mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

This refactors all instances of bitwise-ANDs with `~MOD_MASK'. There is a handful of more complex instances I left unchanged (in cube.c, midend.c, and twiddle.c), since those AND with `~MOD_MASK | MOD_NUM_KEYPAD' or similar. I don't think it's worth writing a macro for those cases. Also document this new macro's usage in devel.but.
2498 lines
72 KiB
C
2498 lines
72 KiB
C
/*
|
|
* group.c: a Latin-square puzzle, but played with groups' Cayley
|
|
* tables. That is, you are given a Cayley table of a group with
|
|
* most elements blank and a few clues, and you must fill it in
|
|
* so as to preserve the group axioms.
|
|
*
|
|
* This is a perfectly playable and fully working puzzle, but I'm
|
|
* leaving it for the moment in the 'unfinished' directory because
|
|
* it's just too esoteric (not to mention _hard_) for me to be
|
|
* comfortable presenting it to the general public as something they
|
|
* might (implicitly) actually want to play.
|
|
*
|
|
* TODO:
|
|
*
|
|
* - more solver techniques?
|
|
* * Inverses: once we know that gh = e, we can immediately
|
|
* deduce hg = e as well; then for any gx=y we can deduce
|
|
* hy=x, and for any xg=y we have yh=x.
|
|
* * Hard-mode associativity: we currently deduce based on
|
|
* definite numbers in the grid, but we could also winnow
|
|
* based on _possible_ numbers.
|
|
* * My overambitious original thoughts included wondering if we
|
|
* could infer that there must be elements of certain orders
|
|
* (e.g. a group of order divisible by 5 must contain an
|
|
* element of order 5), but I think in fact this is probably
|
|
* silly.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#ifdef NO_TGMATH_H
|
|
# include <math.h>
|
|
#else
|
|
# include <tgmath.h>
|
|
#endif
|
|
|
|
#include "puzzles.h"
|
|
#include "latin.h"
|
|
|
|
/*
|
|
* Difficulty levels. I do some macro ickery here to ensure that my
|
|
* enum and the various forms of my name list always match up.
|
|
*/
|
|
#define DIFFLIST(A) \
|
|
A(TRIVIAL,Trivial,NULL,t) \
|
|
A(NORMAL,Normal,solver_normal,n) \
|
|
A(HARD,Hard,solver_hard,h) \
|
|
A(EXTREME,Extreme,NULL,x) \
|
|
A(UNREASONABLE,Unreasonable,NULL,u)
|
|
#define ENUM(upper,title,func,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,func,lower) #title,
|
|
#define ENCODE(upper,title,func,lower) #lower
|
|
#define CONFIG(upper,title,func,lower) ":" #title
|
|
enum { DIFFLIST(ENUM) DIFFCOUNT };
|
|
static char const *const group_diffnames[] = { DIFFLIST(TITLE) };
|
|
static char const group_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_GRID,
|
|
COL_USER,
|
|
COL_HIGHLIGHT,
|
|
COL_ERROR,
|
|
COL_PENCIL,
|
|
COL_DIAGONAL,
|
|
NCOLOURS
|
|
};
|
|
|
|
/*
|
|
* In identity mode, we number the elements e,a,b,c,d,f,g,h,...
|
|
* Otherwise, they're a,b,c,d,e,f,g,h,... in the obvious way.
|
|
*/
|
|
#define E_TO_FRONT(c,id) ( (id) && (c)<=5 ? (c) % 5 + 1 : (c) )
|
|
#define E_FROM_FRONT(c,id) ( (id) && (c)<=5 ? ((c) + 3) % 5 + 1 : (c) )
|
|
|
|
#define FROMCHAR(c,id) E_TO_FRONT((((c)-('A'-1)) & ~0x20), id)
|
|
#define ISCHAR(c) (((c)>='A'&&(c)<='Z') || ((c)>='a'&&(c)<='z'))
|
|
#define TOCHAR(c,id) (E_FROM_FRONT(c,id) + ('a'-1))
|
|
|
|
struct game_params {
|
|
int w, diff;
|
|
bool id;
|
|
};
|
|
|
|
typedef struct group_common {
|
|
int refcount;
|
|
bool *immutable;
|
|
} group_common;
|
|
|
|
struct game_state {
|
|
game_params par;
|
|
digit *grid;
|
|
int *pencil; /* bitmaps using bits 1<<1..1<<n */
|
|
group_common *common;
|
|
bool completed, cheated;
|
|
digit *sequence; /* sequence of group elements shown */
|
|
|
|
/*
|
|
* This array indicates thick lines separating rows and columns
|
|
* placed and unplaced manually by the user as a visual aid, e.g.
|
|
* to delineate a subgroup and its cosets.
|
|
*
|
|
* When a line is placed, it's deemed to be between the two
|
|
* particular group elements that are on either side of it at the
|
|
* time; dragging those two away from each other automatically
|
|
* gets rid of the line. Hence, for a given element i, dividers[i]
|
|
* is either -1 (indicating no divider to the right of i), or some
|
|
* other element (indicating a divider to the right of i iff that
|
|
* element is the one right of it). These are eagerly cleared
|
|
* during drags.
|
|
*/
|
|
int *dividers; /* thick lines between rows/cols */
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = 6;
|
|
ret->diff = DIFF_NORMAL;
|
|
ret->id = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params group_presets[] = {
|
|
{ 6, DIFF_NORMAL, true },
|
|
{ 6, DIFF_NORMAL, false },
|
|
{ 8, DIFF_NORMAL, true },
|
|
{ 8, DIFF_NORMAL, false },
|
|
{ 8, DIFF_HARD, true },
|
|
{ 8, DIFF_HARD, false },
|
|
{ 12, DIFF_NORMAL, true },
|
|
};
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char buf[80];
|
|
|
|
if (i < 0 || i >= lenof(group_presets))
|
|
return false;
|
|
|
|
ret = snew(game_params);
|
|
*ret = group_presets[i]; /* structure copy */
|
|
|
|
sprintf(buf, "%dx%d %s%s", ret->w, ret->w, group_diffnames[ret->diff],
|
|
ret->id ? "" : ", identity hidden");
|
|
|
|
*name = dupstr(buf);
|
|
*params = ret;
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
params->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
params->diff = DIFF_NORMAL;
|
|
params->id = true;
|
|
|
|
while (*p) {
|
|
if (*p == 'd') {
|
|
int i;
|
|
p++;
|
|
params->diff = DIFFCOUNT+1; /* ...which is invalid */
|
|
if (*p) {
|
|
for (i = 0; i < DIFFCOUNT; i++) {
|
|
if (*p == group_diffchars[i])
|
|
params->diff = i;
|
|
}
|
|
p++;
|
|
}
|
|
} else if (*p == 'i') {
|
|
params->id = false;
|
|
p++;
|
|
} else {
|
|
/* unrecognised character */
|
|
p++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char ret[80];
|
|
|
|
sprintf(ret, "%d", params->w);
|
|
if (full)
|
|
sprintf(ret + strlen(ret), "d%c", group_diffchars[params->diff]);
|
|
if (!params->id)
|
|
sprintf(ret + strlen(ret), "i");
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(4, config_item);
|
|
|
|
ret[0].name = "Grid size";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Difficulty";
|
|
ret[1].type = C_CHOICES;
|
|
ret[1].u.choices.choicenames = DIFFCONFIG;
|
|
ret[1].u.choices.selected = params->diff;
|
|
|
|
ret[2].name = "Show identity";
|
|
ret[2].type = C_BOOLEAN;
|
|
ret[2].u.boolean.bval = params->id;
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->diff = cfg[1].u.choices.selected;
|
|
ret->id = cfg[2].u.boolean.bval;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 3 || params->w > 26)
|
|
return "Grid size must be between 3 and 26";
|
|
if (params->diff >= DIFFCOUNT)
|
|
return "Unknown difficulty rating";
|
|
if (!params->id && params->diff == DIFF_TRIVIAL) {
|
|
/*
|
|
* We can't have a Trivial-difficulty puzzle (i.e. latin
|
|
* square deductions only) without a clear identity, because
|
|
* identityless puzzles always have two rows and two columns
|
|
* entirely blank, and no latin-square deduction permits the
|
|
* distinguishing of two such rows.
|
|
*/
|
|
return "Trivial puzzles must have an identity";
|
|
}
|
|
if (!params->id && params->w == 3) {
|
|
/*
|
|
* We can't have a 3x3 puzzle without an identity either,
|
|
* because 3x3 puzzles can't ever be harder than Trivial
|
|
* (there are no 3x3 latin squares which aren't also valid
|
|
* group tables, so enabling group-based deductions doesn't
|
|
* rule out any possible solutions) and - as above - Trivial
|
|
* puzzles can't not have an identity.
|
|
*/
|
|
return "3x3 puzzles must have an identity";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Solver.
|
|
*/
|
|
|
|
static int find_identity(struct latin_solver *solver)
|
|
{
|
|
int w = solver->o;
|
|
digit *grid = solver->grid;
|
|
int i, j;
|
|
|
|
for (i = 0; i < w; i++)
|
|
for (j = 0; j < w; j++) {
|
|
if (grid[i*w+j] == i+1)
|
|
return j+1;
|
|
if (grid[i*w+j] == j+1)
|
|
return i+1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int solver_normal(struct latin_solver *solver, void *vctx)
|
|
{
|
|
int w = solver->o;
|
|
#ifdef STANDALONE_SOLVER
|
|
char **names = solver->names;
|
|
#endif
|
|
digit *grid = solver->grid;
|
|
int i, j, k;
|
|
|
|
/*
|
|
* Deduce using associativity: (ab)c = a(bc).
|
|
*
|
|
* So we pick any a,b,c we like; then if we know ab, bc, and
|
|
* (ab)c we can fill in a(bc).
