
enum solver_status solver_status;
/* NB looplen is the number of dots that are joined together at a point, ie a
* looplen of 1 means there are no lines to a particular dot */
int *dotdsf, *looplen;
} solver_state;
static solver_state *new_solver_state(game_state *state) {
solver_state *ret = snew(solver_state);
int i;
ret->state = dup_game(state);
ret->dot_atmostone = snewn(DOT_COUNT(state), char);
memset(ret->dot_atmostone, 0, DOT_COUNT(state));
ret->dot_atleastone = snewn(DOT_COUNT(state), char);
memset(ret->dot_atleastone, 0, DOT_COUNT(state));
#if 0
dline_identical = snewn(DOT_COUNT(state), char);
memset(dline_identical, 0, DOT_COUNT(state));
#endif
ret->recursion_remaining = state->recursion_depth;
ret->solver_status = SOLVER_INCOMPLETE;
ret->dotdsf = snewn(DOT_COUNT(state), int);
ret->looplen = snewn(DOT_COUNT(state), int);
for (i = 0; i < DOT_COUNT(state); i++) {
ret->dotdsf[i] = i;
ret->looplen[i] = 1;
}
return ret;
}
static void free_solver_state(solver_state *sstate) {
if (sstate) {
free_game(sstate->state);
sfree(sstate->dot_atleastone);
sfree(sstate->dot_atmostone);
/* sfree(sstate->dline_identical); */
sfree(sstate->dotdsf);
sfree(sstate->looplen);
sfree(sstate);
}
}
static solver_state *dup_solver_state(solver_state *sstate) {
game_state *state;
solver_state *ret = snew(solver_state);
ret->state = state = dup_game(sstate->state);
ret->dot_atmostone = snewn(DOT_COUNT(state), char);
memcpy(ret->dot_atmostone, sstate->dot_atmostone, DOT_COUNT(state));
ret->dot_atleastone = snewn(DOT_COUNT(state), char);
memcpy(ret->dot_atleastone, sstate->dot_atleastone, DOT_COUNT(state));
#if 0
ret->dline_identical = snewn((state->w + 1) * (state->h + 1), char);
memcpy(ret->dline_identical, state->dot_atmostone,
(state->w + 1) * (state->h + 1));
#endif
ret->recursion_remaining = sstate->recursion_remaining;
ret->solver_status = sstate->solver_status;
ret->dotdsf = snewn(DOT_COUNT(state), int);
ret->looplen = snewn(DOT_COUNT(state), int);
memcpy(ret->dotdsf, sstate->dotdsf, DOT_COUNT(state) * sizeof(int));
memcpy(ret->looplen, sstate->looplen, DOT_COUNT(state) * sizeof(int));
return ret;
}
/*
* Merge two dots due to the existence of an edge between them.
* Updates the dsf tracking equivalence classes, and keeps track of
* the length of path each dot is currently a part of.
* Returns TRUE if the dots were already linked, ie if they are part of a
* closed loop, and false otherwise.
*/
static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
{
int i, j, len;
i = y1 * (sstate->state->w + 1) + x1;
j = y2 * (sstate->state->w + 1) + x2;
i = dsf_canonify(sstate->dotdsf, i);
j = dsf_canonify(sstate->dotdsf, j);
if (i == j) {
return TRUE;
} else {
len = sstate->looplen[i] + sstate->looplen[j];
dsf_merge(sstate->dotdsf, i, j);
i = dsf_canonify(sstate->dotdsf, i);
sstate->looplen[i] = len;
return FALSE;
}
}
/* Count the number of lines of a particular type currently going into the
* given dot. Lines going off the edge of the board are assumed fixed no. */
static int dot_order(const game_state* state, int i, int j, char line_type)
{
int n = 0;
if (i > 0) {
if (LEFTOF_DOT(state, i, j) == line_type)
++n;
} else {
if (line_type == LINE_NO)
++n;
}
if (i < state->w) {
if (RIGHTOF_DOT(state, i, j) == line_type)
++n;
} else {
if (line_type == LINE_NO)
++n;
}
if (j > 0) {
if (ABOVE_DOT(state, i, j) == line_type)
++n;
} else {
if (line_type == LINE_NO)
++n;
}
if (j < state->h) {
if (BELOW_DOT(state, i, j) == line_type)
++n;
} else {
if (line_type == LINE_NO)
++n;
}
return n;
}
/* Count the number of lines of a particular type currently surrounding the
* given square */
static int square_order(const game_state* state, int i, int j, char line_type)
{
int n = 0;
if (ABOVE_SQUARE(state, i, j) == line_type)
++n;
if (BELOW_SQUARE(state, i, j) == line_type)
++n;
if (LEFTOF_SQUARE(state, i, j) == line_type)
++n;
if (RIGHTOF_SQUARE(state, i, j) == line_type)
++n;
return n;
}
/* Set all lines bordering a dot of type old_type to type new_type
* Return value tells caller whether this function actually did anything */
static int dot_setall(game_state *state, int i, int j,
char old_type, char new_type)
{
int retval = FALSE;
if (old_type == new_type)
return FALSE;
if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) {
LV_LEFTOF_DOT(state, i, j) = new_type;
retval = TRUE;
}
if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) {
LV_RIGHTOF_DOT(state, i, j) = new_type;
retval = TRUE;
}
if (j > 0 && ABOVE_DOT(state, i, j) == old_type) {
LV_ABOVE_DOT(state, i, j) = new_type;
retval = TRUE;
}
if (j < state->h && BELOW_DOT(state, i, j) == old_type) {
LV_BELOW_DOT(state, i, j) = new_type;
retval = TRUE;
}
return retval;
}
/* Set all lines bordering a square of type old_type to type new_type */
static void square_setall(game_state *state, int i, int j,
char old_type, char new_type)
{
if (ABOVE_SQUARE(state, i, j) == old_type)
ABOVE_SQUARE(state, i, j) = new_type;
if (BELOW_SQUARE(state, i, j) == old_type)
BELOW_SQUARE(state, i, j) = new_type;
if (LEFTOF_SQUARE(state, i, j) == old_type)
LEFTOF_SQUARE(state, i, j) = new_type;
if (RIGHTOF_SQUARE(state, i, j) == old_type)
RIGHTOF_SQUARE(state, i, j) = new_type;
}
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
#ifdef SLOW_SYSTEM
ret->h = 4;
ret->w = 4;
#else
ret->h = 10;
ret->w = 10;
#endif
ret->diff = DIFF_EASY;
ret->rec = 0;
return ret;
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static const struct {
char *desc;
game_params params;
} loopy_presets[] = {
{ "4x4 Easy", { 4, 4, DIFF_EASY, 0 } },
{ "4x4 Normal", { 4, 4, DIFF_NORMAL, 0 } },
{ "7x7 Easy", { 7, 7, DIFF_EASY, 0 } },
{ "7x7 Normal", { 7, 7, DIFF_NORMAL, 0 } },
{ "10x10 Easy", { 10, 10, DIFF_EASY, 0 } },
{ "10x10 Normal", { 10, 10, DIFF_NORMAL, 0 } },
#ifndef SLOW_SYSTEM
{ "15x15 Easy", { 15, 15, DIFF_EASY, 0 } },
{ "15x15 Normal", { 15, 15, DIFF_NORMAL, 0 } },
{ "30x20 Easy", { 30, 20, DIFF_EASY, 0 } },
{ "30x20 Normal", { 30, 20, DIFF_NORMAL, 0 } }
#endif
};
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params tmppar;
if (i < 0 || i >= lenof(loopy_presets))
return FALSE;
tmppar = loopy_presets[i].params;
*params = dup_params(&tmppar);
*name = dupstr(loopy_presets[i].desc);
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static void decode_params(game_params *params, char const *string)
{
params->h = params->w = atoi(string);
params->rec = 0;
params->diff = DIFF_EASY;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
params->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'r') {
string++;
params->rec = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'd') {
int i;
string++;
for (i = 0; i < DIFFCOUNT; i++)
if (*string == loopy_diffchars[i])
params->diff = i;
if (*string) string++;
}
}
static char *encode_params(game_params *params, int full)
{
char str[80];
sprintf(str, "%dx%d", params->w, params->h);
if (full)
sprintf(str + strlen(str), "r%dd%c", params->rec,
loopy_diffchars[params->diff]);
return dupstr(str);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(4, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Difficulty";
ret[2].type = C_CHOICES;
ret[2].sval = DIFFCONFIG;
ret[2].ival = params->diff;
ret[3].name = NULL;
ret[3].type = C_END;
ret[3].sval = NULL;
ret[3].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->rec = 0;
ret->diff = cfg[2].ival;
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->w < 4 || params->h < 4)
return "Width and height must both be at least 4";
if (params->rec < 0)
return "Recursion depth can't be negative";
/*
* This shouldn't be able to happen at all, since decode_params
* and custom_params will never generate anything that isn't
* within range.
