mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 23:51:29 -07:00
Files

The cursor keys navigate amongst the points. CURSOR_SELECT toggles dragging; CURSOR_SELECT2 and the Tab key cycle through the points. The cursor navigation scheme jumps to the nearest point within the quadrant of the cursor direction; this seems to yield fairly intuitive gameplay. Unfortunately, the "quadrant-nearest-neighbors" digraph produced by this scheme is not necessarily fully reciprocal; that is, pressing opposite cursor keys in sequence does not always return to the original point. There doesn't seem to be any immediately obvious way around this. As for connectivity (i.e. whether all points are reachable from any given point), I could not find a counterexample, but I don't yet have a formal proof that this is the case in general. Hence, I've added the ability to cycle through all the points with Tab. (This will probably also be useful in conjunction with the "Numbers" point drawing preference.)
1812 lines
48 KiB
C
1812 lines
48 KiB
C
/*
|
|
* untangle.c: Game about planar graphs. You are given a graph
|
|
* represented by points and straight lines, with some lines
|
|
* crossing; your task is to drag the points into a configuration
|
|
* where none of the lines cross.
|
|
*
|
|
* Cloned from a Flash game called `Planarity', by John Tantalo.
|
|
* <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
|
|
* this. The Flash game had a fixed set of levels; my added value,
|
|
* as usual, is automatic generation of random games to order.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - This puzzle, perhaps uniquely among the collection, could use
|
|
* support for non-aspect-ratio-preserving resizes. This would
|
|
* require some sort of fairly large redesign, unfortunately (since
|
|
* it would invalidate the basic assumption that puzzles' size
|
|
* requirements are adequately expressed by a single scalar tile
|
|
* size), and probably complicate the rest of the puzzles' API as a
|
|
* result. So I'm not sure I really want to do it.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#ifdef NO_TGMATH_H
|
|
# include <math.h>
|
|
#else
|
|
# include <tgmath.h>
|
|
#endif
|
|
#if HAVE_STDINT_H
|
|
# include <stdint.h>
|
|
#endif
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
#define CIRCLE_RADIUS 6
|
|
#define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
|
|
#define PREFERRED_TILESIZE 64
|
|
|
|
#define FLASH_TIME 0.30F
|
|
#define ANIM_TIME 0.13F
|
|
#define SOLVEANIM_TIME 0.50F
|
|
|
|
enum {
|
|
COL_SYSBACKGROUND,
|
|
COL_BACKGROUND,
|
|
COL_LINE,
|
|
COL_CROSSEDLINE,
|
|
COL_OUTLINE,
|
|
COL_POINT,
|
|
COL_DRAGPOINT,
|
|
COL_CURSORPOINT,
|
|
COL_NEIGHBOUR,
|
|
COL_FLASH1,
|
|
COL_FLASH2,
|
|
NCOLOURS
|
|
};
|
|
|
|
typedef struct point {
|
|
/*
|
|
* Points are stored using rational coordinates, with the same
|
|
* denominator for both coordinates.
|
|
*/
|
|
long x, y, d;
|
|
} point;
|
|
|
|
typedef struct edge {
|
|
/*
|
|
* This structure is implicitly associated with a particular
|
|
* point set, so all it has to do is to store two point
|
|
* indices. It is required to store them in the order (lower,
|
|
* higher), i.e. a < b always.
|
|
*/
|
|
int a, b;
|
|
} edge;
|
|
|
|
struct game_params {
|
|
int n; /* number of points */
|
|
};
|
|
|
|
struct graph {
|
|
int refcount; /* for deallocation */
|
|
tree234 *edges; /* stores `edge' structures */
|
|
};
|
|
|
|
struct game_state {
|
|
game_params params;
|
|
int w, h; /* extent of coordinate system only */
|
|
point *pts;
|
|
int *crosses; /* mark edges which are crossed */
|
|
struct graph *graph;
|
|
bool completed, cheated, just_solved;
|
|
};
|
|
|
|
static int edgecmpC(const void *av, const void *bv)
|
|
{
|
|
const edge *a = (const edge *)av;
|
|
const edge *b = (const edge *)bv;
|
|
|
|
if (a->a < b->a)
|
|
return -1;
|
|
else if (a->a > b->a)
|
|
return +1;
|
|
else if (a->b < b->b)
|
|
return -1;
|
|
else if (a->b > b->b)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = 10;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
int n;
|
|
char buf[80];
|
|
|
|
switch (i) {
|
|
case 0: n = 6; break;
|
|
case 1: n = 10; break;
|
|
case 2: n = 15; break;
|
|
case 3: n = 20; break;
|
|
case 4: n = 25; break;
|
|
default: return false;
|
|
}
|
|
|
|
sprintf(buf, "%d points", n);
|
|
*name = dupstr(buf);
|
|
|
|
*params = ret = snew(game_params);
|
|
ret->n = n;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->n = atoi(string);
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char buf[80];
|
|
|
|
sprintf(buf, "%d", params->n);
|
|
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Number of points";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = NULL;
|
|
ret[1].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = atoi(cfg[0].u.string.sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->n < 4)
|
|
return "Number of points must be at least four";
|
|
if (params->n > INT_MAX / 3)
|
|
return "Number of points must not be unreasonably large";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Small number of 64-bit integer arithmetic operations, to prevent
|
|
* integer overflow at the very core of cross().