|
|
*/
|
|
for (i = 0; i < w; i++)
|
|
for (j = 0; j < w; j++)
|
|
for (k = 0; k < w; k++) {
|
|
if (!grid[i*w+j] || !grid[j*w+k])
|
|
continue;
|
|
if (grid[(grid[i*w+j]-1)*w+k] &&
|
|
!grid[i*w+(grid[j*w+k]-1)]) {
|
|
int x = grid[j*w+k]-1, y = i;
|
|
int n = grid[(grid[i*w+j]-1)*w+k];
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*sassociativity on %s,%s,%s: %s*%s = %s*%s\n",
|
|
solver_recurse_depth*4, "",
|
|
names[i], names[j], names[k],
|
|
names[grid[i*w+j]-1], names[k],
|
|
names[i], names[grid[j*w+k]-1]);
|
|
printf("%*s placing %s at (%d,%d)\n",
|
|
solver_recurse_depth*4, "",
|
|
names[n-1], x+1, y+1);
|
|
}
|
|
#endif
|
|
if (solver->cube[(x*w+y)*w+n-1]) {
|
|
latin_solver_place(solver, x, y, n);
|
|
return 1;
|
|
} else {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working)
|
|
printf("%*s contradiction!\n",
|
|
solver_recurse_depth*4, "");
|
|
return -1;
|
|
#endif
|
|
}
|
|
}
|
|
if (!grid[(grid[i*w+j]-1)*w+k] &&
|
|
grid[i*w+(grid[j*w+k]-1)]) {
|
|
int x = k, y = grid[i*w+j]-1;
|
|
int n = grid[i*w+(grid[j*w+k]-1)];
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*sassociativity on %s,%s,%s: %s*%s = %s*%s\n",
|
|
solver_recurse_depth*4, "",
|
|
names[i], names[j], names[k],
|
|
names[grid[i*w+j]-1], names[k],
|
|
names[i], names[grid[j*w+k]-1]);
|
|
printf("%*s placing %s at (%d,%d)\n",
|
|
solver_recurse_depth*4, "",
|
|
names[n-1], x+1, y+1);
|
|
}
|
|
#endif
|
|
if (solver->cube[(x*w+y)*w+n-1]) {
|
|
latin_solver_place(solver, x, y, n);
|
|
return 1;
|
|
} else {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working)
|
|
printf("%*s contradiction!\n",
|
|
solver_recurse_depth*4, "");
|
|
return -1;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in the row and column for the group identity, if it's not
|
|
* already known and if we've just found out what it is.
|
|
*/
|
|
i = find_identity(solver);
|
|
if (i) {
|
|
bool done_something = false;
|
|
for (j = 1; j <= w; j++) {
|
|
if (!grid[(i-1)*w+(j-1)] || !grid[(j-1)*w+(i-1)]) {
|
|
done_something = true;
|
|
}
|
|
}
|
|
if (done_something) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*s%s is the group identity\n",
|
|
solver_recurse_depth*4, "", names[i-1]);
|
|
}
|
|
#endif
|
|
for (j = 1; j <= w; j++) {
|
|
if (!grid[(j-1)*w+(i-1)]) {
|
|
if (!cube(i-1, j-1, j)) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*s but %s cannot go at (%d,%d) - "
|
|
"contradiction!\n",
|
|
solver_recurse_depth*4, "",
|
|
names[j-1], i, j);
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*s placing %s at (%d,%d)\n",
|
|
solver_recurse_depth*4, "",
|
|
names[j-1], i, j);
|
|
}
|
|
#endif
|
|
latin_solver_place(solver, i-1, j-1, j);
|
|
}
|
|
if (!grid[(i-1)*w+(j-1)]) {
|
|
if (!cube(j-1, i-1, j)) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*s but %s cannot go at (%d,%d) - "
|
|
"contradiction!\n",
|
|
solver_recurse_depth*4, "",
|
|
names[j-1], j, i);
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*s placing %s at (%d,%d)\n",
|
|
solver_recurse_depth*4, "",
|
|
names[j-1], j, i);
|
|
}
|
|
#endif
|
|
latin_solver_place(solver, j-1, i-1, j);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int solver_hard(struct latin_solver *solver, void *vctx)
|
|
{
|
|
bool done_something = false;
|
|
int w = solver->o;
|
|
#ifdef STANDALONE_SOLVER
|
|
char **names = solver->names;
|
|
#endif
|
|
int i, j;
|
|
|
|
/*
|
|
* In identity-hidden mode, systematically rule out possibilities
|
|
* for the group identity.
|
|
*
|
|
* In solver_normal, we used the fact that any filled square in
|
|
* the grid whose contents _does_ match one of the elements it's
|
|
* the product of - that is, ab=a or ab=b - tells you immediately
|
|
* that the other element is the identity.
|
|
*
|
|
* Here, we use the flip side of that: any filled square in the
|
|
* grid whose contents does _not_ match either its row or column -
|
|
* that is, if ab is neither a nor b - tells you immediately that
|
|
* _neither_ of those elements is the identity. And if that's
|
|
* true, then we can also immediately rule out the possibility
|
|
* that it acts as the identity on any element at all.
|
|
*/
|
|
for (i = 0; i < w; i++) {
|
|
bool i_can_be_id = true;
|
|
#ifdef STANDALONE_SOLVER
|
|
char title[80];
|
|
#endif
|
|
|
|
for (j = 0; j < w; j++) {
|
|
if (grid(i,j) && grid(i,j) != j+1) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working)
|
|
sprintf(title, "%s cannot be the identity: "
|
|
"%s%s = %s =/= %s", names[i], names[i], names[j],
|
|
names[grid(i,j)-1], names[j]);
|
|
#endif
|
|
i_can_be_id = false;
|
|
break;
|
|
}
|
|
if (grid(j,i) && grid(j,i) != j+1) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working)
|
|
sprintf(title, "%s cannot be the identity: "
|
|
"%s%s = %s =/= %s", names[i], names[j], names[i],
|
|
names[grid(j,i)-1], names[j]);
|
|
#endif
|
|
i_can_be_id = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!i_can_be_id) {
|
|
/* Now rule out ij=j or ji=j for all j. */
|
|
for (j = 0; j < w; j++) {
|
|
if (cube(i, j, j+1)) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
if (title[0]) {
|
|
printf("%*s%s\n", solver_recurse_depth*4, "",
|
|
title);
|
|
title[0] = '\0';
|
|
}
|
|
printf("%*s ruling out %s at (%d,%d)\n",
|
|
solver_recurse_depth*4, "", names[j], i, j);
|
|
}
|
|
#endif
|
|
cube(i, j, j+1) = false;
|
|
}
|
|
if (cube(j, i, j+1)) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
if (title[0]) {
|
|
printf("%*s%s\n", solver_recurse_depth*4, "",
|
|
title);
|
|
title[0] = '\0';
|
|
}
|
|
printf("%*s ruling out %s at (%d,%d)\n",
|
|
solver_recurse_depth*4, "", names[j], j, i);
|
|
}
|
|
#endif
|
|
cube(j, i, j+1) = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return done_something;
|
|
}
|
|
|
|
#define SOLVER(upper,title,func,lower) func,
|
|
static usersolver_t const group_solvers[] = { DIFFLIST(SOLVER) };
|
|
|
|
static bool group_valid(struct latin_solver *solver, void *ctx)
|
|
{
|
|
int w = solver->o;
|
|
#ifdef STANDALONE_SOLVER
|
|
char **names = solver->names;
|
|
#endif
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < w; i++)
|
|
for (j = 0; j < w; j++)
|
|
for (k = 0; k < w; k++) {
|
|
int ij = grid(i, j) - 1;
|
|
int jk = grid(j, k) - 1;
|
|
int ij_k = grid(ij, k) - 1;
|
|
int i_jk = grid(i, jk) - 1;
|
|
if (ij_k != i_jk) {
|
|
#ifdef STANDALONE_SOLVER
|
|
if (solver_show_working) {
|
|
printf("%*sfailure of associativity: "
|
|
"(%s%s)%s = %s%s = %s but "
|
|
"%s(%s%s) = %s%s = %s\n",
|
|
solver_recurse_depth*4, "",
|
|
names[i], names[j], names[k],
|
|
names[ij], names[k], names[ij_k],
|
|
names[i], names[j], names[k],
|
|
names[i], names[jk], names[i_jk]);
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int solver(const game_params *params, digit *grid, int maxdiff)
|
|
{
|
|
int w = params->w;
|
|
int ret;
|
|
struct latin_solver solver;
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
char *p, text[100], *names[50];
|
|
int i;
|
|
|
|
for (i = 0, p = text; i < w; i++) {
|
|
names[i] = p;
|
|
*p++ = TOCHAR(i+1, params->id);
|
|
*p++ = '\0';
|
|
}
|
|
solver.names = names;
|
|
#endif
|
|
|
|
if (latin_solver_alloc(&solver, grid, w))
|
|
ret = latin_solver_main(&solver, maxdiff,
|
|
DIFF_TRIVIAL, DIFF_HARD, DIFF_EXTREME,
|
|
DIFF_EXTREME, DIFF_UNREASONABLE,
|
|
group_solvers, group_valid, NULL, NULL, NULL);
|
|
else
|
|
ret = diff_impossible;
|
|
|
|
latin_solver_free(&solver);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Grid generation.
|
|
*/
|
|
|
|
static char *encode_grid(char *desc, digit *grid, int area)
|
|
{
|
|
int run, i;
|
|
char *p = desc;
|
|
|
|
run = 0;
|
|
for (i = 0; i <= area; i++) {
|
|
int n = (i < area ? grid[i] : -1);
|
|
|
|
if (!n)
|
|
run++;
|
|
else {
|
|
if (run) {
|
|
while (run > 0) {
|
|
int c = 'a' - 1 + run;
|
|
if (run > 26)
|
|
c = 'z';
|
|
*p++ = c;
|
|
run -= c - ('a' - 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* If there's a number in the very top left or
|
|
* bottom right, there's no point putting an
|
|
* unnecessary _ before or after it.