*/
assert(params->diff >= 0 && params->diff < DIFFCOUNT);
return NULL;
}
/* We're going to store a list of current candidate squares for lighting.
* Each square gets a 'score', which tells us how adding that square right
* now would affect the length of the solution loop. We're trying to
* maximise that quantity so will bias our random selection of squares to
* light towards those with high scores */
struct square {
int score;
unsigned long random;
int x, y;
};
static int get_square_cmpfn(void *v1, void *v2)
{
struct square *s1 = (struct square *)v1;
struct square *s2 = (struct square *)v2;
int r;
r = s1->x - s2->x;
if (r)
return r;
r = s1->y - s2->y;
if (r)
return r;
return 0;
}
static int square_sort_cmpfn(void *v1, void *v2)
{
struct square *s1 = (struct square *)v1;
struct square *s2 = (struct square *)v2;
int r;
r = s2->score - s1->score;
if (r) {
return r;
}
if (s1->random < s2->random)
return -1;
else if (s1->random > s2->random)
return 1;
/*
* It's _just_ possible that two squares might have been given
* the same random value. In that situation, fall back to
* comparing based on the coordinates. This introduces a tiny
* directional bias, but not a significant one.
*/
return get_square_cmpfn(v1, v2);
}
static void print_tree(tree234 *tree)
{
#if 0
int i = 0;
struct square *s;
printf("Print tree:\n");
while (i < count234(tree)) {
s = (struct square *)index234(tree, i);
assert(s);
printf(" [%d,%d], %d, %d\n", s->x, s->y, s->score, s->random);
++i;
}
#endif
}
enum { SQUARE_LIT, SQUARE_UNLIT };
#define SQUARE_STATE(i, j) \
(((i) < 0 || (i) >= params->w || \
(j) < 0 || (j) >= params->h) ? \
SQUARE_UNLIT : LV_SQUARE_STATE(i,j))
#define LV_SQUARE_STATE(i, j) board[(i) + params->w * (j)]
static void print_board(const game_params *params, const char *board)
{
#if 0
int i,j;
printf(" ");
for (i = 0; i < params->w; i++) {
printf("%d", i%10);
}
printf("\n");
for (j = 0; j < params->h; j++) {
printf("%d", j%10);
for (i = 0; i < params->w; i++) {
printf("%c", SQUARE_STATE(i, j) ? ' ' : 'O');
}
printf("\n");
}
#endif
}
static char *new_fullyclued_board(game_params *params, random_state *rs)
{
char *clues;
char *board;
int i, j, a, b, c;
game_state s;
game_state *state = &s;
int board_area = SQUARE_COUNT(params);
int t;
struct square *square, *tmpsquare, *sq;
struct square square_pos;
/* These will contain exactly the same information, sorted into different
* orders */
tree234 *lightable_squares_sorted, *lightable_squares_gettable;
#define SQUARE_REACHABLE(i,j) \
(t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
SQUARE_STATE(i+1, j) == SQUARE_LIT || \
SQUARE_STATE(i, j-1) == SQUARE_LIT || \
SQUARE_STATE(i, j+1) == SQUARE_LIT), \
/* printf("SQUARE_REACHABLE(%d,%d) = %d\n", i, j, t), */ \
t)
/* One situation in which we may not light a square is if that'll leave one
* square above/below and one left/right of us unlit, separated by a lit
* square diagnonal from us */
#define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
(t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \
SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \
SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
/* t ? printf("SQUARE_DIAGONAL_VIOLATION(%d, %d, %d, %d)\n",
i, j, h, v) : 0,*/ \
t)
/* We also may not light a square if it will form a loop of lit squares
* around some unlit squares, as then the game soln won't have a single
* loop */
#define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \
(SQUARE_STATE((i)+1, (j)) == lit1 && \
SQUARE_STATE((i)-1, (j)) == lit1 && \
SQUARE_STATE((i), (j)+1) == lit2 && \
SQUARE_STATE((i), (j)-1) == lit2)
#define CAN_LIGHT_SQUARE(i, j) \
(SQUARE_REACHABLE(i, j) && \
!SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \
!SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \
!SQUARE_DIAGONAL_VIOLATION(i, j, -1, +1) && \
!SQUARE_DIAGONAL_VIOLATION(i, j, +1, +1) && \
!SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \
!SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT))
#define IS_LIGHTING_CANDIDATE(i, j) \
(SQUARE_STATE(i, j) == SQUARE_UNLIT && \
CAN_LIGHT_SQUARE(i,j))
/* The 'score' of a square reflects its current desirability for selection
* as the next square to light. We want to encourage moving into uncharted
* areas so we give scores according to how many of the square's neighbours
* are currently unlit. */
/* UNLIT SCORE
* 3 2
* 2 0
* 1 -2
*/
#define SQUARE_SCORE(i,j) \
(2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
(SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
(SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
(SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4)
/* When a square gets lit, this defines how far away from that square we
* need to go recomputing scores */
#define SCORE_DISTANCE 1
board = snewn(board_area, char);
clues = snewn(board_area, char);
state->h = params->h;
state->w = params->w;
state->clues = clues;
/* Make a board */
memset(board, SQUARE_UNLIT, board_area);
/* Seed the board with a single lit square near the middle */
i = params->w / 2;
j = params->h / 2;
if (params->w & 1 && random_bits(rs, 1))
++i;
if (params->h & 1 && random_bits(rs, 1))
++j;
LV_SQUARE_STATE(i, j) = SQUARE_LIT;
/* We need a way of favouring squares that will increase our loopiness.
* We do this by maintaining a list of all candidate squares sorted by
* their score and choose randomly from that with appropriate skew.
* In order to avoid consistently biasing towards particular squares, we
* need the sort order _within_ each group of scores to be completely
* random. But it would be abusing the hospitality of the tree234 data
* structure if our comparison function were nondeterministic :-). So with
* each square we associate a random number that does not change during a
* particular run of the generator, and use that as a secondary sort key.
* Yes, this means we will be biased towards particular random squares in
* any one run but that doesn't actually matter. */
lightable_squares_sorted = newtree234(square_sort_cmpfn);
lightable_squares_gettable = newtree234(get_square_cmpfn);
#define ADD_SQUARE(s) \
do { \
/* printf("ADD SQUARE: [%d,%d], %d, %d\n",
s->x, s->y, s->score, s->random);*/ \
sq = add234(lightable_squares_sorted, s); \
assert(sq == s); \
sq = add234(lightable_squares_gettable, s); \
assert(sq == s); \
} while (0)
#define REMOVE_SQUARE(s) \
do { \
/* printf("DELETE SQUARE: [%d,%d], %d, %d\n",
s->x, s->y, s->score, s->random);*/ \
sq = del234(lightable_squares_sorted, s); \
assert(sq); \
sq = del234(lightable_squares_gettable, s); \
assert(sq); \
} while (0)
#define HANDLE_DIR(a, b) \
square = snew(struct square); \
square->x = (i)+(a); \
square->y = (j)+(b); \
square->score = 2; \
square->random = random_bits(rs, 31); \
ADD_SQUARE(square);
HANDLE_DIR(-1, 0);
HANDLE_DIR( 1, 0);
HANDLE_DIR( 0,-1);
HANDLE_DIR( 0, 1);
#undef HANDLE_DIR
/* Light squares one at a time until the board is interesting enough */
while (TRUE)
{
/* We have count234(lightable_squares) possibilities, and in
* lightable_squares_sorted they are sorted with the most desirable
* first. */
c = count234(lightable_squares_sorted);
if (c == 0)
break;
assert(c == count234(lightable_squares_gettable));
/* Check that the best square available is any good */
square = (struct square *)index234(lightable_squares_sorted, 0);
assert(square);
/*
* We never want to _decrease_ the loop's perimeter. Making
* moves that leave the perimeter the same is occasionally
* useful: if it were _never_ done then the user would be
* able to deduce illicitly that any degree-zero vertex was
* on the outside of the loop. So we do it sometimes but
* not always.