|
|
*/
|
|
|
|
#if !HAVE_STDINT_H
|
|
/* For prehistoric C implementations, do this the hard way */
|
|
|
|
typedef struct {
|
|
long hi;
|
|
unsigned long lo;
|
|
} int64;
|
|
|
|
#define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo))
|
|
#define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1)
|
|
|
|
static int64 mulu32to64(unsigned long x, unsigned long y)
|
|
{
|
|
unsigned long a, b, c, d, t;
|
|
int64 ret;
|
|
|
|
a = (x & 0xFFFF) * (y & 0xFFFF);
|
|
b = (x & 0xFFFF) * (y >> 16);
|
|
c = (x >> 16) * (y & 0xFFFF);
|
|
d = (x >> 16) * (y >> 16);
|
|
|
|
ret.lo = a;
|
|
ret.hi = d + (b >> 16) + (c >> 16);
|
|
t = (b & 0xFFFF) << 16;
|
|
ret.lo += t;
|
|
if (ret.lo < t)
|
|
ret.hi++;
|
|
t = (c & 0xFFFF) << 16;
|
|
ret.lo += t;
|
|
if (ret.lo < t)
|
|
ret.hi++;
|
|
|
|
#ifdef DIAGNOSTIC_VIA_LONGLONG
|
|
assert(((unsigned long long)ret.hi << 32) + ret.lo ==
|
|
(unsigned long long)x * y);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int64 mul32to64(long x, long y)
|
|
{
|
|
int sign = +1;
|
|
int64 ret;
|
|
#ifdef DIAGNOSTIC_VIA_LONGLONG
|
|
long long realret = (long long)x * y;
|
|
#endif
|
|
|
|
if (x < 0)
|
|
x = -x, sign = -sign;
|
|
if (y < 0)
|
|
y = -y, sign = -sign;
|
|
|
|
ret = mulu32to64(x, y);
|
|
|
|
if (sign < 0) {
|
|
ret.hi = -ret.hi;
|
|
ret.lo = -ret.lo;
|
|
if (ret.lo)
|
|
ret.hi--;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC_VIA_LONGLONG
|
|
assert(((unsigned long long)ret.hi << 32) + ret.lo == realret);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int64 dotprod64(long a, long b, long p, long q)
|
|
{
|
|
int64 ab, pq;
|
|
|
|
ab = mul32to64(a, b);
|
|
pq = mul32to64(p, q);
|
|
ab.hi += pq.hi;
|
|
ab.lo += pq.lo;
|
|
if (ab.lo < pq.lo)
|
|
ab.hi++;
|
|
return ab;
|
|
}
|
|
|
|
#else /* HAVE_STDINT_H */
|
|
|
|
typedef int64_t int64;
|
|
#define greater64(i,j) ((i) > (j))
|
|
#define sign64(i) ((i) < 0 ? -1 : (i)==0 ? 0 : +1)
|
|
#define mulu32to64(x,y) ((int64_t)(unsigned long)(x) * (unsigned long)(y))
|
|
#define mul32to64(x,y) ((int64_t)(long)(x) * (long)(y))
|
|
|
|
static int64 dotprod64(long a, long b, long p, long q)
|
|
{
|
|
return (int64)a * b + (int64)p * q;
|
|
}
|
|
|
|
#endif /* HAVE_STDINT_H */
|
|
|
|
/*
|
|
* Determine whether the line segments between a1 and a2, and
|
|
* between b1 and b2, intersect. We count it as an intersection if
|
|
* any of the endpoints lies _on_ the other line.
|
|
*/
|
|
static bool cross(point a1, point a2, point b1, point b2)
|
|
{
|
|
long b1x, b1y, b2x, b2y, px, py;
|
|
int64 d1, d2, d3;
|
|
|
|
/*
|
|
* The condition for crossing is that b1 and b2 are on opposite
|
|
* sides of the line a1-a2, and vice versa. We determine this
|
|
* by taking the dot product of b1-a1 with a vector
|
|
* perpendicular to a2-a1, and similarly with b2-a1, and seeing
|
|
* if they have different signs.
|
|
*/
|
|
|
|
/*
|
|
* Construct the vector b1-a1. We don't have to worry too much
|
|
* about the denominator, because we're only going to check the
|
|
* sign of this vector; we just need to get the numerator
|
|
* right.