|
|
*/
|
|
if (p > desc && n > 0)
|
|
*p++ = '_';
|
|
}
|
|
if (n > 0)
|
|
p += sprintf(p, "%d", n);
|
|
run = 0;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* ----- data generated by group.gap begins ----- */
|
|
|
|
struct group {
|
|
unsigned long autosize;
|
|
int order, ngens;
|
|
const char *gens;
|
|
};
|
|
struct groups {
|
|
int ngroups;
|
|
const struct group *groups;
|
|
};
|
|
|
|
static const struct group groupdata[] = {
|
|
/* order 2 */
|
|
{1L, 2, 1, "BA"},
|
|
/* order 3 */
|
|
{2L, 3, 1, "BCA"},
|
|
/* order 4 */
|
|
{2L, 4, 1, "BCDA"},
|
|
{6L, 4, 2, "BADC" "CDAB"},
|
|
/* order 5 */
|
|
{4L, 5, 1, "BCDEA"},
|
|
/* order 6 */
|
|
{6L, 6, 2, "CFEBAD" "BADCFE"},
|
|
{2L, 6, 1, "DCFEBA"},
|
|
/* order 7 */
|
|
{6L, 7, 1, "BCDEFGA"},
|
|
/* order 8 */
|
|
{4L, 8, 1, "BCEFDGHA"},
|
|
{8L, 8, 2, "BDEFGAHC" "EGBHDCFA"},
|
|
{8L, 8, 2, "EGBHDCFA" "BAEFCDHG"},
|
|
{24L, 8, 2, "BDEFGAHC" "CHDGBEAF"},
|
|
{168L, 8, 3, "BAEFCDHG" "CEAGBHDF" "DFGAHBCE"},
|
|
/* order 9 */
|
|
{6L, 9, 1, "BDECGHFIA"},
|
|
{48L, 9, 2, "BDEAGHCIF" "CEFGHAIBD"},
|
|
/* order 10 */
|
|
{20L, 10, 2, "CJEBGDIFAH" "BADCFEHGJI"},
|
|
{4L, 10, 1, "DCFEHGJIBA"},
|
|
/* order 11 */
|
|
{10L, 11, 1, "BCDEFGHIJKA"},
|
|
/* order 12 */
|
|
{12L, 12, 2, "GLDKJEHCBIAF" "BCEFAGIJDKLH"},
|
|
{4L, 12, 1, "EHIJKCBLDGFA"},
|
|
{24L, 12, 2, "BEFGAIJKCDLH" "FJBKHLEGDCIA"},
|
|
{12L, 12, 2, "GLDKJEHCBIAF" "BAEFCDIJGHLK"},
|
|
{12L, 12, 2, "FDIJGHLBKAEC" "GIDKFLHCJEAB"},
|
|
/* order 13 */
|
|
{12L, 13, 1, "BCDEFGHIJKLMA"},
|
|
/* order 14 */
|
|
{42L, 14, 2, "ELGNIBKDMFAHCJ" "BADCFEHGJILKNM"},
|
|
{6L, 14, 1, "FEHGJILKNMBADC"},
|
|
/* order 15 */
|
|
{8L, 15, 1, "EGHCJKFMNIOBLDA"},
|
|
/* order 16 */
|
|
{8L, 16, 1, "MKNPFOADBGLCIEHJ"},
|
|
{96L, 16, 2, "ILKCONFPEDJHGMAB" "BDFGHIAKLMNCOEPJ"},
|
|
{32L, 16, 2, "MIHPFDCONBLAKJGE" "BEFGHJKALMNOCDPI"},
|
|
{32L, 16, 2, "IFACOGLMDEJBNPKH" "BEFGHJKALMNOCDPI"},
|
|
{16L, 16, 2, "MOHPFKCINBLADJGE" "BDFGHIEKLMNJOAPC"},
|
|
{16L, 16, 2, "MIHPFDJONBLEKCGA" "BDFGHIEKLMNJOAPC"},
|
|
{32L, 16, 2, "MOHPFDCINBLEKJGA" "BAFGHCDELMNIJKPO"},
|
|
{16L, 16, 2, "MIHPFKJONBLADCGE" "GDPHNOEKFLBCIAMJ"},
|
|
{32L, 16, 2, "MIBPFDJOGHLEKCNA" "CLEIJGMPKAOHNFDB"},
|
|
{192L, 16, 3,
|
|
"MCHPFAIJNBLDEOGK" "BEFGHJKALMNOCDPI" "GKLBNOEDFPHJIAMC"},
|
|
{64L, 16, 3, "MCHPFAIJNBLDEOGK" "LOGFPKJIBNMEDCHA" "CMAIJHPFDEONBLKG"},
|
|
{192L, 16, 3,
|
|
"IPKCOGMLEDJBNFAH" "BEFGHJKALMNOCDPI" "CMEIJBPFKAOGHLDN"},
|
|
{48L, 16, 3, "IPDJONFLEKCBGMAH" "FJBLMEOCGHPKAIND" "DGIEKLHNJOAMPBCF"},
|
|
{20160L, 16, 4,
|
|
"EHJKAMNBOCDPFGIL" "BAFGHCDELMNIJKPO" "CFAIJBLMDEOGHPKN"
|
|
"DGIAKLBNCOEFPHJM"},
|
|
/* order 17 */
|
|
{16L, 17, 1, "EFGHIJKLMNOPQABCD"},
|
|
/* order 18 */
|
|
{54L, 18, 2, "MKIQOPNAGLRECDBJHF" "BAEFCDJKLGHIOPMNRQ"},
|
|
{6L, 18, 1, "ECJKGHFOPDMNLRIQBA"},
|
|
{12L, 18, 2, "ECJKGHBOPAMNFRDQLI" "KNOPQCFREIGHLJAMBD"},
|
|
{432L, 18, 3,
|
|
"IFNAKLQCDOPBGHREMJ" "NOQCFRIGHKLJAMPBDE" "BAEFCDJKLGHIOPMNRQ"},
|
|
{48L, 18, 2, "ECJKGHBOPAMNFRDQLI" "FDKLHIOPBMNAREQCJG"},
|
|
/* order 19 */
|
|
{18L, 19, 1, "EFGHIJKLMNOPQRSABCD"},
|
|
/* order 20 */
|
|
{40L, 20, 2, "GTDKREHOBILSFMPCJQAN" "EABICDFMGHJQKLNTOPRS"},
|
|
{8L, 20, 1, "EHIJLCMNPGQRSKBTDOFA"},
|
|
{20L, 20, 2, "DJSHQNCLTRGPEBKAIFOM" "EABICDFMGHJQKLNTOPRS"},
|
|
{40L, 20, 2, "GTDKREHOBILSFMPCJQAN" "ECBIAGFMDKJQHONTLSRP"},
|
|
{24L, 20, 2, "IGFMDKJQHONTLSREPCBA" "FDIJGHMNKLQROPTBSAEC"},
|
|
/* order 21 */
|
|
{42L, 21, 2, "ITLSBOUERDHAGKCJNFMQP" "EJHLMKOPNRSQAUTCDBFGI"},
|
|
{12L, 21, 1, "EGHCJKFMNIPQLSTOUBRDA"},
|
|
/* order 22 */
|
|
{110L, 22, 2, "ETGVIBKDMFOHQJSLUNAPCR" "BADCFEHGJILKNMPORQTSVU"},
|
|
{10L, 22, 1, "FEHGJILKNMPORQTSVUBADC"},
|
|
/* order 23 */
|
|
{22L, 23, 1, "EFGHIJKLMNOPQRSTUVWABCD"},
|
|
/* order 24 */
|
|
{24L, 24, 2, "QXEJWPUMKLRIVBFTSACGHNDO" "HRNOPSWCTUVBLDIJXFGAKQME"},
|
|
{8L, 24, 1, "MQBTUDRWFGHXJELINOPKSAVC"},
|
|
{24L, 24, 2, "IOQRBEUVFWGHKLAXMNPSCDTJ" "NJXOVGDKSMTFIPQELCURBWAH"},
|
|
{48L, 24, 2, "QUEJWVXFKLRIPGMNSACBOTDH" "HSNOPWLDTUVBRIAKXFGCQEMJ"},
|
|
{24L, 24, 2, "QXEJWPUMKLRIVBFTSACGHNDO" "TWHNXLRIOPUMSACQVBFDEJGK"},
|
|
{48L, 24, 2, "QUEJWVXFKLRIPGMNSACBOTDH" "BAFGHCDEMNOPIJKLTUVQRSXW"},
|
|
{48L, 24, 3,
|
|
"QXKJWVUMESRIPGFTLDCBONAH" "JUEQRPXFKLWCVBMNSAIGHTDO"
|
|
"HSNOPWLDTUVBRIAKXFGCQEMJ"},
|
|
{24L, 24, 3,
|
|
"QUKJWPXFESRIVBMNLDCGHTAO" "JXEQRVUMKLWCPGFTSAIBONDH"
|
|
"TRONXLWCHVUMSAIJPGFDEQBK"},
|
|
{16L, 24, 2, "MRGTULWIOPFXSDJQBVNEKCHA" "VKXHOQASNTPBCWDEUFGIJLMR"},
|
|
{16L, 24, 2, "MRGTULWIOPFXSDJQBVNEKCHA" "RMLWIGTUSDJQOPFXEKCBVNAH"},
|
|
{48L, 24, 2, "IULQRGXMSDCWOPNTEKJBVFAH" "GLMOPRSDTUBVWIEKFXHJQANC"},
|
|
{24L, 24, 2, "UJPXMRCSNHGTLWIKFVBEDQOA" "NRUFVLWIPXMOJEDQHGTCSABK"},
|
|
{24L, 24, 2, "MIBTUAQRFGHXCDEWNOPJKLVS" "OKXVFWSCGUTNDRQJBPMALIHE"},
|
|
{144L, 24, 3,
|
|
"QXKJWVUMESRIPGFTLDCBONAH" "JUEQRPXFKLWCVBMNSAIGHTDO"
|
|
"BAFGHCDEMNOPIJKLTUVQRSXW"},
|
|
{336L, 24, 3,
|
|
"QTKJWONXESRIHVUMLDCPGFAB" "JNEQRHTUKLWCOPXFSAIVBMDG"
|
|
"HENOPJKLTUVBQRSAXFGWCDMI"},
|
|
/* order 25 */
|
|
{20L, 25, 1, "EHILMNPQRSFTUVBJWXDOYGAKC"},
|
|
{480L, 25, 2, "EHILMNPQRSCTUVBFWXDJYGOKA" "BDEGHIKLMNAPQRSCTUVFWXJYO"},
|
|
/* order 26 */
|
|
{156L, 26, 2,
|
|
"EXGZIBKDMFOHQJSLUNWPYRATCV" "BADCFEHGJILKNMPORQTSVUXWZY"},
|
|
{12L, 26, 1, "FEHGJILKNMPORQTSVUXWZYBADC"},
|
|
};
|
|
|
|
static const struct groups groups[] = {
|
|
{0, NULL}, /* trivial case: 0 */
|
|
{0, NULL}, /* trivial case: 1 */
|
|
{1, groupdata + 0}, /* 2 */
|
|
{1, groupdata + 1}, /* 3 */
|
|
{2, groupdata + 2}, /* 4 */
|
|
{1, groupdata + 4}, /* 5 */
|
|
{2, groupdata + 5}, /* 6 */
|
|
{1, groupdata + 7}, /* 7 */
|
|
{5, groupdata + 8}, /* 8 */
|
|
{2, groupdata + 13}, /* 9 */
|
|
{2, groupdata + 15}, /* 10 */
|
|
{1, groupdata + 17}, /* 11 */
|
|
{5, groupdata + 18}, /* 12 */
|
|
{1, groupdata + 23}, /* 13 */
|
|
{2, groupdata + 24}, /* 14 */
|
|
{1, groupdata + 26}, /* 15 */
|
|
{14, groupdata + 27}, /* 16 */
|
|
{1, groupdata + 41}, /* 17 */
|
|
{5, groupdata + 42}, /* 18 */
|
|
{1, groupdata + 47}, /* 19 */
|
|
{5, groupdata + 48}, /* 20 */
|
|
{2, groupdata + 53}, /* 21 */
|
|
{2, groupdata + 55}, /* 22 */
|
|
{1, groupdata + 57}, /* 23 */
|
|
{15, groupdata + 58}, /* 24 */
|
|
{2, groupdata + 73}, /* 25 */
|
|
{2, groupdata + 75}, /* 26 */
|
|
};
|
|
|
|
/* ----- data generated by group.gap ends ----- */
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
int w = params->w, a = w*w;
|
|
digit *grid, *soln, *soln2;
|
|
int *indices;
|
|
int i, j, k, qh, qt;
|
|
int diff = params->diff;
|
|
const struct group *group;
|
|
char *desc, *p;
|
|
|
|
/*
|
|
* Difficulty exceptions: some combinations of size and
|
|
* difficulty cannot be satisfied, because all puzzles of at
|
|
* most that difficulty are actually even easier.