*/
if (square->score < 0 || (square->score == 0 &&
random_upto(rs, 2) == 0))
break;
print_tree(lightable_squares_sorted);
assert(square->score == SQUARE_SCORE(square->x, square->y));
assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT);
assert(square->x >= 0 && square->x < params->w);
assert(square->y >= 0 && square->y < params->h);
/* printf("LIGHT SQUARE: [%d,%d], score = %d\n", square->x, square->y, square->score); */
/* Update data structures */
LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT;
REMOVE_SQUARE(square);
print_board(params, board);
/* We might have changed the score of any squares up to 2 units away in
* any direction */
for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) {
for (a = -SCORE_DISTANCE; a <= SCORE_DISTANCE; a++) {
if (!a && !b)
continue;
square_pos.x = square->x + a;
square_pos.y = square->y + b;
/* printf("Refreshing score for [%d,%d]:\n", square_pos.x, square_pos.y); */
if (square_pos.x < 0 || square_pos.x >= params->w ||
square_pos.y < 0 || square_pos.y >= params->h) {
/* printf(" Out of bounds\n"); */
continue;
}
tmpsquare = find234(lightable_squares_gettable, &square_pos,
NULL);
if (tmpsquare) {
/* printf(" Removing\n"); */
assert(tmpsquare->x == square_pos.x);
assert(tmpsquare->y == square_pos.y);
assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) ==
SQUARE_UNLIT);
REMOVE_SQUARE(tmpsquare);
} else {
/* printf(" Creating\n"); */
tmpsquare = snew(struct square);
tmpsquare->x = square_pos.x;
tmpsquare->y = square_pos.y;
tmpsquare->random = random_bits(rs, 31);
}
tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y);
if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) {
/* printf(" Adding\n"); */
ADD_SQUARE(tmpsquare);
} else {
/* printf(" Destroying\n"); */
sfree(tmpsquare);
}
}
}
sfree(square);
/* printf("\n\n"); */
}
while ((square = delpos234(lightable_squares_gettable, 0)) != NULL)
sfree(square);
freetree234(lightable_squares_gettable);
freetree234(lightable_squares_sorted);
/* Copy out all the clues */
for (j = 0; j < params->h; ++j) {
for (i = 0; i < params->w; ++i) {
c = SQUARE_STATE(i, j);
LV_CLUE_AT(state, i, j) = '0';
if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
}
}
sfree(board);
return clues;
}
static solver_state *solve_game_rec(const solver_state *sstate, int diff);
static int game_has_unique_soln(const game_state *state, int diff)
{
int ret;
solver_state *sstate_new;
solver_state *sstate = new_solver_state((game_state *)state);
sstate_new = solve_game_rec(sstate, diff);
ret = (sstate_new->solver_status == SOLVER_SOLVED);
free_solver_state(sstate_new);
free_solver_state(sstate);
return ret;
}
/* Remove clues one at a time at random. */
static game_state *remove_clues(game_state *state, random_state *rs, int diff)
{
int *square_list, squares;
game_state *ret = dup_game(state), *saved_ret;
int n;
/* We need to remove some clues. We'll do this by forming a list of all
* available equivalence classes, shuffling it, then going along one at a
* time clearing every member of each equivalence class, where removing a
* class doesn't render the board unsolvable. */
squares = state->w * state->h;
square_list = snewn(squares, int);
for (n = 0; n < squares; ++n) {
square_list[n] = n;
}
shuffle(square_list, squares, sizeof(int), rs);
for (n = 0; n < squares; ++n) {
saved_ret = dup_game(ret);
LV_CLUE_AT(ret, square_list[n] % state->w,
square_list[n] / state->w) = ' ';
if (game_has_unique_soln(ret, diff)) {
free_game(saved_ret);
} else {
free_game(ret);
ret = saved_ret;
}
}
sfree(square_list);
return ret;
}
static char *validate_desc(game_params *params, char *desc);
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
/* solution and description both use run-length encoding in obvious ways */
char *retval;
char *description = snewn(SQUARE_COUNT(params) + 1, char);
char *dp = description;
int i, j;
int empty_count;
game_state *state = snew(game_state), *state_new;
state->h = params->h;
state->w = params->w;
state->hl = snewn(HL_COUNT(params), char);
state->vl = snewn(VL_COUNT(params), char);
newboard_please:
memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
state->solved = state->cheated = FALSE;
state->recursion_depth = params->rec;
/* Get a new random solvable board with all its clues filled in. Yes, this
* can loop for ever if the params are suitably unfavourable, but
* preventing games smaller than 4x4 seems to stop this happening */
do {
state->clues = new_fullyclued_board(params, rs);
} while (!game_has_unique_soln(state, params->diff));
state_new = remove_clues(state, rs, params->diff);
free_game(state);
state = state_new;
if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
/* Board is too easy */
goto newboard_please;
}
empty_count = 0;
for (j = 0; j < params->h; ++j) {
for (i = 0; i < params->w; ++i) {
if (CLUE_AT(state, i, j) == ' ') {
if (empty_count > 25) {
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
empty_count = 0;
}
empty_count++;
} else {
if (empty_count) {
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
empty_count = 0;
}
dp += sprintf(dp, "%c", (int)(CLUE_AT(state, i, j)));
}
}
}
if (empty_count)
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
free_game(state);
retval = dupstr(description);
sfree(description);
assert(!validate_desc(params, retval));
return retval;
}
/* We require that the params pass the test in validate_params and that the
* description fills the entire game area */
static char *validate_desc(game_params *params, char *desc)
{
int count = 0;
for (; *desc; ++desc) {
if (*desc >= '0' && *desc <= '9') {
count++;
continue;
}
if (*desc >= 'a') {
count += *desc - 'a' + 1;
continue;
}
return "Unknown character in description";
}
if (count < SQUARE_COUNT(params))
return "Description too short for board size";
if (count > SQUARE_COUNT(params))
return "Description too long for board size";
return NULL;
}
static game_state *new_game(midend *me, game_params *params, char *desc)
{
int i,j;
game_state *state = snew(game_state);
int empties_to_make = 0;
int n;
const char *dp = desc;
state->recursion_depth = 0; /* XXX pending removal, probably */
state->h = params->h;
state->w = params->w;
state->clues = snewn(SQUARE_COUNT(params), char);
state->hl = snewn(HL_COUNT(params), char);
state->vl = snewn(VL_COUNT(params), char);
state->solved = state->cheated = FALSE;
for (j = 0 ; j < params->h; ++j) {
for (i = 0 ; i < params->w; ++i) {
if (empties_to_make) {
empties_to_make--;
LV_CLUE_AT(state, i, j) = ' ';
continue;
}
assert(*dp);
n = *dp - '0';
if (n >=0 && n < 10) {
LV_CLUE_AT(state, i, j) = *dp;
} else {
n = *dp - 'a' + 1;
assert(n > 0);
LV_CLUE_AT(state, i, j) = ' ';
empties_to_make = n - 1;
}
++dp;
}
}
memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
return state;
}
enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
/* Sums the lengths of the numbers in range [0,n) */