|
|
*/
|
|
b1x = b1.x * a1.d - a1.x * b1.d;
|
|
b1y = b1.y * a1.d - a1.y * b1.d;
|
|
/* Now construct b2-a1, and a vector perpendicular to a2-a1,
|
|
* in the same way. */
|
|
b2x = b2.x * a1.d - a1.x * b2.d;
|
|
b2y = b2.y * a1.d - a1.y * b2.d;
|
|
px = a1.y * a2.d - a2.y * a1.d;
|
|
py = a2.x * a1.d - a1.x * a2.d;
|
|
/* Take the dot products. Here we resort to 64-bit arithmetic. */
|
|
d1 = dotprod64(b1x, px, b1y, py);
|
|
d2 = dotprod64(b2x, px, b2y, py);
|
|
/* If they have the same non-zero sign, the lines do not cross. */
|
|
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
|
|
(sign64(d1) < 0 && sign64(d2) < 0))
|
|
return false;
|
|
|
|
/*
|
|
* If the dot products are both exactly zero, then the two line
|
|
* segments are collinear. At this point the intersection
|
|
* condition becomes whether or not they overlap within their
|
|
* line.
|
|
*/
|
|
if (sign64(d1) == 0 && sign64(d2) == 0) {
|
|
/* Construct the vector a2-a1. */
|
|
px = a2.x * a1.d - a1.x * a2.d;
|
|
py = a2.y * a1.d - a1.y * a2.d;
|
|
/* Determine the dot products of b1-a1 and b2-a1 with this. */
|
|
d1 = dotprod64(b1x, px, b1y, py);
|
|
d2 = dotprod64(b2x, px, b2y, py);
|
|
/* If they're both strictly negative, the lines do not cross. */
|
|
if (sign64(d1) < 0 && sign64(d2) < 0)
|
|
return false;
|
|
/* Otherwise, take the dot product of a2-a1 with itself. If
|
|
* the other two dot products both exceed this, the lines do
|
|
* not cross. */
|
|
d3 = dotprod64(px, px, py, py);
|
|
if (greater64(d1, d3) && greater64(d2, d3))
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We've eliminated the only important special case, and we
|
|
* have determined that b1 and b2 are on opposite sides of the
|
|
* line a1-a2. Now do the same thing the other way round and
|
|
* we're done.
|
|
*/
|
|
b1x = a1.x * b1.d - b1.x * a1.d;
|
|
b1y = a1.y * b1.d - b1.y * a1.d;
|
|
b2x = a2.x * b1.d - b1.x * a2.d;
|
|
b2y = a2.y * b1.d - b1.y * a2.d;
|
|
px = b1.y * b2.d - b2.y * b1.d;
|
|
py = b2.x * b1.d - b1.x * b2.d;
|
|
d1 = dotprod64(b1x, px, b1y, py);
|
|
d2 = dotprod64(b2x, px, b2y, py);
|
|
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
|
|
(sign64(d1) < 0 && sign64(d2) < 0))
|
|
return false;
|
|
|
|
/*
|
|
* The lines must cross.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
static unsigned long squarert(unsigned long n) {
|
|
unsigned long d, a, b, di;
|
|
|
|
d = n;
|
|
a = 0;
|
|
b = 1L << 30; /* largest available power of 4 */
|
|
do {
|
|
a >>= 1;
|
|
di = 2*a + b;
|
|
if (di <= d) {
|
|
d -= di;
|
|
a += b;
|
|
}
|
|
b >>= 2;
|
|
} while (b);
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Our solutions are arranged on a square grid big enough that n
|
|
* points occupy about 1/POINTDENSITY of the grid.
|
|
*/
|
|
#define POINTDENSITY 3
|
|
#define MAXDEGREE 4
|
|
#define COORDLIMIT(n) squarert((n) * POINTDENSITY)
|
|
|
|
static void addedge(tree234 *edges, int a, int b)
|
|
{
|
|
edge *e = snew(edge);
|
|
|
|
assert(a != b);
|
|
|
|
e->a = min(a, b);
|
|
e->b = max(a, b);
|
|
|
|
if (add234(edges, e) != e)
|
|
/* Duplicate edge. */
|
|
sfree(e);
|
|
}
|
|
|
|
static bool isedge(tree234 *edges, int a, int b)
|
|
{
|
|
edge e;
|
|
|
|
assert(a != b);
|
|
|
|
e.a = min(a, b);
|
|
e.b = max(a, b);
|
|
|
|
return find234(edges, &e, NULL) != NULL;
|
|
}
|
|
|
|
typedef struct vertex {
|
|
int param;
|
|
int vindex;
|
|
} vertex;
|
|
|
|
static int vertcmpC(const void *av, const void *bv)
|
|
{
|
|
const vertex *a = (const vertex *)av;
|
|
const vertex *b = (const vertex *)bv;
|
|
|
|
if (a->param < b->param)
|
|
return -1;
|
|
else if (a->param > b->param)
|
|
return +1;
|
|
else if (a->vindex < b->vindex)
|
|
return -1;
|
|
else if (a->vindex > b->vindex)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
|
|
|
|
/*
|
|
* Construct point coordinates for n points arranged in a circle,
|
|
* within the bounding box (0,0) to (w,w).