|
|
*
|
|
* Remember to re-test this whenever a change is made to the
|
|
* solver logic!
|
|
*
|
|
* I tested it using the following shell command:
|
|
|
|
for d in t n h x u; do
|
|
for id in '' i; do
|
|
for i in {3..9}; do
|
|
echo -n "./group --generate 1 ${i}d${d}${id}: "
|
|
perl -e 'alarm 30; exec @ARGV' \
|
|
./group --generate 1 ${i}d${d}${id} >/dev/null && echo ok
|
|
done
|
|
done
|
|
done
|
|
|
|
* Of course, it's better to do that after taking the exceptions
|
|
* _out_, so as to detect exceptions that should be removed as
|
|
* well as those which should be added.
|
|
*/
|
|
if (w < 5 && diff == DIFF_UNREASONABLE)
|
|
diff--;
|
|
if ((w < 5 || ((w == 6 || w == 8) && params->id)) && diff == DIFF_EXTREME)
|
|
diff--;
|
|
if ((w < 6 || (w == 6 && params->id)) && diff == DIFF_HARD)
|
|
diff--;
|
|
if ((w < 4 || (w == 4 && params->id)) && diff == DIFF_NORMAL)
|
|
diff--;
|
|
|
|
grid = snewn(a, digit);
|
|
soln = snewn(a, digit);
|
|
soln2 = snewn(a, digit);
|
|
indices = snewn(a, int);
|
|
|
|
while (1) {
|
|
/*
|
|
* Construct a valid group table, by picking a group from
|
|
* the above data table, decompressing it into a full
|
|
* representation by BFS, and then randomly permuting its
|
|
* non-identity elements.
|
|
*
|
|
* We build the canonical table in 'soln' (and use 'grid' as
|
|
* our BFS queue), then transfer the table into 'grid'
|
|
* having shuffled the rows.
|
|
*/
|
|
assert(w >= 2);
|
|
assert(w < lenof(groups));
|
|
group = groups[w].groups + random_upto(rs, groups[w].ngroups);
|
|
assert(group->order == w);
|
|
memset(soln, 0, a);
|
|
for (i = 0; i < w; i++)
|
|
soln[i] = i+1;
|
|
qh = qt = 0;
|
|
grid[qt++] = 1;
|
|
while (qh < qt) {
|
|
digit *row, *newrow;
|
|
|
|
i = grid[qh++];
|
|
row = soln + (i-1)*w;
|
|
|
|
for (j = 0; j < group->ngens; j++) {
|
|
int nri;
|
|
const char *gen = group->gens + j*w;
|
|
|
|
/*
|
|
* Apply each group generator to row, constructing a
|
|
* new row.
|
|
*/
|
|
nri = gen[row[0]-1] - 'A' + 1; /* which row is it? */
|
|
newrow = soln + (nri-1)*w;
|
|
if (!newrow[0]) { /* not done yet */
|
|
for (k = 0; k < w; k++)
|
|
newrow[k] = gen[row[k]-1] - 'A' + 1;
|
|
grid[qt++] = nri;
|
|
}
|
|
}
|
|
}
|
|
/* That's got the canonical table. Now shuffle it. */
|
|
for (i = 0; i < w; i++)
|
|
soln2[i] = i;
|
|
if (params->id) /* do we shuffle in the identity? */
|
|
shuffle(soln2+1, w-1, sizeof(*soln2), rs);
|
|
else
|
|
shuffle(soln2, w, sizeof(*soln2), rs);
|
|
for (i = 0; i < w; i++)
|
|
for (j = 0; j < w; j++)
|
|
grid[(soln2[i])*w+(soln2[j])] = soln2[soln[i*w+j]-1]+1;
|
|
|
|
/*
|
|
* Remove entries one by one while the puzzle is still
|
|
* soluble at the appropriate difficulty level.
|
|
*/
|
|
memcpy(soln, grid, a);
|
|
if (!params->id) {
|
|
/*
|
|
* Start by blanking the entire identity row and column,
|
|
* and also another row and column so that the player
|
|
* can't trivially determine which element is the
|
|
* identity.
|
|
*/
|
|
|
|
j = 1 + random_upto(rs, w-1); /* pick a second row/col to blank */
|
|
for (i = 0; i < w; i++) {
|
|
grid[(soln2[0])*w+i] = grid[i*w+(soln2[0])] = 0;
|
|
grid[(soln2[j])*w+i] = grid[i*w+(soln2[j])] = 0;
|
|
}
|
|
|
|
memcpy(soln2, grid, a);
|
|
if (solver(params, soln2, diff) > diff)
|
|
continue; /* go round again if that didn't work */
|
|
}
|
|
|
|
k = 0;
|
|
for (i = (params->id ? 1 : 0); i < w; i++)
|
|
for (j = (params->id ? 1 : 0); j < w; j++)
|
|
if (grid[i*w+j])
|
|
indices[k++] = i*w+j;
|
|
shuffle(indices, k, sizeof(*indices), rs);
|
|
|
|
for (i = 0; i < k; i++) {
|
|
memcpy(soln2, grid, a);
|
|
soln2[indices[i]] = 0;
|
|
if (solver(params, soln2, diff) <= diff)
|
|
grid[indices[i]] = 0;
|
|
}
|
|
|
|
/*
|
|
* Make sure the puzzle isn't too easy.
|
|
*/
|
|
if (diff > 0) {
|
|
memcpy(soln2, grid, a);
|
|
if (solver(params, soln2, diff-1) < diff)
|
|
continue; /* go round and try again */
|
|
}
|
|
|
|
/*
|
|
* Done.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Encode the puzzle description.
|
|
*/
|
|
desc = snewn(a*20, char);
|
|
p = encode_grid(desc, grid, a);
|
|
*p++ = '\0';
|
|
desc = sresize(desc, p - desc, char);
|
|
|
|
/*
|
|
* Encode the solution.
|
|
*/
|
|
*aux = snewn(a+2, char);
|
|
(*aux)[0] = 'S';
|
|
for (i = 0; i < a; i++)
|
|
(*aux)[i+1] = TOCHAR(soln[i], params->id);
|
|
(*aux)[a+1] = '\0';
|
|
|
|
sfree(grid);
|
|
sfree(soln);
|
|
sfree(soln2);
|
|
sfree(indices);
|
|
|
|
return desc;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Gameplay.
|
|
*/
|
|
|
|
static const char *validate_grid_desc(const char **pdesc, int range, int area)
|
|
{
|
|
const char *desc = *pdesc;
|
|
int squares = 0;
|
|
while (*desc && *desc != ',') {
|
|
int n = *desc++;
|
|
if (n >= 'a' && n <= 'z') {
|
|
squares += n - 'a' + 1;
|
|
} else if (n == '_') {
|
|
/* do nothing */;
|
|
} else if (n > '0' && n <= '9') {
|
|
int val = atoi(desc-1);
|
|
if (val < 1 || val > range)
|
|
return "Out-of-range number in game description";
|
|
squares++;
|
|
while (*desc >= '0' && *desc <= '9')
|
|
desc++;
|
|
} else
|
|
return "Invalid character in game description";
|
|
}
|
|
|
|
if (squares < area)
|
|
return "Not enough data to fill grid";
|
|
|
|
if (squares > area)
|
|
return "Too much data to fit in grid";
|
|
*pdesc = desc;
|
|
return NULL;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int w = params->w, a = w*w;
|
|
const char *p = desc;
|
|
|
|
return validate_grid_desc(&p, w, a);
|
|
}
|
|
|
|
static const char *spec_to_grid(const char *desc, digit *grid, int area)
|
|
{
|
|
int i = 0;
|
|
while (*desc && *desc != ',') {
|
|
int n = *desc++;
|
|
if (n >= 'a' && n <= 'z') {
|
|
int run = n - 'a' + 1;
|
|
assert(i + run <= area);
|
|
while (run-- > 0)
|
|
grid[i++] = 0;
|
|
} else if (n == '_') {
|
|
/* do nothing */;
|
|
} else if (n > '0' && n <= '9') {
|
|
assert(i < area);
|
|
grid[i++] = atoi(desc-1);
|
|
while (*desc >= '0' && *desc <= '9')
|
|
desc++;
|
|
} else {
|
|
assert(!"We can't get here");
|
|
}
|
|
}
|
|
assert(i == area);
|
|
return desc;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
int w = params->w, a = w*w;
|
|
game_state *state = snew(game_state);
|
|
int i;
|
|
|
|
state->par = *params; /* structure copy */
|
|
state->grid = snewn(a, digit);
|
|
state->common = snew(group_common);
|
|
state->common->refcount = 1;
|
|
state->common->immutable = snewn(a, bool);
|
|
state->pencil = snewn(a, int);
|
|
for (i = 0; i < a; i++) {
|
|
state->grid[i] = 0;
|
|
state->common->immutable[i] = false;
|
|
state->pencil[i] = 0;
|
|
}
|
|
state->sequence = snewn(w, digit);
|
|
state->dividers = snewn(w, int);
|
|
for (i = 0; i < w; i++) {
|
|
state->sequence[i] = i;
|
|
state->dividers[i] = -1;
|
|
}
|
|
|
|
desc = spec_to_grid(desc, state->grid, a);
|
|
for (i = 0; i < a; i++)
|
|
if (state->grid[i] != 0)
|
|
state->common->immutable[i] = true;
|
|
|
|
state->completed = false;
|
|
state->cheated = false;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
int w = state->par.w, a = w*w;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->par = state->par; /* structure copy */
|
|
|
|
ret->grid = snewn(a, digit);
|
|
ret->common = state->common;
|
|
ret->common->refcount++;
|
|
ret->pencil = snewn(a, int);
|
|
ret->sequence = snewn(w, digit);
|
|
ret->dividers = snewn(w, int);
|
|
memcpy(ret->grid, state->grid, a*sizeof(digit));
|
|
memcpy(ret->pencil, state->pencil, a*sizeof(int));
|
|
memcpy(ret->sequence, state->sequence, w*sizeof(digit));
|
|
memcpy(ret->dividers, state->dividers, w*sizeof(int));
|
|
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
if (--state->common->refcount == 0) {
|
|
sfree(state->common->immutable);
|
|
sfree(state->common);
|
|
}
|
|
sfree(state->pencil);
|
|
sfree(state->sequence);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
int w = state->par.w, a = w*w;
|
|
int i, ret;
|
|
digit *soln;
|
|
char *out;
|
|
|
|
if (aux)
|
|
return dupstr(aux);
|
|
|
|
soln = snewn(a, digit);
|
|
memcpy(soln, state->grid, a*sizeof(digit));
|
|
|
|
ret = solver(&state->par, soln, DIFFCOUNT-1);
|
|
|
|
if (ret == diff_impossible) {
|
|
*error = "No solution exists for this puzzle";
|
|
out = NULL;
|
|
} else if (ret == diff_ambiguous) {
|
|
*error = "Multiple solutions exist for this puzzle";
|
|
out = NULL;
|
|
} else {
|
|
out = snewn(a+2, char);
|
|
out[0] = 'S';
|
|
for (i = 0; i < a; i++)
|
|
out[i+1] = TOCHAR(soln[i], state->par.id);
|
|
out[a+1] = '\0';
|
|
}
|
|
|
|
sfree(soln);
|
|
return out;
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
int w = state->par.w;
|
|
int x, y;
|
|
char *ret, *p, ch;
|
|
|
|
ret = snewn(2*w*w+1, char); /* leave room for terminating NUL */
|
|
|
|
p = ret;
|
|
for (y = 0; y < w; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
digit d = state->grid[y*w+x];
|
|
|
|
if (d == 0) {
|
|
ch = '.';
|
|
} else {
|
|
ch = TOCHAR(d, state->par.id);
|
|
}
|
|
|
|
*p++ = ch;
|
|
if (x == w-1) {
|
|
*p++ = '\n';
|
|
} else {
|
|
*p++ = ' ';
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(p - ret == 2*w*w);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
/*
|
|
* These are the coordinates of the primary highlighted square on
|
|
* the grid, if hshow = 1.