/* See equivalent function in solo.c for justification of this. */
static int len_0_to_n(int n)
{
int len = 1; /* Counting 0 as a bit of a special case */
int i;
for (i = 1; i < n; i *= 10) {
len += max(n - i, 0);
}
return len;
}
static char *encode_solve_move(const game_state *state)
{
int len, i, j;
char *ret, *p;
/* This is going to return a string representing the moves needed to set
* every line in a grid to be the same as the ones in 'state'. The exact
* length of this string is predictable. */
len = 1; /* Count the 'S' prefix */
/* Numbers in horizontal lines */
/* Horizontal lines, x position */
len += len_0_to_n(state->w) * (state->h + 1);
/* Horizontal lines, y position */
len += len_0_to_n(state->h + 1) * (state->w);
/* Vertical lines, y position */
len += len_0_to_n(state->h) * (state->w + 1);
/* Vertical lines, x position */
len += len_0_to_n(state->w + 1) * (state->h);
/* For each line we also have two letters and a comma */
len += 3 * (HL_COUNT(state) + VL_COUNT(state));
ret = snewn(len + 1, char);
p = ret;
p += sprintf(p, "S");
for (j = 0; j < state->h + 1; ++j) {
for (i = 0; i < state->w; ++i) {
switch (RIGHTOF_DOT(state, i, j)) {
case LINE_YES:
p += sprintf(p, "%d,%dhy", i, j);
break;
case LINE_NO:
p += sprintf(p, "%d,%dhn", i, j);
break;
/* default: */
/* I'm going to forgive this because I think the results
* are cute. */
/* assert(!"Solver produced incomplete solution!"); */
}
}
}
for (j = 0; j < state->h; ++j) {
for (i = 0; i < state->w + 1; ++i) {
switch (BELOW_DOT(state, i, j)) {
case LINE_YES:
p += sprintf(p, "%d,%dvy", i, j);
break;
case LINE_NO:
p += sprintf(p, "%d,%dvn", i, j);
break;
/* default: */
/* I'm going to forgive this because I think the results
* are cute. */
/* assert(!"Solver produced incomplete solution!"); */
}
}
}
/* No point in doing sums like that if they're going to be wrong */
assert(strlen(ret) == (size_t)len);
return ret;
}
/* BEGIN SOLVER IMPLEMENTATION */
/* For each pair of lines through each dot we store a bit for whether
* exactly one of those lines is ON, and in separate arrays we store whether
* at least one is on and whether at most 1 is on. (If we know both or
* neither is on that's already stored more directly.) That's six bits per
* dot. Bit number n represents the lines shown in dot_type_dirs[n]. */
enum dline {
DLINE_VERT = 0,
DLINE_HORIZ = 1,
DLINE_UL = 2,
DLINE_DR = 3,
DLINE_UR = 4,
DLINE_DL = 5
};
#define OPP_DLINE(dline) (dline ^ 1)
#define SQUARE_DLINES \
HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \
HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \
HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \
HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0);
#define DOT_DLINES \
HANDLE_DLINE(DLINE_VERT, ABOVE_DOT, BELOW_DOT); \
HANDLE_DLINE(DLINE_HORIZ, LEFTOF_DOT, RIGHTOF_DOT); \
HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT);
static void array_setall(char *array, char from, char to, int len)
{
char *p = array, *p_old = p;
int len_remaining = len;
while ((p = memchr(p, from, len_remaining))) {
*p = to;
len_remaining -= p - p_old;
p_old = p;
}
}
static int dot_setall_dlines(solver_state *sstate, enum dline dl, int i, int j,
enum line_state line_old, enum line_state line_new)
{
game_state *state = sstate->state;
int retval = FALSE;
if (line_old == line_new)
return FALSE;
/* First line in dline */
switch (dl) {
case DLINE_UL:
case DLINE_UR:
case DLINE_VERT:
if (j > 0 && ABOVE_DOT(state, i, j) == line_old) {
LV_ABOVE_DOT(state, i, j) = line_new;
retval = TRUE;
}
break;
case DLINE_DL:
case DLINE_DR:
if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old) {
LV_BELOW_DOT(state, i, j) = line_new;
retval = TRUE;
}
break;
case DLINE_HORIZ:
if (i > 0 && LEFTOF_DOT(state, i, j) == line_old) {
LV_LEFTOF_DOT(state, i, j) = line_new;
retval = TRUE;
}
break;
}
/* Second line in dline */
switch (dl) {
case DLINE_UL:
case DLINE_DL:
if (i > 0 && LEFTOF_DOT(state, i, j) == line_old) {
LV_LEFTOF_DOT(state, i, j) = line_new;
retval = TRUE;
}
break;
case DLINE_UR:
case DLINE_DR:
case DLINE_HORIZ:
if (i <= (state)->w && RIGHTOF_DOT(state, i, j) == line_old) {
LV_RIGHTOF_DOT(state, i, j) = line_new;
retval = TRUE;
}
break;
case DLINE_VERT:
if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old) {
LV_BELOW_DOT(state, i, j) = line_new;
retval = TRUE;
}
break;
}
return retval;
}
#if 0
/* This will fail an assertion if {dx,dy} are anything other than {-1,0}, {1,0}
* {0,-1} or {0,1} */
static int line_status_from_point(const game_state *state,
int x, int y, int dx, int dy)
{
if (dx == -1 && dy == 0)
return LEFTOF_DOT(state, x, y);
if (dx == 1 && dy == 0)
return RIGHTOF_DOT(state, x, y);
if (dx == 0 && dy == -1)
return ABOVE_DOT(state, x, y);
if (dx == 0 && dy == 1)
return BELOW_DOT(state, x, y);
assert(!"Illegal dx or dy in line_status_from_point");
return 0;
}
#endif
/* This will return a dynamically allocated solver_state containing the (more)
* solved grid */
static solver_state *solve_game_rec(const solver_state *sstate_start, int diff)
{
int i, j, w, h;
int current_yes, current_no, desired;
solver_state *sstate, *sstate_saved, *sstate_tmp;
int t;
solver_state *sstate_rec_solved;
int recursive_soln_count;
char *square_solved;
char *dot_solved;
int solver_progress;
h = sstate_start->state->h;
w = sstate_start->state->w;
dot_solved = snewn(DOT_COUNT(sstate_start->state), char);
square_solved = snewn(SQUARE_COUNT(sstate_start->state), char);
memset(dot_solved, FALSE, DOT_COUNT(sstate_start->state));
memset(square_solved, FALSE, SQUARE_COUNT(sstate_start->state));
#if 0
printf("solve_game_rec: recursion_remaining = %d\n",
sstate_start->recursion_remaining);
#endif
sstate = dup_solver_state((solver_state *)sstate_start);
#define FOUND_MISTAKE \
do { \
sstate->solver_status = SOLVER_MISTAKE; \
sfree(dot_solved); sfree(square_solved); \
free_solver_state(sstate_saved); \
return sstate; \
} while (0)
sstate_saved = NULL;
nonrecursive_solver:
while (1) {
solver_progress = FALSE;
/* First we do the 'easy' work, that might cause concrete results */
/* Per-square deductions */
for (j = 0; j < h; ++j) {
for (i = 0; i < w; ++i) {
/* Begin rules that look at the clue (if there is one) */
if (square_solved[i + j*w])
continue;
desired = CLUE_AT(sstate->state, i, j);
if (desired == ' ')
continue;
desired = desired - '0';
current_yes = square_order(sstate->state, i, j, LINE_YES);
current_no = square_order(sstate->state, i, j, LINE_NO);
if (current_yes + current_no == 4) {
square_solved[i + j*w] = TRUE;
continue;
}
if (desired < current_yes)
FOUND_MISTAKE;
if (desired == current_yes) {
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
square_solved[i + j*w] = TRUE;
solver_progress = TRUE;
continue;
}
if (4 - desired < current_no)
FOUND_MISTAKE;
if (4 - desired == current_no) {
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES);
square_solved[i + j*w] = TRUE;
solver_progress = TRUE;
}
}
}