|
|
*/
|
|
static void make_circle(point *pts, int n, int w)
|
|
{
|
|
long d, r, c, i;
|
|
|
|
/*
|
|
* First, decide on a denominator. Although in principle it
|
|
* would be nice to set this really high so as to finely
|
|
* distinguish all the points on the circle, I'm going to set
|
|
* it at a fixed size to prevent integer overflow problems.
|
|
*/
|
|
d = PREFERRED_TILESIZE;
|
|
|
|
/*
|
|
* Leave a little space outside the circle.
|
|
*/
|
|
c = d * w / 2;
|
|
r = d * w * 3 / 7;
|
|
|
|
/*
|
|
* Place the points.
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
double angle = i * 2 * PI / n;
|
|
double x = r * sin(angle), y = - r * cos(angle);
|
|
pts[i].x = (long)(c + x + 0.5);
|
|
pts[i].y = (long)(c + y + 0.5);
|
|
pts[i].d = d;
|
|
}
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
int n = params->n, i;
|
|
long w, h, j, k, m;
|
|
point *pts, *pts2;
|
|
long *tmp;
|
|
tree234 *edges, *vertices;
|
|
edge *e, *e2;
|
|
vertex *v, *vs, *vlist;
|
|
char *ret;
|
|
|
|
w = h = COORDLIMIT(n);
|
|
|
|
/*
|
|
* Choose n points from this grid.
|
|
*/
|
|
pts = snewn(n, point);
|
|
tmp = snewn(w*h, long);
|
|
for (i = 0; i < w*h; i++)
|
|
tmp[i] = i;
|
|
shuffle(tmp, w*h, sizeof(*tmp), rs);
|
|
for (i = 0; i < n; i++) {
|
|
pts[i].x = tmp[i] % w;
|
|
pts[i].y = tmp[i] / w;
|
|
pts[i].d = 1;
|
|
}
|
|
sfree(tmp);
|
|
|
|
/*
|
|
* Now start adding edges between the points.
|
|
*
|
|
* At all times, we attempt to add an edge to the lowest-degree
|
|
* vertex we currently have, and we try the other vertices as
|
|
* candidate second endpoints in order of distance from this
|
|
* one. We stop as soon as we find an edge which
|
|
*
|
|
* (a) does not increase any vertex's degree beyond MAXDEGREE
|
|
* (b) does not cross any existing edges
|
|
* (c) does not intersect any actual point.
|
|
*/
|
|
vs = snewn(n, vertex);
|
|
vertices = newtree234(vertcmp);
|
|
for (i = 0; i < n; i++) {
|
|
v = vs + i;
|
|
v->param = 0; /* in this tree, param is the degree */
|
|
v->vindex = i;
|
|
add234(vertices, v);
|
|
}
|
|
edges = newtree234(edgecmp);
|
|
vlist = snewn(n, vertex);
|
|
while (1) {
|
|
bool added = false;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
v = index234(vertices, i);
|
|
j = v->vindex;
|
|
|
|
if (v->param >= MAXDEGREE)
|
|
break; /* nothing left to add! */
|
|
|
|
/*
|
|
* Sort the other vertices into order of their distance
|
|
* from this one. Don't bother looking below i, because
|
|
* we've already tried those edges the other way round.
|
|
* Also here we rule out target vertices with too high
|
|
* a degree, and (of course) ones to which we already
|
|
* have an edge.
|
|
*/
|
|
m = 0;
|
|
for (k = i+1; k < n; k++) {
|
|
vertex *kv = index234(vertices, k);
|
|
int ki = kv->vindex;
|
|
int dx, dy;
|
|
|
|
if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
|
|
continue;
|
|
|
|
vlist[m].vindex = ki;
|
|
dx = pts[ki].x - pts[j].x;
|
|
dy = pts[ki].y - pts[j].y;
|
|
vlist[m].param = dx*dx + dy*dy;
|
|
m++;
|
|
}
|
|
|
|
qsort(vlist, m, sizeof(*vlist), vertcmpC);
|
|
|
|
for (k = 0; k < m; k++) {
|
|
int p;
|
|
int ki = vlist[k].vindex;
|
|
|
|
/*
|
|
* Check to see whether this edge intersects any
|
|
* existing edge or point.
|
|
*/
|
|
for (p = 0; p < n; p++)
|
|
if (p != ki && p != j && cross(pts[ki], pts[j],
|
|
pts[p], pts[p]))
|
|
break;
|
|
if (p < n)
|
|
continue;
|
|
for (p = 0; (e = index234(edges, p)) != NULL; p++)
|
|
if (e->a != ki && e->a != j &&
|
|
e->b != ki && e->b != j &&
|
|
cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
|
|
break;
|
|
if (e)
|
|
continue;
|
|
|
|
/*
|
|
* We're done! Add this edge, modify the degrees of
|
|
* the two vertices involved, and break.