|
|
*/
|
|
int hx, hy;
|
|
/*
|
|
* These are the coordinates hx,hy _before_ they go through
|
|
* state->sequence.
|
|
*/
|
|
int ohx, ohy;
|
|
/*
|
|
* These variables give the length and displacement of a diagonal
|
|
* sequence of highlighted squares starting at ohx,ohy (still if
|
|
* hshow = 1). To find the squares' real coordinates, for 0<=i<dn,
|
|
* compute ohx+i*odx and ohy+i*ody and then map through
|
|
* state->sequence.
|
|
*/
|
|
int odx, ody, odn;
|
|
/*
|
|
* This indicates whether the current highlight is a
|
|
* pencil-mark one or a real one.
|
|
*/
|
|
bool hpencil;
|
|
/*
|
|
* This indicates whether or not we're showing the highlight
|
|
* (used to be hx = hy = -1); important so that when we're
|
|
* using the cursor keys it doesn't keep coming back at a
|
|
* fixed position. When hshow = 1, pressing a valid number
|
|
* or letter key or Space will enter that number or letter in the grid.
|
|
*/
|
|
bool hshow;
|
|
/*
|
|
* This indicates whether we're using the highlight as a cursor;
|
|
* it means that it doesn't vanish on a keypress, and that it is
|
|
* allowed on immutable squares.
|
|
*/
|
|
bool hcursor;
|
|
/*
|
|
* This indicates whether we're dragging a table header to
|
|
* reposition an entire row or column.
|
|
*/
|
|
int drag; /* 0=none 1=row 2=col */
|
|
int dragnum; /* element being dragged */
|
|
int dragpos; /* its current position */
|
|
int edgepos;
|
|
|
|
/*
|
|
* User preference option: if the user right-clicks in a square
|
|
* and presses a letter key to add/remove a pencil mark, do we
|
|
* hide the mouse highlight again afterwards?
|
|
*
|
|
* Historically our answer was yes. The Android port prefers no.
|
|
* There are advantages both ways, depending how much you dislike
|
|
* the highlight cluttering your view. So it's a preference.
|
|
*/
|
|
bool pencil_keep_highlight;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
|
|
ui->hx = ui->hy = 0;
|
|
ui->hpencil = false;
|
|
ui->hshow = false;
|
|
ui->hcursor = false;
|
|
ui->drag = 0;
|
|
|
|
ui->pencil_keep_highlight = false;
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static config_item *get_prefs(game_ui *ui)
|
|
{
|
|
config_item *ret;
|
|
|
|
ret = snewn(2, config_item);
|
|
|
|
ret[0].name = "Keep mouse highlight after changing a pencil mark";
|
|
ret[0].kw = "pencil-keep-highlight";
|
|
ret[0].type = C_BOOLEAN;
|
|
ret[0].u.boolean.bval = ui->pencil_keep_highlight;
|
|
|
|
ret[1].name = NULL;
|
|
ret[1].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void set_prefs(game_ui *ui, const config_item *cfg)
|
|
{
|
|
ui->pencil_keep_highlight = cfg[0].u.boolean.bval;
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
int w = newstate->par.w;
|
|
/*
|
|
* We prevent pencil-mode highlighting of a filled square, unless
|
|
* we're using the cursor keys. So if the user has just filled in
|
|
* a square which we had a pencil-mode highlight in (by Undo, or
|
|
* by Redo, or by Solve), then we cancel the highlight.
|
|
*/
|
|
if (ui->hshow && ui->hpencil && !ui->hcursor &&
|
|
newstate->grid[ui->hy * w + ui->hx] != 0) {
|
|
ui->hshow = false;
|
|
}
|
|
if (ui->hshow && ui->odn > 1) {
|
|
/*
|
|
* Reordering of rows or columns within the range of a
|
|
* multifill selection cancels the multifill and deselects
|
|
* everything.
|
|
*/
|
|
int i;
|
|
for (i = 0; i < ui->odn; i++) {
|
|
if (oldstate->sequence[ui->ohx + i*ui->odx] !=
|
|
newstate->sequence[ui->ohx + i*ui->odx]) {
|
|
ui->hshow = false;
|
|
break;
|
|
}
|
|
if (oldstate->sequence[ui->ohy + i*ui->ody] !=
|
|
newstate->sequence[ui->ohy + i*ui->ody]) {
|
|
ui->hshow = false;
|
|
break;
|
|
}
|
|
}
|
|
} else if (ui->hshow &&
|
|
(newstate->sequence[ui->ohx] != ui->hx ||
|
|
newstate->sequence[ui->ohy] != ui->hy)) {
|
|
/*
|
|
* Otherwise, reordering of the row or column containing the
|
|
* selection causes the selection to move with it.
|
|
*/
|
|
int i;
|
|
for (i = 0; i < w; i++) {
|
|
if (newstate->sequence[i] == ui->hx)
|
|
ui->ohx = i;
|
|
if (newstate->sequence[i] == ui->hy)
|
|
ui->ohy = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
if (ui->hshow && button == CURSOR_SELECT)
|
|
return ui->hpencil ? "Ink" : "Pencil";
|
|
if (ui->hshow && button == CURSOR_SELECT2) {
|
|
int w = state->par.w;
|
|
int i;
|
|
for (i = 0; i < ui->odn; i++) {
|
|
int x = state->sequence[ui->ohx + i*ui->odx];
|
|
int y = state->sequence[ui->ohy + i*ui->ody];
|
|
int index = y*w+x;
|
|
if (ui->hpencil && state->grid[index]) return "";
|
|
if (state->common->immutable[index]) return "";
|
|
}
|
|
return "Clear";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
#define PREFERRED_TILESIZE 48
|
|
#define TILESIZE (ds->tilesize)
|
|
#define BORDER (TILESIZE / 2)
|
|
#define LEGEND (TILESIZE)
|
|
#define GRIDEXTRA max((TILESIZE / 32),1)
|
|
#define COORD(x) ((x)*TILESIZE + BORDER + LEGEND)
|
|
#define FROMCOORD(x) (((x)+(TILESIZE-BORDER-LEGEND)) / TILESIZE - 1)
|
|
|
|
#define FLASH_TIME 0.4F
|
|
|
|
#define DF_DIVIDER_TOP 0x1000
|
|
#define DF_DIVIDER_BOT 0x2000
|
|
#define DF_DIVIDER_LEFT 0x4000
|
|
#define DF_DIVIDER_RIGHT 0x8000
|
|
#define DF_HIGHLIGHT 0x0400
|
|
#define DF_HIGHLIGHT_PENCIL 0x0200
|
|
#define DF_IMMUTABLE 0x0100
|
|
#define DF_LEGEND 0x0080
|
|
#define DF_DIGIT_MASK 0x001F
|
|
|
|
#define EF_DIGIT_SHIFT 5
|
|
#define EF_DIGIT_MASK ((1 << EF_DIGIT_SHIFT) - 1)
|
|
#define EF_LEFT_SHIFT 0
|
|
#define EF_RIGHT_SHIFT (3*EF_DIGIT_SHIFT)
|
|
#define EF_LEFT_MASK ((1UL << (3*EF_DIGIT_SHIFT)) - 1UL)
|
|
#define EF_RIGHT_MASK (EF_LEFT_MASK << EF_RIGHT_SHIFT)
|
|
#define EF_LATIN (1UL << (6*EF_DIGIT_SHIFT))
|
|
|
|
struct game_drawstate {
|
|
game_params par;
|
|
int w, tilesize;
|
|
bool started;
|
|
long *tiles, *legend, *pencil, *errors;
|
|
long *errtmp;
|
|
digit *sequence;
|
|
};
|
|
|
|
static bool check_errors(const game_state *state, long *errors)
|
|
{
|
|
int w = state->par.w, a = w*w;
|
|
digit *grid = state->grid;
|
|
int i, j, k, x, y;
|
|
bool errs = false;
|
|
|
|
/*
|
|
* To verify that we have a valid group table, it suffices to
|
|
* test latin-square-hood and associativity only. All the other
|
|
* group axioms follow from those two.
|
|
*
|
|
* Proof:
|
|
*
|
|
* Associativity is given; closure is obvious from latin-
|
|
* square-hood. We need to show that an identity exists and that
|
|
* every element has an inverse.
|
|
*
|
|
* Identity: take any element a. There will be some element e
|
|
* such that ea=a (in a latin square, every element occurs in
|
|
* every row and column, so a must occur somewhere in the a
|
|
* column, say on row e). For any other element b, there must
|
|
* exist x such that ax=b (same argument from latin-square-hood
|
|
* again), and then associativity gives us eb = e(ax) = (ea)x =
|
|
* ax = b. Hence eb=b for all b, i.e. e is a left-identity. A
|
|
* similar argument tells us that there must be some f which is
|
|
* a right-identity, and then we show they are the same element
|
|
* by observing that ef must simultaneously equal e and equal f.