/* Per-dot deductions */
for (j = 0; j < h + 1; ++j) {
for (i = 0; i < w + 1; ++i) {
if (dot_solved[i + j*(w+1)])
continue;
switch (dot_order(sstate->state, i, j, LINE_YES)) {
case 0:
switch (dot_order(sstate->state, i, j, LINE_NO)) {
case 3:
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
solver_progress = TRUE;
/* fall through */
case 4:
dot_solved[i + j*(w+1)] = TRUE;
break;
}
break;
case 1:
switch (dot_order(sstate->state, i, j, LINE_NO)) {
#define H1(dline, dir1_dot, dir2_dot, dot_howmany) \
if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
if (dir2_dot(sstate->state, i, j) == LINE_UNKNOWN){ \
solver_progress |= \
SET_BIT(sstate->dot_howmany[i + (w + 1) * j], \
dline); \
} \
}
case 1:
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
H1(dline, dir1_dot, dir2_dot, dot_atleastone)
/* 1 yes, 1 no, so exactly one of unknowns is
* yes */
DOT_DLINES;
#undef HANDLE_DLINE
}
/* fall through */
case 0:
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
H1(dline, dir1_dot, dir2_dot, dot_atmostone)
/* 1 yes, fewer than 2 no, so at most one of
* unknowns is yes */
DOT_DLINES;
#undef HANDLE_DLINE
}
#undef H1
break;
case 2: /* 1 yes, 2 no */
dot_setall(sstate->state, i, j,
LINE_UNKNOWN, LINE_YES);
dot_solved[i + j*(w+1)] = TRUE;
solver_progress = TRUE;
break;
case 3: /* 1 yes, 3 no */
FOUND_MISTAKE;
break;
}
break;
case 2:
if (dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO)) {
solver_progress = TRUE;
}
dot_solved[i + j*(w+1)] = TRUE;
break;
case 3:
case 4:
FOUND_MISTAKE;
break;
}
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
if (BIT_SET(sstate->dot_atleastone[i + (w + 1) * j], dline)) { \
solver_progress |= \
SET_BIT(sstate->dot_atmostone[i + (w + 1) * j], \
OPP_DLINE(dline)); \
}
/* If at least one of a dline in a dot is YES, at most one
* of the opposite dline to that dot must be YES. */
DOT_DLINES;
}
#undef HANDLE_DLINE
#define H1(dline, dir1_sq, dir2_sq, dot_howmany, line_query, line_set) \
if (BIT_SET(sstate->dot_howmany[i + (w+1) * j], dline)) { \
t = dir1_sq(sstate->state, i, j); \
if (t == line_query) { \
if (dir2_sq(sstate->state, i, j) != line_set) { \
LV_##dir2_sq(sstate->state, i, j) = line_set; \
solver_progress = TRUE; \
} \
} else { \
t = dir2_sq(sstate->state, i, j); \
if (t == line_query) { \
if (dir1_sq(sstate->state, i, j) != line_set) { \
LV_##dir1_sq(sstate->state, i, j) = line_set; \
solver_progress = TRUE; \
} \
} \
} \
}
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq) \
H1(dline, dir1_sq, dir2_sq, dot_atmostone, LINE_YES, LINE_NO)
/* If at most one of the DLINE is on, and one is definitely
* on, set the other to definitely off */
DOT_DLINES;
#undef HANDLE_DLINE
}
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq) \
H1(dline, dir1_sq, dir2_sq, dot_atleastone, LINE_NO, LINE_YES)
/* If at least one of the DLINE is on, and one is definitely
* off, set the other to definitely on */
DOT_DLINES;
#undef HANDLE_DLINE
}
#undef H1
}
}
/* More obscure per-square operations */
for (j = 0; j < h; ++j) {
for (i = 0; i < w; ++i) {
if (square_solved[i + j*w])
continue;
switch (CLUE_AT(sstate->state, i, j)) {
case '1':
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
/* At most one of any DLINE can be set */ \
SET_BIT(sstate->dot_atmostone[i+a + (w + 1) * (j+b)], \
dline); \
/* This DLINE provides enough YESes to solve the clue */\
if (BIT_SET(sstate->dot_atleastone \
[i+a + (w + 1) * (j+b)], \
dline)) { \
solver_progress |= \
dot_setall_dlines(sstate, OPP_DLINE(dline), \
i+(1-a), j+(1-b), \
LINE_UNKNOWN, LINE_NO); \
}
SQUARE_DLINES;
#undef HANDLE_DLINE
}
break;
case '2':
if (diff > DIFF_EASY) {
#define H1(dline, dot_at1one, dot_at2one, a, b) \
if (BIT_SET(sstate->dot_at1one \
[i+a + (w+1) * (j+b)], dline)) { \
solver_progress |= \
SET_BIT(sstate->dot_at2one \
[i+(1-a) + (w+1) * (j+(1-b))], \
OPP_DLINE(dline)); \
}
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
H1(dline, dot_atleastone, dot_atmostone, a, b); \
H1(dline, dot_atmostone, dot_atleastone, a, b);
/* If at least one of one DLINE is set, at most one
* of the opposing one is and vice versa */
SQUARE_DLINES;
}
#undef HANDLE_DLINE
#undef H1
break;
case '3':
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
/* At least one of any DLINE can be set */ \
solver_progress |= \
SET_BIT(sstate->dot_atleastone \
[i+a + (w + 1) * (j+b)], \
dline); \
/* This DLINE provides enough NOs to solve the clue */ \
if (BIT_SET(sstate->dot_atmostone \
[i+a + (w + 1) * (j+b)], \
dline)) { \
solver_progress |= \
dot_setall_dlines(sstate, OPP_DLINE(dline), \
i+(1-a), j+(1-b), \
LINE_UNKNOWN, LINE_YES); \
}
SQUARE_DLINES;
#undef HANDLE_DLINE
}
break;
}
}
}
if (!solver_progress) {
int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
int shortest_chainlen = DOT_COUNT(sstate->state);
int loop_found = FALSE;
int d;
int dots_connected;
/*
* Go through the grid and update for all the new edges.
* Since merge_dots() is idempotent, the simplest way to
* do this is just to update for _all_ the edges.
*
* Also, while we're here, we count the edges, count the
* clues, count the satisfied clues, and count the
* satisfied-minus-one clues.
*/
for (j = 0; j < h+1; ++j) {
for (i = 0; i < w+1; ++i) {
if (RIGHTOF_DOT(sstate->state, i, j) == LINE_YES) {
loop_found |= merge_dots(sstate, i, j, i+1, j);
edgecount++;
}
if (BELOW_DOT(sstate->state, i, j) == LINE_YES) {
loop_found |= merge_dots(sstate, i, j, i, j+1);
edgecount++;
}
if (CLUE_AT(sstate->state, i, j) != ' ') {
int c = CLUE_AT(sstate->state, i, j) - '0';
int o = square_order(sstate->state, i, j, LINE_YES);
if (o == c)
satclues++;
else if (o == c-1)
sm1clues++;
clues++;
}
}
}
for (i = 0; i < DOT_COUNT(sstate->state); ++i) {
dots_connected = sstate->looplen[dsf_canonify(sstate->dotdsf,i)];
if (dots_connected > 1)
shortest_chainlen = min(shortest_chainlen, dots_connected);
}
assert(sstate->solver_status == SOLVER_INCOMPLETE);
if (satclues == clues && shortest_chainlen == edgecount) {
sstate->solver_status = SOLVER_SOLVED;
/* This discovery clearly counts as progress, even if we haven't
* just added any lines or anything */
solver_progress = TRUE;
goto finished_loop_checking;
}
/*
* Now go through looking for LINE_UNKNOWN edges which
* connect two dots that are already in the same
* equivalence class. If we find one, test to see if the
* loop it would create is a solution.
*/
for (j = 0; j <= h; ++j) {
for (i = 0; i <= w; ++i) {
for (d = 0; d < 2; d++) {
int i2, j2, eqclass, val;
if (d == 0) {
if (RIGHTOF_DOT(sstate->state, i, j) !=
LINE_UNKNOWN)
continue;
i2 = i+1;
j2 = j;
} else {
if (BELOW_DOT(sstate->state, i, j) !=
LINE_UNKNOWN)
continue;
i2 = i;
j2 = j+1;
}
eqclass = dsf_canonify(sstate->dotdsf, j * (w+1) + i);
if (eqclass != dsf_canonify(sstate->dotdsf,
j2 * (w+1) + i2))
continue;
val = LINE_NO; /* loop is bad until proven otherwise */
/*
* This edge would form a loop. Next
* question: how long would the loop be?