|
|
*/
|
|
addedge(edges, j, ki);
|
|
added = true;
|
|
del234(vertices, vs+j);
|
|
vs[j].param++;
|
|
add234(vertices, vs+j);
|
|
del234(vertices, vs+ki);
|
|
vs[ki].param++;
|
|
add234(vertices, vs+ki);
|
|
break;
|
|
}
|
|
|
|
if (k < m)
|
|
break;
|
|
}
|
|
|
|
if (!added)
|
|
break; /* we're done. */
|
|
}
|
|
|
|
/*
|
|
* That's our graph. Now shuffle the points, making sure that
|
|
* they come out with at least one crossed line when arranged
|
|
* in a circle (so that the puzzle isn't immediately solved!).
|
|
*/
|
|
tmp = snewn(n, long);
|
|
for (i = 0; i < n; i++)
|
|
tmp[i] = i;
|
|
pts2 = snewn(n, point);
|
|
make_circle(pts2, n, w);
|
|
while (1) {
|
|
shuffle(tmp, n, sizeof(*tmp), rs);
|
|
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
|
|
for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
|
|
if (e2->a == e->a || e2->a == e->b ||
|
|
e2->b == e->a || e2->b == e->b)
|
|
continue;
|
|
if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
|
|
pts2[tmp[e->a]], pts2[tmp[e->b]]))
|
|
break;
|
|
}
|
|
if (e2)
|
|
break;
|
|
}
|
|
if (e)
|
|
break; /* we've found a crossing */
|
|
}
|
|
|
|
/*
|
|
* We're done. Now encode the graph in a string format. Let's
|
|
* use a comma-separated list of dash-separated vertex number
|
|
* pairs, numbered from zero. We'll sort the list to prevent
|
|
* side channels.
|
|
*/
|
|
ret = NULL;
|
|
{
|
|
const char *sep;
|
|
char buf[80];
|
|
int retlen;
|
|
edge *ea;
|
|
|
|
retlen = 0;
|
|
m = count234(edges);
|
|
ea = snewn(m, edge);
|
|
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
|
|
assert(i < m);
|
|
ea[i].a = min(tmp[e->a], tmp[e->b]);
|
|
ea[i].b = max(tmp[e->a], tmp[e->b]);
|
|
retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
|
|
}
|
|
assert(i == m);
|
|
qsort(ea, m, sizeof(*ea), edgecmpC);
|
|
|
|
ret = snewn(retlen, char);
|
|
sep = "";
|
|
k = 0;
|
|
|
|
for (i = 0; i < m; i++) {
|
|
k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
|
|
sep = ",";
|
|
}
|
|
assert(k < retlen);
|
|
|
|
sfree(ea);
|
|
}
|
|
|
|
/*
|
|
* Encode the solution we started with as an aux_info string.
|
|
*/
|
|
{
|
|
char buf[80];
|
|
char *auxstr;
|
|
int auxlen;
|
|
|
|
auxlen = 2; /* leading 'S' and trailing '\0' */
|
|
for (i = 0; i < n; i++) {
|
|
j = tmp[i];
|
|
pts2[j] = pts[i];
|
|
if (pts2[j].d & 1) {
|
|
pts2[j].x *= 2;
|
|
pts2[j].y *= 2;
|
|
pts2[j].d *= 2;
|
|
}
|
|
pts2[j].x += pts2[j].d / 2;
|
|
pts2[j].y += pts2[j].d / 2;
|
|
auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
|
|
pts2[j].x, pts2[j].y, pts2[j].d);
|
|
}
|
|
k = 0;
|
|
auxstr = snewn(auxlen, char);
|
|
auxstr[k++] = 'S';
|
|
for (i = 0; i < n; i++)
|
|
k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
|
|
pts2[i].x, pts2[i].y, pts2[i].d);
|
|
assert(k < auxlen);
|
|
*aux = auxstr;
|
|
}
|
|
sfree(pts2);
|
|
|
|
sfree(tmp);
|
|
sfree(vlist);
|
|
freetree234(vertices);
|
|
sfree(vs);
|
|
while ((e = delpos234(edges, 0)) != NULL)
|
|
sfree(e);
|
|
freetree234(edges);
|
|
sfree(pts);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int a, b;
|
|
|
|
while (*desc) {
|
|
a = atoi(desc);
|
|
if (a < 0 || a >= params->n)
|
|
return "Number out of range in game description";
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc != '-')
|
|
return "Expected '-' after number in game description";
|
|
desc++; /* eat dash */
|
|
b = atoi(desc);
|
|
if (b < 0 || b >= params->n)
|
|
return "Number out of range in game description";
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc) {
|
|
if (*desc != ',')
|
|
return "Expected ',' after number in game description";
|
|
desc++; /* eat comma */
|
|
}
|
|
if (a == b)
|
|
return "Node linked to itself in game description";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void mark_crossings(game_state *state)
|
|
{
|
|
bool ok = true;
|
|
int i, j;
|
|
edge *e, *e2;
|
|
|
|
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++)
|
|
state->crosses[i] = false;
|
|
|
|
/*
|
|
* Check correctness: for every pair of edges, see whether they
|
|
* cross.