|
|
*
|
|
* Inverses: given any a, by the latin-square argument again,
|
|
* there must exist p and q such that pa=e and aq=e (i.e. left-
|
|
* and right-inverses). We can show these are equal by
|
|
* associativity: p = pe = p(aq) = (pa)q = eq = q. []
|
|
*/
|
|
|
|
if (errors)
|
|
for (i = 0; i < a; i++)
|
|
errors[i] = 0;
|
|
|
|
for (y = 0; y < w; y++) {
|
|
unsigned long mask = 0, errmask = 0;
|
|
for (x = 0; x < w; x++) {
|
|
unsigned long bit = 1UL << grid[y*w+x];
|
|
errmask |= (mask & bit);
|
|
mask |= bit;
|
|
}
|
|
|
|
if (mask != (1 << (w+1)) - (1 << 1)) {
|
|
errs = true;
|
|
errmask &= ~1UL;
|
|
if (errors) {
|
|
for (x = 0; x < w; x++)
|
|
if (errmask & (1UL << grid[y*w+x]))
|
|
errors[y*w+x] |= EF_LATIN;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < w; x++) {
|
|
unsigned long mask = 0, errmask = 0;
|
|
for (y = 0; y < w; y++) {
|
|
unsigned long bit = 1UL << grid[y*w+x];
|
|
errmask |= (mask & bit);
|
|
mask |= bit;
|
|
}
|
|
|
|
if (mask != (1 << (w+1)) - (1 << 1)) {
|
|
errs = true;
|
|
errmask &= ~1UL;
|
|
if (errors) {
|
|
for (y = 0; y < w; y++)
|
|
if (errmask & (1UL << grid[y*w+x]))
|
|
errors[y*w+x] |= EF_LATIN;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < w; i++)
|
|
for (j = 1; j < w; j++)
|
|
for (k = 1; k < w; k++)
|
|
if (grid[i*w+j] && grid[j*w+k] &&
|
|
grid[(grid[i*w+j]-1)*w+k] &&
|
|
grid[i*w+(grid[j*w+k]-1)] &&
|
|
grid[(grid[i*w+j]-1)*w+k] != grid[i*w+(grid[j*w+k]-1)]) {
|
|
if (errors) {
|
|
int a = i+1, b = j+1, c = k+1;
|
|
int ab = grid[i*w+j], bc = grid[j*w+k];
|
|
int left = (ab-1)*w+(c-1), right = (a-1)*w+(bc-1);
|
|
/*
|
|
* If the appropriate error slot is already
|
|
* used for one of the squares, we don't
|
|
* fill either of them.
|
|
*/
|
|
if (!(errors[left] & EF_LEFT_MASK) &&
|
|
!(errors[right] & EF_RIGHT_MASK)) {
|
|
long err;
|
|
err = a;
|
|
err = (err << EF_DIGIT_SHIFT) | b;
|
|
err = (err << EF_DIGIT_SHIFT) | c;
|
|
errors[left] |= err << EF_LEFT_SHIFT;
|
|
errors[right] |= err << EF_RIGHT_SHIFT;
|
|
}
|
|
}
|
|
errs = true;
|
|
}
|
|
|
|
return errs;
|
|
}
|
|
|
|
static int find_in_sequence(digit *seq, int len, digit n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (seq[i] == n)
|
|
return i;
|
|
|
|
assert(!"Should never get here");
|
|
return -1;
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->par.w;
|
|
int tx, ty;
|
|
char buf[80];
|
|
|
|
button = STRIP_BUTTON_MODIFIERS(button);
|
|
|
|
tx = FROMCOORD(x);
|
|
ty = FROMCOORD(y);
|
|
|
|
if (ui->drag) {
|
|
if (IS_MOUSE_DRAG(button)) {
|
|
int tcoord = ((ui->drag &~ 4) == 1 ? ty : tx);
|
|
ui->drag |= 4; /* some movement has happened */
|
|
if (tcoord >= 0 && tcoord < w) {
|
|
ui->dragpos = tcoord;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if (IS_MOUSE_RELEASE(button)) {
|
|
if (ui->drag & 4) {
|
|
ui->drag = 0; /* end drag */
|
|
if (state->sequence[ui->dragpos] == ui->dragnum)
|
|
return MOVE_UI_UPDATE; /* drag was a no-op overall */
|
|
sprintf(buf, "D%d,%d", ui->dragnum, ui->dragpos);
|
|
return dupstr(buf);
|
|
} else {
|
|
ui->drag = 0; /* end 'drag' */
|
|
if (ui->edgepos > 0 && ui->edgepos < w) {
|
|
sprintf(buf, "V%d,%d",
|
|
state->sequence[ui->edgepos-1],
|
|
state->sequence[ui->edgepos]);
|
|
return dupstr(buf);
|
|
} else
|
|
return MOVE_UI_UPDATE; /* no-op */
|
|
}
|
|
}
|
|
} else if (IS_MOUSE_DOWN(button)) {
|
|
if (tx >= 0 && tx < w && ty >= 0 && ty < w) {
|
|
int otx = tx, oty = ty;
|
|
tx = state->sequence[tx];
|
|
ty = state->sequence[ty];
|
|
if (button == LEFT_BUTTON) {
|
|
if (tx == ui->hx && ty == ui->hy &&
|
|
ui->hshow && !ui->hpencil) {
|
|
ui->hshow = false;
|
|
} else {
|
|
ui->hx = tx;
|
|
ui->hy = ty;
|
|
ui->ohx = otx;
|
|
ui->ohy = oty;
|
|
ui->odx = ui->ody = 0;
|
|
ui->odn = 1;
|
|
ui->hshow = !state->common->immutable[ty*w+tx];
|
|
ui->hpencil = false;
|
|
}
|
|
ui->hcursor = false;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
if (button == RIGHT_BUTTON) {
|
|
/*
|
|
* Pencil-mode highlighting for non filled squares.
|
|
*/
|
|
if (state->grid[ty*w+tx] == 0) {
|
|
if (tx == ui->hx && ty == ui->hy &&
|
|
ui->hshow && ui->hpencil) {
|
|
ui->hshow = false;
|
|
} else {
|
|
ui->hpencil = true;
|
|
ui->hx = tx;
|
|
ui->hy = ty;
|
|
ui->ohx = otx;
|
|
ui->ohy = oty;
|
|
ui->odx = ui->ody = 0;
|
|
ui->odn = 1;
|
|
ui->hshow = true;
|
|
}
|
|
} else {
|
|
ui->hshow = false;
|
|
}
|
|
ui->hcursor = false;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if (tx >= 0 && tx < w && ty == -1) {
|
|
ui->drag = 2;
|
|
ui->dragnum = state->sequence[tx];
|
|
ui->dragpos = tx;
|
|
ui->edgepos = FROMCOORD(x + TILESIZE/2);
|
|
return MOVE_UI_UPDATE;
|
|
} else if (ty >= 0 && ty < w && tx == -1) {
|
|
ui->drag = 1;
|
|
ui->dragnum = state->sequence[ty];
|
|
ui->dragpos = ty;
|
|
ui->edgepos = FROMCOORD(y + TILESIZE/2);
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if (IS_MOUSE_DRAG(button)) {
|
|
if (!ui->hpencil &&
|
|
tx >= 0 && tx < w && ty >= 0 && ty < w &&
|
|
abs(tx - ui->ohx) == abs(ty - ui->ohy)) {
|
|
ui->odn = abs(tx - ui->ohx) + 1;
|
|
ui->odx = (tx < ui->ohx ? -1 : +1);
|
|
ui->ody = (ty < ui->ohy ? -1 : +1);
|
|
} else {
|
|
ui->odx = ui->ody = 0;
|
|
ui->odn = 1;
|
|
}
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
int cx = find_in_sequence(state->sequence, w, ui->hx);
|
|
int cy = find_in_sequence(state->sequence, w, ui->hy);
|
|
move_cursor(button, &cx, &cy, w, w, false, NULL);
|
|
ui->hx = state->sequence[cx];
|
|
ui->hy = state->sequence[cy];
|
|
ui->hshow = true;
|
|
ui->hcursor = true;
|
|
ui->ohx = cx;
|
|
ui->ohy = cy;
|
|
ui->odx = ui->ody = 0;
|
|
ui->odn = 1;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
if (ui->hshow &&
|
|
(button == CURSOR_SELECT)) {
|
|
ui->hpencil = !ui->hpencil;
|
|
ui->hcursor = true;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
if (ui->hshow &&
|
|
((ISCHAR(button) && FROMCHAR(button, state->par.id) <= w) ||
|
|
button == CURSOR_SELECT2 || button == '\b')) {
|
|
int n = FROMCHAR(button, state->par.id);
|
|
int i, buflen;
|
|
char *movebuf;
|
|
|
|
if (button == CURSOR_SELECT2 || button == '\b')
|
|
n = 0;
|
|
|
|
for (i = 0; i < ui->odn; i++) {
|
|
int x = state->sequence[ui->ohx + i*ui->odx];
|
|
int y = state->sequence[ui->ohy + i*ui->ody];
|
|
int index = y*w+x;
|
|
|
|
/*
|
|
* Can't make pencil marks in a filled square. This can only
|
|
* become highlighted if we're using cursor keys.
|
|
*/
|
|
if (ui->hpencil && state->grid[index])
|
|
return NULL;
|
|
|
|
/*
|
|
* Can't do anything to an immutable square. Exception:
|
|
* trying to set it to what it already was is OK (so that
|
|
* multifilling can set a whole diagonal to a without
|
|
* having to detour round the one immutable square in the
|
|
* middle that already said a).
|
|
*/
|
|
if (!ui->hpencil && state->grid[index] == n)
|
|
/* OK even if it is immutable */;
|
|
else if (state->common->immutable[index])
|
|
return NULL;
|
|
}
|
|
|
|
movebuf = snewn(80 * ui->odn, char);
|
|
buflen = sprintf(movebuf, "%c%d,%d,%d",
|
|
(char)(ui->hpencil && n > 0 ? 'P' : 'R'),
|
|
ui->hx, ui->hy, n);
|
|
for (i = 1; i < ui->odn; i++) {
|
|
assert(buflen < i*80);
|
|
buflen += sprintf(movebuf + buflen, "+%d,%d",
|
|
state->sequence[ui->ohx + i*ui->odx],
|
|
state->sequence[ui->ohy + i*ui->ody]);
|
|
}
|
|
movebuf = sresize(movebuf, buflen+1, char);
|
|
|
|
/*
|
|
* Hide the highlight after a keypress, if it was mouse-
|
|
* generated. Also, don't hide it if this move has changed
|
|
* pencil marks and the user preference says not to hide the
|
|
* highlight in that situation.
|
|
*/
|
|
if (!ui->hcursor && !(ui->hpencil && ui->pencil_keep_highlight))
|
|
ui->hshow = false;
|
|
|
|
return movebuf;
|
|
}
|
|
|
|
if (button == 'M' || button == 'm')
|
|
return dupstr("M");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *from, const char *move)
|
|
{
|
|
int w = from->par.w, a = w*w;
|
|
game_state *ret;
|
|
int x, y, i, j, n, pos;
|
|
|
|
if (move[0] == 'S') {
|
|
ret = dup_game(from);
|
|
ret->completed = ret->cheated = true;
|
|
|
|
for (i = 0; i < a; i++) {
|
|
if (!ISCHAR(move[i+1]) || FROMCHAR(move[i+1], from->par.id) > w) {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
ret->grid[i] = FROMCHAR(move[i+1], from->par.id);
|
|
ret->pencil[i] = 0;
|
|
}
|
|
|
|
if (move[a+1] != '\0') {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
return ret;
|
|
} else if ((move[0] == 'P' || move[0] == 'R') &&
|
|
sscanf(move+1, "%d,%d,%d%n", &x, &y, &n, &pos) == 3 &&
|
|
n >= 0 && n <= w) {
|
|
const char *mp = move + 1 + pos;
|
|
bool pencil = (move[0] == 'P');
|
|
ret = dup_game(from);
|
|
|
|
while (1) {
|
|
if (x < 0 || x >= w || y < 0 || y >= w) {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
if (from->common->immutable[y*w+x] &&
|
|
!(!pencil && from->grid[y*w+x] == n))
|
|
return NULL;
|
|
|
|
if (move[0] == 'P' && n > 0) {
|
|
ret->pencil[y*w+x] ^= 1 << n;
|
|
} else {
|
|
ret->grid[y*w+x] = n;
|
|
ret->pencil[y*w+x] = 0;
|
|
}
|
|
|
|
if (!*mp)
|
|
break;
|
|
|
|
if (*mp != '+')
|
|
return NULL;
|
|
if (sscanf(mp, "+%d,%d%n", &x, &y, &pos) < 2)
|
|
return NULL;
|
|
mp += pos;
|
|
}
|
|
|
|
if (!ret->completed && !check_errors(ret, NULL))
|
|
ret->completed = true;
|
|
|
|
return ret;
|
|
} else if (move[0] == 'M') {
|
|
/*
|
|
* Fill in absolutely all pencil marks everywhere. (I
|
|
* wouldn't use this for actual play, but it's a handy
|
|
* starting point when following through a set of
|
|
* diagnostics output by the standalone solver.)