* Would it equal the total number of edges
* (plus the one we'd be adding if we added
* it)?
*/
if (sstate->looplen[eqclass] == edgecount + 1) {
int sm1_nearby;
int cx, cy;
/*
* This edge would form a loop which
* took in all the edges in the entire
* grid. So now we need to work out
* whether it would be a valid solution
* to the puzzle, which means we have to
* check if it satisfies all the clues.
* This means that every clue must be
* either satisfied or satisfied-minus-
* 1, and also that the number of
* satisfied-minus-1 clues must be at
* most two and they must lie on either
* side of this edge.
*/
sm1_nearby = 0;
cx = i - (j2-j);
cy = j - (i2-i);
if (CLUE_AT(sstate->state, cx,cy) != ' ' &&
square_order(sstate->state, cx,cy, LINE_YES) ==
CLUE_AT(sstate->state, cx,cy) - '0' - 1)
sm1_nearby++;
if (CLUE_AT(sstate->state, i, j) != ' ' &&
square_order(sstate->state, i, j, LINE_YES) ==
CLUE_AT(sstate->state, i, j) - '0' - 1)
sm1_nearby++;
if (sm1clues == sm1_nearby &&
sm1clues + satclues == clues)
val = LINE_YES; /* loop is good! */
}
/*
* Right. Now we know that adding this edge
* would form a loop, and we know whether
* that loop would be a viable solution or
* not.
*
* If adding this edge produces a solution,
* then we know we've found _a_ solution but
* we don't know that it's _the_ solution -
* if it were provably the solution then
* we'd have deduced this edge some time ago
* without the need to do loop detection. So
* in this state we return SOLVER_AMBIGUOUS,
* which has the effect that hitting Solve
* on a user-provided puzzle will fill in a
* solution but using the solver to
* construct new puzzles won't consider this
* a reasonable deduction for the user to
* make.
*/
if (d == 0) {
LV_RIGHTOF_DOT(sstate->state, i, j) = val;
solver_progress = TRUE;
} else {
LV_BELOW_DOT(sstate->state, i, j) = val;
solver_progress = TRUE;
}
if (val == LINE_YES) {
sstate->solver_status = SOLVER_AMBIGUOUS;
goto finished_loop_checking;
}
}
}
}
finished_loop_checking:
if (!solver_progress ||
sstate->solver_status == SOLVER_SOLVED ||
sstate->solver_status == SOLVER_AMBIGUOUS) {
break;
}
}
}
sfree(dot_solved); sfree(square_solved);
if (sstate->solver_status == SOLVER_SOLVED ||
sstate->solver_status == SOLVER_AMBIGUOUS) {
/* s/LINE_UNKNOWN/LINE_NO/g */
array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
HL_COUNT(sstate->state));
array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
VL_COUNT(sstate->state));
return sstate;
}
/* Perform recursive calls */
if (sstate->recursion_remaining) {
sstate_saved = dup_solver_state(sstate);
sstate->recursion_remaining--;
recursive_soln_count = 0;
sstate_rec_solved = NULL;
/* Memory management:
* sstate_saved won't be modified but needs to be freed when we have
* finished with it.
* sstate is expected to contain our 'best' solution by the time we
* finish this section of code. It's the thing we'll try adding lines
* to, seeing if they make it more solvable.
* If sstate_rec_solved is non-NULL, it will supersede sstate
* eventually. sstate_tmp should not hold a value persistently.
*/
/* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
* of the possibility of additional solutions. So as soon as we have a
* SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
* if we get a SOLVER_SOLVED we want to keep trying in case we find
* further solutions and have to mark it ambiguous.
*/
#define DO_RECURSIVE_CALL(dir_dot) \
if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
sstate_tmp = solve_game_rec(sstate, diff); \
switch (sstate_tmp->solver_status) { \
case SOLVER_AMBIGUOUS: \
debug(("Solver ambiguous, returning\n")); \
sstate_rec_solved = sstate_tmp; \
goto finished_recursion; \
case SOLVER_SOLVED: \
switch (++recursive_soln_count) { \
case 1: \
debug(("One solution found\n")); \
sstate_rec_solved = sstate_tmp; \
break; \
case 2: \
debug(("Ambiguous solutions found\n")); \
free_solver_state(sstate_tmp); \
sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS;\
goto finished_recursion; \
default: \
assert(!"recursive_soln_count out of range"); \
break; \
} \
break; \
case SOLVER_MISTAKE: \
debug(("Non-solution found\n")); \
free_solver_state(sstate_tmp); \
free_solver_state(sstate_saved); \
LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
goto nonrecursive_solver; \
case SOLVER_INCOMPLETE: \
debug(("Recursive step inconclusive\n")); \
free_solver_state(sstate_tmp); \
break; \
} \
free_solver_state(sstate); \
sstate = dup_solver_state(sstate_saved); \
}
for (j = 0; j < h + 1; ++j) {
for (i = 0; i < w + 1; ++i) {
/* Only perform recursive calls on 'loose ends' */
if (dot_order(sstate->state, i, j, LINE_YES) == 1) {
DO_RECURSIVE_CALL(LEFTOF_DOT);
DO_RECURSIVE_CALL(RIGHTOF_DOT);
DO_RECURSIVE_CALL(ABOVE_DOT);
DO_RECURSIVE_CALL(BELOW_DOT);
}
}
}
finished_recursion:
if (sstate_rec_solved) {
free_solver_state(sstate);
sstate = sstate_rec_solved;
}
}
return sstate;
}
/* XXX bits of solver that may come in handy one day */
#if 0
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
/* dline from this dot that's entirely unknown must have
* both lines identical */ \
if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN && \
dir2_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
sstate->dline_identical[i + (sstate->state->w + 1) * j] |= \
1<<dline; \
} else if (sstate->dline_identical[i +
(sstate->state->w + 1) * j] &\
1<<dline) { \
/* If they're identical and one is known do the obvious
* thing */ \
t = dir1_dot(sstate->state, i, j); \
if (t != LINE_UNKNOWN) \
dir2_dot(sstate->state, i, j) = t; \
else { \
t = dir2_dot(sstate->state, i, j); \
if (t != LINE_UNKNOWN) \
dir1_dot(sstate->state, i, j) = t; \
} \
} \
DOT_DLINES;
#undef HANDLE_DLINE
#endif
#if 0
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
if (sstate->dline_identical[i+a + \
(sstate->state->w + 1) * (j+b)] &\
1<<dline) { \
dir1_sq(sstate->state, i, j) = LINE_YES; \
dir2_sq(sstate->state, i, j) = LINE_YES; \
}
/* If two lines are the same they must be on */
SQUARE_DLINES;
#undef HANDLE_DLINE
#endif
#if 0
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
if (sstate->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
1<<dline) { \
if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
CLUE_AT(sstate->state, i, j) - '0') { \
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \
/* XXX the following may overwrite known data! */ \
dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
} \
}
SQUARE_DLINES;
#undef HANDLE_DLINE
#endif
#if 0
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
if (sstate->dline_identical[i+a +
(sstate->state->w + 1) * (j+b)] &\
1<<dline) { \
dir1_sq(sstate->state, i, j) = LINE_NO; \
dir2_sq(sstate->state, i, j) = LINE_NO; \
}
/* If two lines are the same they must be off */
SQUARE_DLINES;
#undef HANDLE_DLINE
#endif
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
char *soln = NULL;
solver_state *sstate, *new_sstate;
sstate = new_solver_state(state);
new_sstate = solve_game_rec(sstate, DIFFCOUNT);
if (new_sstate->solver_status == SOLVER_SOLVED) {
soln = encode_solve_move(new_sstate->state);
} else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
soln = encode_solve_move(new_sstate->state);
/**error = "Solver found ambiguous solutions"; */
} else {
soln = encode_solve_move(new_sstate->state);
/**error = "Solver failed"; */
}
free_solver_state(new_sstate);
free_solver_state(sstate);
return soln;
}
static char *game_text_format(game_state *state)
{
int i, j;
int len;
char *ret, *rp;
len = (2 * state->w + 2) * (2 * state->h + 1);