|
|
*/
|
|
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
|
|
for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) {
|
|
if (e2->a == e->a || e2->a == e->b ||
|
|
e2->b == e->a || e2->b == e->b)
|
|
continue;
|
|
if (cross(state->pts[e2->a], state->pts[e2->b],
|
|
state->pts[e->a], state->pts[e->b])) {
|
|
ok = false;
|
|
state->crosses[i] = state->crosses[j] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* e == NULL if we've gone through all the edge pairs
|
|
* without finding a crossing.
|
|
*/
|
|
if (ok)
|
|
state->completed = true;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
int n = params->n;
|
|
game_state *state = snew(game_state);
|
|
int a, b;
|
|
|
|
state->params = *params;
|
|
state->w = state->h = COORDLIMIT(n);
|
|
state->pts = snewn(n, point);
|
|
make_circle(state->pts, n, state->w);
|
|
state->graph = snew(struct graph);
|
|
state->graph->refcount = 1;
|
|
state->graph->edges = newtree234(edgecmp);
|
|
state->completed = state->cheated = state->just_solved = false;
|
|
|
|
while (*desc) {
|
|
a = atoi(desc);
|
|
assert(a >= 0 && a < params->n);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
assert(*desc == '-');
|
|
desc++; /* eat dash */
|
|
b = atoi(desc);
|
|
assert(b >= 0 && b < params->n);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc) {
|
|
assert(*desc == ',');
|
|
desc++; /* eat comma */
|
|
}
|
|
addedge(state->graph->edges, a, b);
|
|
}
|
|
|
|
state->crosses = snewn(count234(state->graph->edges), int);
|
|
mark_crossings(state); /* sets up `crosses' and `completed' */
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
int n = state->params.n;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->params = state->params;
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->pts = snewn(n, point);
|
|
memcpy(ret->pts, state->pts, n * sizeof(point));
|
|
ret->graph = state->graph;
|
|
ret->graph->refcount++;
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
ret->just_solved = state->just_solved;
|
|
ret->crosses = snewn(count234(ret->graph->edges), int);
|
|
memcpy(ret->crosses, state->crosses,
|
|
count234(ret->graph->edges) * sizeof(int));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->graph->refcount <= 0) {
|
|
edge *e;
|
|
while ((e = delpos234(state->graph->edges, 0)) != NULL)
|
|
sfree(e);
|
|
freetree234(state->graph->edges);
|
|
sfree(state->graph);
|
|
}
|
|
sfree(state->pts);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
int n = state->params.n;
|
|
int matrix[4];
|
|
point *pts;
|
|
int i, j, besti;
|
|
float bestd;
|
|
char buf[80], *ret;
|
|
int retlen, retsize;
|
|
|
|
if (!aux) {
|
|
*error = "Solution not known for this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Decode the aux_info to get the original point positions.
|
|
*/
|
|
pts = snewn(n, point);
|
|
aux++; /* eat 'S' */
|
|
for (i = 0; i < n; i++) {
|
|
int p, k;
|
|
long x, y, d;
|
|
int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
|
|
if (ret != 4 || p != i) {
|
|
*error = "Internal error: aux_info badly formatted";
|
|
sfree(pts);
|
|
return NULL;
|
|
}
|
|
pts[i].x = x;
|
|
pts[i].y = y;
|
|
pts[i].d = d;
|
|
aux += k;
|
|
}
|
|
|
|
/*
|
|
* Now go through eight possible symmetries of the point set.
|
|
* For each one, work out the sum of the Euclidean distances
|
|
* between the points' current positions and their new ones.
|
|
*
|
|
* We're squaring distances here, which means we're at risk of
|
|
* integer overflow. Fortunately, there's no real need to be
|
|
* massively careful about rounding errors, since this is a
|
|
* non-essential bit of the code; so I'll just work in floats
|
|
* internally.