|
|
*/
|
|
ret = dup_game(from);
|
|
for (i = 0; i < a; i++) {
|
|
if (!ret->grid[i])
|
|
ret->pencil[i] = (1 << (w+1)) - (1 << 1);
|
|
}
|
|
return ret;
|
|
} else if (move[0] == 'D' &&
|
|
sscanf(move+1, "%d,%d", &x, &y) == 2) {
|
|
/*
|
|
* Reorder the rows and columns so that digit x is in position
|
|
* y.
|
|
*/
|
|
ret = dup_game(from);
|
|
for (i = j = 0; i < w; i++) {
|
|
if (i == y) {
|
|
ret->sequence[i] = x;
|
|
} else {
|
|
if (from->sequence[j] == x)
|
|
j++;
|
|
ret->sequence[i] = from->sequence[j++];
|
|
}
|
|
}
|
|
/*
|
|
* Eliminate any obsoleted dividers.
|
|
*/
|
|
for (x = 0; x < w; x++) {
|
|
int i = ret->sequence[x];
|
|
int j = (x+1 < w ? ret->sequence[x+1] : -1);
|
|
if (ret->dividers[i] != j)
|
|
ret->dividers[i] = -1;
|
|
}
|
|
return ret;
|
|
} else if (move[0] == 'V' &&
|
|
sscanf(move+1, "%d,%d", &i, &j) == 2) {
|
|
ret = dup_game(from);
|
|
if (ret->dividers[i] == j)
|
|
ret->dividers[i] = -1;
|
|
else
|
|
ret->dividers[i] = j;
|
|
return ret;
|
|
} else
|
|
return NULL; /* couldn't parse move string */
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
#define SIZE(w) ((w) * TILESIZE + 2*BORDER + LEGEND)
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
const game_ui *ui, int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = *y = SIZE(params->w);
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_GRID * 3 + 0] = 0.0F;
|
|
ret[COL_GRID * 3 + 1] = 0.0F;
|
|
ret[COL_GRID * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_USER * 3 + 0] = 0.0F;
|
|
ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_USER * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
ret[COL_ERROR * 3 + 0] = 1.0F;
|
|
ret[COL_ERROR * 3 + 1] = 0.0F;
|
|
ret[COL_ERROR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
ret[COL_DIAGONAL * 3 + 0] = 0.95F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_DIAGONAL * 3 + 1] = 0.95F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_DIAGONAL * 3 + 2] = 0.95F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
int w = state->par.w, a = w*w;
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->w = w;
|
|
ds->par = state->par; /* structure copy */
|
|
ds->tilesize = 0;
|
|
ds->started = false;
|
|
ds->tiles = snewn(a, long);
|
|
ds->legend = snewn(w, long);
|
|
ds->pencil = snewn(a, long);
|
|
ds->errors = snewn(a, long);
|
|
ds->sequence = snewn(a, digit);
|
|
for (i = 0; i < a; i++)
|
|
ds->tiles[i] = ds->pencil[i] = -1;
|
|
for (i = 0; i < w; i++)
|
|
ds->legend[i] = -1;
|
|
ds->errtmp = snewn(a, long);
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->tiles);
|
|
sfree(ds->pencil);
|
|
sfree(ds->errors);
|
|
sfree(ds->errtmp);
|
|
sfree(ds->sequence);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, long tile,
|
|
long pencil, long error)
|
|
{
|
|
int w = ds->w /* , a = w*w */;
|
|
int tx, ty, tw, th;
|
|
int cx, cy, cw, ch;
|
|
char str[64];
|
|
|
|
tx = BORDER + LEGEND + x * TILESIZE + 1;
|
|
ty = BORDER + LEGEND + y * TILESIZE + 1;
|
|
|
|
cx = tx;
|
|
cy = ty;
|
|
cw = tw = TILESIZE-1;
|
|
ch = th = TILESIZE-1;
|
|
|
|
if (tile & DF_LEGEND) {
|
|
cx += TILESIZE/10;
|
|
cy += TILESIZE/10;
|
|
cw -= TILESIZE/5;
|
|
ch -= TILESIZE/5;
|
|
tile |= DF_IMMUTABLE;
|
|
}
|
|
|
|
clip(dr, cx, cy, cw, ch);
|
|
|
|
/* background needs erasing */
|
|
draw_rect(dr, cx, cy, cw, ch,
|
|
(tile & DF_HIGHLIGHT) ? COL_HIGHLIGHT :
|
|
(x == y) ? COL_DIAGONAL : COL_BACKGROUND);
|
|
|
|
/* dividers */
|
|
if (tile & DF_DIVIDER_TOP)
|
|
draw_rect(dr, cx, cy, cw, 1, COL_GRID);
|
|
if (tile & DF_DIVIDER_BOT)
|
|
draw_rect(dr, cx, cy+ch-1, cw, 1, COL_GRID);
|
|
if (tile & DF_DIVIDER_LEFT)
|
|
draw_rect(dr, cx, cy, 1, ch, COL_GRID);
|
|
if (tile & DF_DIVIDER_RIGHT)
|
|
draw_rect(dr, cx+cw-1, cy, 1, ch, COL_GRID);
|
|
|
|
/* pencil-mode highlight */
|
|
if (tile & DF_HIGHLIGHT_PENCIL) {
|
|
int coords[6];
|
|
coords[0] = cx;
|
|
coords[1] = cy;
|
|
coords[2] = cx+cw/2;
|
|
coords[3] = cy;
|
|
coords[4] = cx;
|
|
coords[5] = cy+ch/2;
|
|
draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
}
|
|
|
|
/* new number needs drawing? */
|
|
if (tile & DF_DIGIT_MASK) {
|
|
str[1] = '\0';
|
|
str[0] = TOCHAR(tile & DF_DIGIT_MASK, ds->par.id);
|
|
draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/2,
|
|
FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
(error & EF_LATIN) ? COL_ERROR :
|
|
(tile & DF_IMMUTABLE) ? COL_GRID : COL_USER, str);
|
|
|
|
if (error & EF_LEFT_MASK) {
|
|
int a = (error >> (EF_LEFT_SHIFT+2*EF_DIGIT_SHIFT))&EF_DIGIT_MASK;
|
|
int b = (error >> (EF_LEFT_SHIFT+1*EF_DIGIT_SHIFT))&EF_DIGIT_MASK;
|
|
int c = (error >> (EF_LEFT_SHIFT ))&EF_DIGIT_MASK;
|
|
char buf[10];
|
|
sprintf(buf, "(%c%c)%c", TOCHAR(a, ds->par.id),
|
|
TOCHAR(b, ds->par.id), TOCHAR(c, ds->par.id));
|
|
draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/6,
|
|
FONT_VARIABLE, TILESIZE/6, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_ERROR, buf);
|
|
}
|
|
if (error & EF_RIGHT_MASK) {
|
|
int a = (error >> (EF_RIGHT_SHIFT+2*EF_DIGIT_SHIFT))&EF_DIGIT_MASK;
|
|
int b = (error >> (EF_RIGHT_SHIFT+1*EF_DIGIT_SHIFT))&EF_DIGIT_MASK;
|
|
int c = (error >> (EF_RIGHT_SHIFT ))&EF_DIGIT_MASK;
|
|
char buf[10];
|
|
sprintf(buf, "%c(%c%c)", TOCHAR(a, ds->par.id),
|
|
TOCHAR(b, ds->par.id), TOCHAR(c, ds->par.id));
|
|
draw_text(dr, tx + TILESIZE/2, ty + TILESIZE - TILESIZE/6,
|
|
FONT_VARIABLE, TILESIZE/6, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_ERROR, buf);
|
|
}
|
|
} else {
|
|
int i, j, npencil;
|
|
int pl, pr, pt, pb;
|
|
float bestsize;
|
|
int pw, ph, minph, pbest, fontsize;
|
|
|
|
/* Count the pencil marks required. */
|
|
for (i = 1, npencil = 0; i <= w; i++)
|
|
if (pencil & (1 << i))
|
|
npencil++;
|
|
if (npencil) {
|
|
|
|
minph = 2;
|
|
|
|
/*
|
|
* Determine the bounding rectangle within which we're going
|
|
* to put the pencil marks.
|
|
*/
|
|
/* Start with the whole square */
|
|
pl = tx + GRIDEXTRA;
|
|
pr = pl + TILESIZE - GRIDEXTRA;
|
|
pt = ty + GRIDEXTRA;
|
|
pb = pt + TILESIZE - GRIDEXTRA;
|
|
|
|
/*
|
|
* We arrange our pencil marks in a grid layout, with
|
|
* the number of rows and columns adjusted to allow the
|
|
* maximum font size.
|
|
*
|
|
* So now we work out what the grid size ought to be.
|
|
*/
|
|
bestsize = 0.0;
|
|
pbest = 0;
|
|
/* Minimum */
|
|
for (pw = 3; pw < max(npencil,4); pw++) {
|
|
float fw, fh, fs;
|
|
|
|
ph = (npencil + pw - 1) / pw;
|
|
ph = max(ph, minph);
|
|
fw = (pr - pl) / (float)pw;
|
|
fh = (pb - pt) / (float)ph;
|
|
fs = min(fw, fh);
|
|
if (fs > bestsize) {
|
|
bestsize = fs;
|
|
pbest = pw;
|
|
}
|
|
}
|
|
assert(pbest > 0);
|
|
pw = pbest;
|
|
ph = (npencil + pw - 1) / pw;
|
|
ph = max(ph, minph);
|
|
|
|
/*
|
|
* Now we've got our grid dimensions, work out the pixel
|
|
* size of a grid element, and round it to the nearest
|
|
* pixel. (We don't want rounding errors to make the
|
|
* grid look uneven at low pixel sizes.)