rp = ret = snewn(len + 1, char);
#define DRAW_HL \
switch (ABOVE_SQUARE(state, i, j)) { \
case LINE_YES: \
rp += sprintf(rp, " -"); \
break; \
case LINE_NO: \
rp += sprintf(rp, " x"); \
break; \
case LINE_UNKNOWN: \
rp += sprintf(rp, " "); \
break; \
default: \
assert(!"Illegal line state for HL");\
}
#define DRAW_VL \
switch (LEFTOF_SQUARE(state, i, j)) {\
case LINE_YES: \
rp += sprintf(rp, "|"); \
break; \
case LINE_NO: \
rp += sprintf(rp, "x"); \
break; \
case LINE_UNKNOWN: \
rp += sprintf(rp, " "); \
break; \
default: \
assert(!"Illegal line state for VL");\
}
for (j = 0; j < state->h; ++j) {
for (i = 0; i < state->w; ++i) {
DRAW_HL;
}
rp += sprintf(rp, " \n");
for (i = 0; i < state->w; ++i) {
DRAW_VL;
rp += sprintf(rp, "%c", (int)(CLUE_AT(state, i, j)));
}
DRAW_VL;
rp += sprintf(rp, "\n");
}
for (i = 0; i < state->w; ++i) {
DRAW_HL;
}
rp += sprintf(rp, " \n");
assert(strlen(ret) == len);
return ret;
}
static game_ui *new_ui(game_state *state)
{
return NULL;
}
static void free_ui(game_ui *ui)
{
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
}
struct game_drawstate {
int started;
int tilesize, linewidth;
int flashing;
char *hl, *vl;
char *clue_error;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
int hl_selected;
int i, j, p, q;
char *ret, buf[80];
char button_char = ' ';
enum line_state old_state;
button &= ~MOD_MASK;
/* Around each line is a diamond-shaped region where points within that
* region are closer to this line than any other. We assume any click
* within a line's diamond was meant for that line. It would all be a lot
* simpler if the / and % operators respected modulo arithmetic properly
* for negative numbers. */
x -= BORDER;
y -= BORDER;
/* Get the coordinates of the square the click was in */
i = (x + TILE_SIZE) / TILE_SIZE - 1;
j = (y + TILE_SIZE) / TILE_SIZE - 1;
/* Get the precise position inside square [i,j] */
p = (x + TILE_SIZE) % TILE_SIZE;
q = (y + TILE_SIZE) % TILE_SIZE;
/* After this bit of magic [i,j] will correspond to the point either above
* or to the left of the line selected */
if (p > q) {
if (TILE_SIZE - p > q) {
hl_selected = TRUE;
} else {
hl_selected = FALSE;
++i;
}
} else {
if (TILE_SIZE - q > p) {
hl_selected = FALSE;
} else {
hl_selected = TRUE;
++j;
}
}
if (i < 0 || j < 0)
return NULL;
if (hl_selected) {
if (i >= state->w || j >= state->h + 1)
return NULL;
} else {
if (i >= state->w + 1 || j >= state->h)
return NULL;
}
/* I think it's only possible to play this game with mouse clicks, sorry */
/* Maybe will add mouse drag support some time */
if (hl_selected)
old_state = RIGHTOF_DOT(state, i, j);
else
old_state = BELOW_DOT(state, i, j);
switch (button) {
case LEFT_BUTTON:
switch (old_state) {
case LINE_UNKNOWN:
button_char = 'y';
break;
case LINE_YES:
case LINE_NO:
button_char = 'u';
break;
}
break;
case MIDDLE_BUTTON:
button_char = 'u';
break;
case RIGHT_BUTTON:
switch (old_state) {
case LINE_UNKNOWN:
button_char = 'n';
break;
case LINE_NO:
case LINE_YES:
button_char = 'u';
break;
}
break;
default:
return NULL;
}
sprintf(buf, "%d,%d%c%c", i, j, (int)(hl_selected ? 'h' : 'v'), (int)button_char);
ret = dupstr(buf);
return ret;
}
static game_state *execute_move(game_state *state, char *move)
{
int i, j;
game_state *newstate = dup_game(state);
if (move[0] == 'S') {
move++;
newstate->cheated = TRUE;
}
while (*move) {
i = atoi(move);
move = strchr(move, ',');
if (!move)
goto fail;
j = atoi(++move);
move += strspn(move, "1234567890");
switch (*(move++)) {
case 'h':
if (i >= newstate->w || j > newstate->h)
goto fail;
switch (*(move++)) {
case 'y':
LV_RIGHTOF_DOT(newstate, i, j) = LINE_YES;
break;
case 'n':
LV_RIGHTOF_DOT(newstate, i, j) = LINE_NO;
break;
case 'u':
LV_RIGHTOF_DOT(newstate, i, j) = LINE_UNKNOWN;
break;
default:
goto fail;
}
break;
case 'v':
if (i > newstate->w || j >= newstate->h)
goto fail;
switch (*(move++)) {
case 'y':
LV_BELOW_DOT(newstate, i, j) = LINE_YES;
break;
case 'n':
LV_BELOW_DOT(newstate, i, j) = LINE_NO;
break;
case 'u':
LV_BELOW_DOT(newstate, i, j) = LINE_UNKNOWN;
break;
default:
goto fail;
}
break;
default:
goto fail;
}
}
/*
* Check for completion.
*/
i = 0; /* placate optimiser */
for (j = 0; j <= newstate->h; j++) {
for (i = 0; i < newstate->w; i++)
if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
break;
if (i < newstate->w)
break;
}
if (j <= newstate->h) {
int prevdir = 'R';
int x = i, y = j;
int looplen, count;
/*
* We've found a horizontal edge at (i,j). Follow it round
* to see if it's part of a loop.
*/
looplen = 0;
while (1) {
int order = dot_order(newstate, x, y, LINE_YES);
if (order != 2)
goto completion_check_done;
if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
x--;
prevdir = 'R';
} else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
prevdir != 'R') {
x++;
prevdir = 'L';
} else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
prevdir != 'U') {
y--;
prevdir = 'D';
} else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
prevdir != 'D') {
y++;
prevdir = 'U';
} else {
assert(!"Can't happen"); /* dot_order guarantees success */
}
looplen++;
if (x == i && y == j)
break;
}
if (x != i || y != j || looplen == 0)
goto completion_check_done;
/*
* We've traced our way round a loop, and we know how many
* line segments were involved. Count _all_ the line
* segments in the grid, to see if the loop includes them
* all.
*/
count = 0;
for (j = 0; j <= newstate->h; j++)
for (i = 0; i <= newstate->w; i++)
count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
(BELOW_DOT(newstate, i, j) == LINE_YES));
assert(count >= looplen);
if (count != looplen)
goto completion_check_done;
/*
* The grid contains one closed loop and nothing else.
* Check that all the clues are satisfied.
*/
for (j = 0; j < newstate->h; ++j) {
for (i = 0; i < newstate->w; ++i) {
int n = CLUE_AT(newstate, i, j);
if (n != ' ') {
if (square_order(newstate, i, j, LINE_YES) != n - '0') {
goto completion_check_done;
}
}
}
}
/*
* Completed!
*/
newstate->solved = TRUE;
}
completion_check_done:
return newstate;
fail:
free_game(newstate);
return NULL;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
#define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = SIZE(params->w);
*y = SIZE(params->h);
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
ds->linewidth = max(1,tilesize/16);
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(4 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_FOREGROUND * 3 + 0] = 0.0F;
ret[COL_FOREGROUND * 3 + 1] = 0.0F;
ret[COL_FOREGROUND * 3 + 2] = 0.0F;
ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
ret[COL_MISTAKE * 3 + 0] = 1.0F;
ret[COL_MISTAKE * 3 + 1] = 0.0F;
ret[COL_MISTAKE * 3 + 2] = 0.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
ds->tilesize = ds->linewidth = 0;
ds->started = 0;
ds->hl = snewn(HL_COUNT(state), char);
ds->vl = snewn(VL_COUNT(state), char);
ds->clue_error = snewn(SQUARE_COUNT(state), char);
ds->flashing = 0;
memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
memset(ds->clue_error, 0, SQUARE_COUNT(state));
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->clue_error);
sfree(ds->hl);
sfree(ds->vl);
sfree(ds);
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int i, j, n;
int w = state->w, h = state->h;
char c[2];
int line_colour, flash_changed;
int clue_mistake;
if (!ds->started) {
/*
* The initial contents of the window are not guaranteed and
* can vary with front ends. To be on the safe side, all games
* should start by drawing a big background-colour rectangle
* covering the whole window.