|
|
*/
|
|
besti = -1;
|
|
bestd = 0.0F;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
float d;
|
|
|
|
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
|
|
matrix[i & 1] = (i & 2) ? +1 : -1;
|
|
matrix[3-(i&1)] = (i & 4) ? +1 : -1;
|
|
|
|
d = 0.0F;
|
|
for (j = 0; j < n; j++) {
|
|
float px = (float)pts[j].x / pts[j].d;
|
|
float py = (float)pts[j].y / pts[j].d;
|
|
float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
|
|
float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
|
|
float cx = (float)currstate->w / 2;
|
|
float cy = (float)currstate->h / 2;
|
|
float ox, oy, dx, dy;
|
|
|
|
px -= cx;
|
|
py -= cy;
|
|
|
|
ox = matrix[0] * px + matrix[1] * py;
|
|
oy = matrix[2] * px + matrix[3] * py;
|
|
|
|
ox += cx;
|
|
oy += cy;
|
|
|
|
dx = ox - sx;
|
|
dy = oy - sy;
|
|
|
|
d += dx*dx + dy*dy;
|
|
}
|
|
|
|
if (besti < 0 || bestd > d) {
|
|
besti = i;
|
|
bestd = d;
|
|
}
|
|
}
|
|
|
|
assert(besti >= 0);
|
|
|
|
/*
|
|
* Now we know which symmetry is closest to the points' current
|
|
* positions. Use it.
|
|
*/
|
|
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
|
|
matrix[besti & 1] = (besti & 2) ? +1 : -1;
|
|
matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
|
|
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = 0;
|
|
ret[retlen++] = 'S';
|
|
ret[retlen] = '\0';
|
|
|
|
for (i = 0; i < n; i++) {
|
|
float px = (float)pts[i].x / pts[i].d;
|
|
float py = (float)pts[i].y / pts[i].d;
|
|
float cx = (float)currstate->w / 2;
|
|
float cy = (float)currstate->h / 2;
|
|
float ox, oy;
|
|
int extra;
|
|
|
|
px -= cx;
|
|
py -= cy;
|
|
|
|
ox = matrix[0] * px + matrix[1] * py;
|
|
oy = matrix[2] * px + matrix[3] * py;
|
|
|
|
ox += cx;
|
|
oy += cy;
|
|
|
|
/*
|
|
* Use a fixed denominator of 2, because we know the
|
|
* original points were on an integer grid offset by 1/2.
|
|
*/
|
|
pts[i].d = 2;
|
|
ox *= pts[i].d;
|
|
oy *= pts[i].d;
|
|
pts[i].x = (long)(ox + 0.5F);
|
|
pts[i].y = (long)(oy + 0.5F);
|
|
|
|
extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
|
|
pts[i].x, pts[i].y, pts[i].d);
|
|
if (retlen + extra >= retsize) {
|
|
retsize = retlen + extra + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += extra;
|
|
}
|
|
|
|
sfree(pts);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
/* Invariant: at most one of {dragpoint, cursorpoint} may be valid
|
|
* at any time. */
|
|
int dragpoint; /* point being dragged; -1 if none */
|
|
int cursorpoint; /* point being highlighted, but
|
|
* not dragged by the cursor,
|
|
* again -1 if none */
|
|
|
|
point newpoint; /* where it's been dragged to so far */
|
|
bool just_dragged; /* reset in game_changed_state */
|
|
bool just_moved; /* _set_ in game_changed_state */
|
|
float anim_length;
|
|
|
|
/*
|
|
* User preference option to snap dragged points to a coarse-ish
|
|
* grid. Requested by a user who otherwise found themself spending
|
|
* too much time struggling to get lines nicely horizontal or
|
|
* vertical.
|
|
*/
|
|
bool snap_to_grid;
|
|
|
|
/*
|
|
* User preference option to highlight graph edges involved in a
|
|
* crossing.
|
|
*/
|
|
bool show_crossed_edges;
|
|
|
|
/*
|
|
* User preference option to show vertices as numbers instead of
|
|
* circular blobs, so you can easily tell them apart.
|
|
*/
|
|
bool vertex_numbers;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->dragpoint = -1;
|
|
ui->cursorpoint = -1;
|
|
ui->just_moved = ui->just_dragged = false;
|
|
ui->snap_to_grid = false;
|
|
ui->show_crossed_edges = false;
|
|
ui->vertex_numbers = false;
|
|
return ui;
|
|
}
|
|
|
|
static config_item *get_prefs(game_ui *ui)
|
|
{
|
|
config_item *cfg;
|
|
|
|
cfg = snewn(4, config_item);
|
|
|
|
cfg[0].name = "Snap points to a grid";
|
|
cfg[0].kw = "snap-to-grid";
|
|
cfg[0].type = C_BOOLEAN;
|
|
cfg[0].u.boolean.bval = ui->snap_to_grid;
|
|
|
|
cfg[1].name = "Show edges that cross another edge";
|
|
cfg[1].kw = "show-crossed-edges";
|
|
cfg[1].type = C_BOOLEAN;
|
|
cfg[1].u.boolean.bval = ui->show_crossed_edges;
|
|
|
|
cfg[2].name = "Display style for vertices";
|
|
cfg[2].kw = "vertex-style";
|
|
cfg[2].type = C_CHOICES;
|
|
cfg[2].u.choices.choicenames = ":Circles:Numbers";
|
|
cfg[2].u.choices.choicekws = ":circle:number";
|
|
cfg[2].u.choices.selected = ui->vertex_numbers;
|
|
|
|
cfg[3].name = NULL;
|
|
cfg[3].type = C_END;
|
|
|
|
return cfg;
|
|
}
|
|
|
|
static void set_prefs(game_ui *ui, const config_item *cfg)
|
|
{
|
|
ui->snap_to_grid = cfg[0].u.boolean.bval;
|
|
ui->show_crossed_edges = cfg[1].u.boolean.bval;
|
|
ui->vertex_numbers = cfg[2].u.choices.selected;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
ui->dragpoint = -1;
|
|
ui->just_moved = ui->just_dragged;
|
|
ui->just_dragged = false;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
long tilesize;
|
|
int bg, dragpoint, cursorpoint;
|
|
long *x, *y;
|
|
};
|
|
|
|
static void place_dragged_point(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds, int x, int y)
|
|
{
|
|
if (ui->snap_to_grid) {
|
|
/*
|
|
* We snap points to a grid that has n-1 vertices on each
|
|
* side. This should be large enough to permit a straight-
|
|
* line drawing of any n-vertex planar graph, and moreover,
|
|
* any specific planar embedding of that graph.