|
|
*/
|
|
fontsize = min((pr - pl) / pw, (pb - pt) / ph);
|
|
|
|
/*
|
|
* Centre the resulting figure in the square.
|
|
*/
|
|
pl = tx + (TILESIZE - fontsize * pw) / 2;
|
|
pt = ty + (TILESIZE - fontsize * ph) / 2;
|
|
|
|
/*
|
|
* Now actually draw the pencil marks.
|
|
*/
|
|
for (i = 1, j = 0; i <= w; i++)
|
|
if (pencil & (1 << i)) {
|
|
int dx = j % pw, dy = j / pw;
|
|
|
|
str[1] = '\0';
|
|
str[0] = TOCHAR(i, ds->par.id);
|
|
draw_text(dr, pl + fontsize * (2*dx+1) / 2,
|
|
pt + fontsize * (2*dy+1) / 2,
|
|
FONT_VARIABLE, fontsize,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
unclip(dr);
|
|
|
|
draw_update(dr, cx, cy, cw, ch);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->par.w /*, a = w*w */;
|
|
int x, y, i, j;
|
|
|
|
if (!ds->started) {
|
|
/*
|
|
* Big containing rectangle.
|
|
*/
|
|
draw_rect(dr, COORD(0) - GRIDEXTRA, COORD(0) - GRIDEXTRA,
|
|
w*TILESIZE+1+GRIDEXTRA*2, w*TILESIZE+1+GRIDEXTRA*2,
|
|
COL_GRID);
|
|
|
|
draw_update(dr, 0, 0, SIZE(w), SIZE(w));
|
|
|
|
ds->started = true;
|
|
}
|
|
|
|
check_errors(state, ds->errtmp);
|
|
|
|
/*
|
|
* Construct a modified version of state->sequence which takes
|
|
* into account an unfinished drag operation.
|
|
*/
|
|
if (ui->drag) {
|
|
x = ui->dragnum;
|
|
y = ui->dragpos;
|
|
} else {
|
|
x = y = -1;
|
|
}
|
|
for (i = j = 0; i < w; i++) {
|
|
if (i == y) {
|
|
ds->sequence[i] = x;
|
|
} else {
|
|
if (state->sequence[j] == x)
|
|
j++;
|
|
ds->sequence[i] = state->sequence[j++];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the table legend.
|
|
*/
|
|
for (x = 0; x < w; x++) {
|
|
int sx = ds->sequence[x];
|
|
long tile = (sx+1) | DF_LEGEND;
|
|
if (ds->legend[x] != tile) {
|
|
ds->legend[x] = tile;
|
|
draw_tile(dr, ds, -1, x, tile, 0, 0);
|
|
draw_tile(dr, ds, x, -1, tile, 0, 0);
|
|
}
|
|
}
|
|
|
|
for (y = 0; y < w; y++) {
|
|
int sy = ds->sequence[y];
|
|
for (x = 0; x < w; x++) {
|
|
long tile = 0L, pencil = 0L, error;
|
|
int sx = ds->sequence[x];
|
|
|
|
if (state->grid[sy*w+sx])
|
|
tile = state->grid[sy*w+sx];
|
|
else
|
|
pencil = (long)state->pencil[sy*w+sx];
|
|
|
|
if (state->common->immutable[sy*w+sx])
|
|
tile |= DF_IMMUTABLE;
|
|
|
|
if ((ui->drag == 5 && ui->dragnum == sy) ||
|
|
(ui->drag == 6 && ui->dragnum == sx)) {
|
|
tile |= DF_HIGHLIGHT;
|
|
} else if (ui->hshow) {
|
|
int i = abs(x - ui->ohx);
|
|
bool highlight = false;
|
|
if (ui->odn > 1) {
|
|
/*
|
|
* When a diagonal multifill selection is shown,
|
|
* we show it in its original grid position
|
|
* regardless of in-progress row/col drags. Moving
|
|
* every square about would be horrible.
|
|
*/
|
|
if (i >= 0 && i < ui->odn &&
|
|
x == ui->ohx + i*ui->odx &&
|
|
y == ui->ohy + i*ui->ody)
|
|
highlight = true;
|
|
} else {
|
|
/*
|
|
* For a single square, we move its highlight
|
|
* around with the drag.
|
|
*/
|
|
highlight = (ui->hx == sx && ui->hy == sy);
|
|
}
|
|
if (highlight)
|
|
tile |= (ui->hpencil ? DF_HIGHLIGHT_PENCIL : DF_HIGHLIGHT);
|
|
}
|
|
|
|
if (flashtime > 0 &&
|
|
(flashtime <= FLASH_TIME/3 ||
|
|
flashtime >= FLASH_TIME*2/3))
|
|
tile |= DF_HIGHLIGHT; /* completion flash */
|
|
|
|
if (y <= 0 || state->dividers[ds->sequence[y-1]] == sy)
|
|
tile |= DF_DIVIDER_TOP;
|
|
if (y+1 >= w || state->dividers[sy] == ds->sequence[y+1])
|
|
tile |= DF_DIVIDER_BOT;
|
|
if (x <= 0 || state->dividers[ds->sequence[x-1]] == sx)
|
|
tile |= DF_DIVIDER_LEFT;
|
|
if (x+1 >= w || state->dividers[sx] == ds->sequence[x+1])
|
|
tile |= DF_DIVIDER_RIGHT;
|
|
|
|
error = ds->errtmp[sy*w+sx];
|
|
|
|
if (ds->tiles[y*w+x] != tile ||
|
|
ds->pencil[y*w+x] != pencil ||
|
|
ds->errors[y*w+x] != error) {
|
|
ds->tiles[y*w+x] = tile;
|
|
ds->pencil[y*w+x] = pencil;
|
|
ds->errors[y*w+x] = error;
|
|
draw_tile(dr, ds, x, y, tile, pencil, error);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static bool game_timing_state(const game_state *state, game_ui *ui)
|
|
{
|
|
if (state->completed)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, const game_ui *ui,
|
|
float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* We use 9mm squares by default, like Solo.
|
|
*/
|
|
game_compute_size(params, 900, ui, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
|
|
int tilesize)
|
|
{
|
|
int w = state->par.w;
|
|
int ink = print_mono_colour(dr, 0);
|
|
int x, y;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
|
|
/*
|
|
* Border.
|
|
*/
|
|
print_line_width(dr, 3 * TILESIZE / 40);
|
|
draw_rect_outline(dr, BORDER + LEGEND, BORDER + LEGEND,
|
|
w*TILESIZE, w*TILESIZE, ink);
|
|
|
|
/*
|
|
* Legend on table.
|
|
*/
|
|
for (x = 0; x < w; x++) {
|
|
char str[2];
|
|
str[1] = '\0';
|
|
str[0] = TOCHAR(x+1, state->par.id);
|
|
draw_text(dr, BORDER+LEGEND + x*TILESIZE + TILESIZE/2,
|
|
BORDER + TILESIZE/2,
|
|
FONT_VARIABLE, TILESIZE/2,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
|
|
draw_text(dr, BORDER + TILESIZE/2,
|
|
BORDER+LEGEND + x*TILESIZE + TILESIZE/2,
|
|
FONT_VARIABLE, TILESIZE/2,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
|
|
}
|
|
|
|
/*
|
|
* Main grid.
|
|
*/
|
|
for (x = 1; x < w; x++) {
|
|
print_line_width(dr, TILESIZE / 40);
|
|
draw_line(dr, BORDER+LEGEND+x*TILESIZE, BORDER+LEGEND,
|
|
BORDER+LEGEND+x*TILESIZE, BORDER+LEGEND+w*TILESIZE, ink);
|
|
}
|
|
for (y = 1; y < w; y++) {
|
|
print_line_width(dr, TILESIZE / 40);
|
|
draw_line(dr, BORDER+LEGEND, BORDER+LEGEND+y*TILESIZE,
|
|
BORDER+LEGEND+w*TILESIZE, BORDER+LEGEND+y*TILESIZE, ink);
|
|
}
|
|
|
|
/*
|
|
* Numbers.
|
|
*/
|
|
for (y = 0; y < w; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (state->grid[y*w+x]) {
|
|
char str[2];
|
|
str[1] = '\0';
|
|
str[0] = TOCHAR(state->grid[y*w+x], state->par.id);
|
|
draw_text(dr, BORDER+LEGEND + x*TILESIZE + TILESIZE/2,
|
|
BORDER+LEGEND + y*TILESIZE + TILESIZE/2,
|
|
FONT_VARIABLE, TILESIZE/2,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame group
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Group", NULL, NULL,
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
get_prefs, set_prefs,
|
|
new_ui,
|
|
free_ui,
|
|
NULL, /* encode_ui */
|
|
NULL, /* decode_ui */
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
current_key_label,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILESIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
true, false, game_print_size, game_print,
|
|
false, /* wants_statusbar */
|
|
false, game_timing_state,
|
|
REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
#include <stdarg.h>
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
game_state *s;
|
|
char *id = NULL, *desc;
|
|
const char *err;
|
|
digit *grid;
|
|
bool grade = false;
|
|
int ret, diff;
|
|
bool really_show_working = false;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (!strcmp(p, "-v")) {
|
|
really_show_working = true;
|
|
} else if (!strcmp(p, "-g")) {
|
|
grade = true;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
return 1;
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
|
|
grid = snewn(p->w * p->w, digit);
|
|
|
|
/*
|
|
* When solving a Normal puzzle, we don't want to bother the
|
|
* user with Hard-level deductions. For this reason, we grade
|
|
* the puzzle internally before doing anything else.
|
|
*/
|
|
ret = -1; /* placate optimiser */
|
|
solver_show_working = 0;
|
|
for (diff = 0; diff < DIFFCOUNT; diff++) {
|
|
memcpy(grid, s->grid, p->w * p->w);
|
|
ret = solver(&s->par, grid, diff);
|
|
if (ret <= diff)
|
|
break;
|
|
}
|
|
|
|
if (diff == DIFFCOUNT) {
|
|
if (really_show_working) {
|
|
solver_show_working = true;
|
|
memcpy(grid, s->grid, p->w * p->w);
|
|
ret = solver(&s->par, grid, DIFFCOUNT - 1);
|
|
}
|
|
if (grade)
|
|
printf("Difficulty rating: ambiguous\n");
|
|
else
|
|
printf("Unable to find a unique solution\n");
|
|
} else {
|
|
if (grade) {
|
|
if (ret == diff_impossible)
|
|
printf("Difficulty rating: impossible (no solution exists)\n");
|
|
else
|
|
printf("Difficulty rating: %s\n", group_diffnames[ret]);
|
|
} else {
|
|
solver_show_working = really_show_working;
|
|
memcpy(grid, s->grid, p->w * p->w);
|
|
ret = solver(&s->par, grid, diff);
|
|
if (ret != diff)
|
|
printf("Puzzle is inconsistent\n");
|
|
else {
|
|
memcpy(s->grid, grid, p->w * p->w);
|
|
fputs(game_text_format(s), stdout);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|