*/
draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND);
/* Draw dots */
for (j = 0; j < h + 1; ++j) {
for (i = 0; i < w + 1; ++i) {
draw_rect(dr,
BORDER + i * TILE_SIZE - LINEWIDTH/2,
BORDER + j * TILE_SIZE - LINEWIDTH/2,
LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
}
}
/* Draw clues */
for (j = 0; j < h; ++j) {
for (i = 0; i < w; ++i) {
c[0] = CLUE_AT(state, i, j);
c[1] = '\0';
draw_text(dr,
BORDER + i * TILE_SIZE + TILE_SIZE/2,
BORDER + j * TILE_SIZE + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE/2,
ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
}
}
draw_update(dr, 0, 0,
state->w * TILE_SIZE + 2*BORDER + 1,
state->h * TILE_SIZE + 2*BORDER + 1);
ds->started = TRUE;
}
if (flashtime > 0 &&
(flashtime <= FLASH_TIME/3 ||
flashtime >= FLASH_TIME*2/3)) {
flash_changed = !ds->flashing;
ds->flashing = TRUE;
line_colour = COL_HIGHLIGHT;
} else {
flash_changed = ds->flashing;
ds->flashing = FALSE;
line_colour = COL_FOREGROUND;
}
#define CROSS_SIZE (3 * LINEWIDTH / 2)
/* Redraw clue colours if necessary */
for (j = 0; j < h; ++j) {
for (i = 0; i < w; ++i) {
c[0] = CLUE_AT(state, i, j);
c[1] = '\0';
if (c[0] == ' ')
continue;
n = c[0] - '0';
assert(n >= 0 && n <= 4);
clue_mistake = (square_order(state, i, j, LINE_YES) > n ||
square_order(state, i, j, LINE_NO ) > (4-n));
if (clue_mistake != ds->clue_error[j * w + i]) {
draw_rect(dr,
BORDER + i * TILE_SIZE + CROSS_SIZE,
BORDER + j * TILE_SIZE + CROSS_SIZE,
TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2,
COL_BACKGROUND);
draw_text(dr,
BORDER + i * TILE_SIZE + TILE_SIZE/2,
BORDER + j * TILE_SIZE + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE/2,
ALIGN_VCENTRE | ALIGN_HCENTRE,
clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c);
draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER,
TILE_SIZE, TILE_SIZE);
ds->clue_error[j * w + i] = clue_mistake;
}
}
}
/* I've also had a request to colour lines red if they make a non-solution
* loop, or if more than two lines go into any point. I think that would
* be good some time. */
#define CLEAR_VL(i, j) do { \
draw_rect(dr, \
BORDER + i * TILE_SIZE - CROSS_SIZE, \
BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
CROSS_SIZE * 2, \
TILE_SIZE - LINEWIDTH, \
COL_BACKGROUND); \
draw_update(dr, \
BORDER + i * TILE_SIZE - CROSS_SIZE, \
BORDER + j * TILE_SIZE - CROSS_SIZE, \
CROSS_SIZE*2, \
TILE_SIZE + CROSS_SIZE*2); \
} while (0)
#define CLEAR_HL(i, j) do { \
draw_rect(dr, \
BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
BORDER + j * TILE_SIZE - CROSS_SIZE, \
TILE_SIZE - LINEWIDTH, \
CROSS_SIZE * 2, \
COL_BACKGROUND); \
draw_update(dr, \
BORDER + i * TILE_SIZE - CROSS_SIZE, \
BORDER + j * TILE_SIZE - CROSS_SIZE, \
TILE_SIZE + CROSS_SIZE*2, \
CROSS_SIZE*2); \
} while (0)
/* Vertical lines */
for (j = 0; j < h; ++j) {
for (i = 0; i < w + 1; ++i) {
switch (BELOW_DOT(state, i, j)) {
case LINE_UNKNOWN:
if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
CLEAR_VL(i, j);
}
break;
case LINE_YES:
if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j) ||
flash_changed) {
CLEAR_VL(i, j);
draw_rect(dr,
BORDER + i * TILE_SIZE - LINEWIDTH/2,
BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
LINEWIDTH, TILE_SIZE - LINEWIDTH,
line_colour);
}
break;
case LINE_NO:
if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
CLEAR_VL(i, j);
draw_line(dr,
BORDER + i * TILE_SIZE - CROSS_SIZE,
BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
COL_FOREGROUND);
draw_line(dr,
BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
BORDER + i * TILE_SIZE - CROSS_SIZE,
BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
COL_FOREGROUND);
}
break;
}
ds->vl[i + (w + 1) * j] = BELOW_DOT(state, i, j);
}
}
/* Horizontal lines */
for (j = 0; j < h + 1; ++j) {
for (i = 0; i < w; ++i) {
switch (RIGHTOF_DOT(state, i, j)) {
case LINE_UNKNOWN:
if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
CLEAR_HL(i, j);
}
break;
case LINE_YES:
if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j) ||
flash_changed) {
CLEAR_HL(i, j);
draw_rect(dr,
BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
BORDER + j * TILE_SIZE - LINEWIDTH/2,
TILE_SIZE - LINEWIDTH, LINEWIDTH,
line_colour);
break;
}
case LINE_NO:
if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
CLEAR_HL(i, j);
draw_line(dr,
BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
BORDER + j * TILE_SIZE - CROSS_SIZE,
COL_FOREGROUND);
draw_line(dr,
BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
BORDER + j * TILE_SIZE - CROSS_SIZE,
BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
COL_FOREGROUND);
break;
}
}
ds->hl[i + w * j] = RIGHTOF_DOT(state, i, j);
}
}
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->solved && newstate->solved &&
!oldstate->cheated && !newstate->cheated) {
return FLASH_TIME;
}
return 0.0F;
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(game_params *params, float *x, float *y)
{
int pw, ph;
/*
* I'll use 7mm squares by default.
*/
game_compute_size(params, 700, &pw, &ph);
*x = pw / 100.0F;
*y = ph / 100.0F;
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
int w = state->w, h = state->h;
int ink = print_mono_colour(dr, 0);
int x, y;
game_drawstate ads, *ds = &ads;
game_set_size(dr, ds, NULL, tilesize);
/*
* Dots. I'll deliberately make the dots a bit wider than the
* lines, so you can still see them. (And also because it's
* annoyingly tricky to make them _exactly_ the same size...)
*/
for (y = 0; y <= h; y++)
for (x = 0; x <= w; x++)
draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
LINEWIDTH, ink, ink);
/*
* Clues.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
if (CLUE_AT(state, x, y) != ' ') {
char c[2];
c[0] = CLUE_AT(state, x, y);
c[1] = '\0';
draw_text(dr,
BORDER + x * TILE_SIZE + TILE_SIZE/2,
BORDER + y * TILE_SIZE + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE/2,
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
}
/*
* Lines. (At the moment, I'm not bothering with crosses.)
*/
for (y = 0; y <= h; y++)
for (x = 0; x < w; x++)
if (RIGHTOF_DOT(state, x, y) == LINE_YES)
draw_rect(dr, BORDER + x * TILE_SIZE,
BORDER + y * TILE_SIZE - LINEWIDTH/2,
TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
for (y = 0; y < h; y++)
for (x = 0; x <= w; x++)
if (BELOW_DOT(state, x, y) == LINE_YES)
draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
BORDER + y * TILE_SIZE,
(LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
}
#ifdef COMBINED
#define thegame loopy
#endif
const struct game thegame = {
"Loopy", "games.loopy",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
1, solve_game,
TRUE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
TRUE, FALSE, game_print_size, game_print,
FALSE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};