|
|
*
|
|
* Source: David Eppstein's book 'Forbidden Configurations in
|
|
* Discrete Geometry' mentions (section 16.3, page 182) that
|
|
* the point configuration he describes as GRID(n-1,n-1) -
|
|
* that is, the vertices of a square grid with n-1 vertices on
|
|
* each side - is universal for n-vertex planar graphs. In
|
|
* other words (from definitions earlier in the chapter), if a
|
|
* graph G admits any drawing in the plane at all, then it can
|
|
* be drawn with straight lines, and with all vertices being
|
|
* vertices of that grid.
|
|
*
|
|
* That fact by itself only says that _some_ planar embedding
|
|
* of G can be drawn in this grid. We'd prefer that _all_
|
|
* embeddings of G can be so drawn, because 'snap to grid' is
|
|
* supposed to be a UI affordance, not an extra puzzle
|
|
* challenge, so we don't want to constrain the player's
|
|
* choice of planar embedding.
|
|
*
|
|
* But it doesn't make a difference. Proof: given a specific
|
|
* planar embedding of G, triangulate it, by adding extra
|
|
* edges to every face of degree > 3. When this process
|
|
* terminates with every face a triangle, we have a new graph
|
|
* G' such that no edge can be added without it ceasing to be
|
|
* planar. Standard theorems say that a maximal planar graph
|
|
* is 3-connected, and that a 3-connected planar graph has a
|
|
* _unique_ embedding. So any drawing of G' in the plane can
|
|
* be converted into a drawing of G in the desired embedding,
|
|
* by simply removing all the extra edges that we added to
|
|
* turn G into G'. And G' is still an n-vertex planar graph,
|
|
* hence it can be drawn in GRID(n-1,n-1). []
|
|
*/
|
|
int d = state->params.n - 1;
|
|
|
|
/* Calculate position in terms of the snapping grid. */
|
|
x = d * x / (state->w * ds->tilesize);
|
|
y = d * y / (state->h * ds->tilesize);
|
|
/* Convert to standard co-ordinates, applying a half-square offset. */
|
|
ui->newpoint.x = (x * 2 + 1) * state->w;
|
|
ui->newpoint.y = (y * 2 + 1) * state->h;
|
|
ui->newpoint.d = d * 2;
|
|
} else {
|
|
ui->newpoint.x = x;
|
|
ui->newpoint.y = y;
|
|
ui->newpoint.d = ds->tilesize;
|
|
}
|
|
}
|
|
|
|
static float normsq(point pt) {
|
|
return (pt.x * pt.x + pt.y * pt.y) / (pt.d * pt.d);
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int n = state->params.n;
|
|
|
|
if (IS_MOUSE_DOWN(button)) {
|
|
int i, best;
|
|
long bestd;
|
|
|
|
/*
|
|
* Begin drag. We drag the vertex _nearest_ to the pointer,
|
|
* just in case one is nearly on top of another and we want
|
|
* to drag the latter. However, we drag nothing at all if
|
|
* the nearest vertex is outside DRAG_THRESHOLD.
|
|
*/
|
|
best = -1;
|
|
bestd = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
|
|
long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
|
|
long dx = px - x;
|
|
long dy = py - y;
|
|
long d = dx*dx + dy*dy;
|
|
|
|
if (best == -1 || bestd > d) {
|
|
best = i;
|
|
bestd = d;
|
|
}
|
|
}
|
|
|
|
if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
|
|
ui->dragpoint = best;
|
|
ui->cursorpoint = -1; /* eliminate the cursor point, if any */
|
|
place_dragged_point(state, ui, ds, x, y);
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
return MOVE_NO_EFFECT;
|
|
} else if (IS_MOUSE_DRAG(button) && ui->dragpoint >= 0) {
|
|
place_dragged_point(state, ui, ds, x, y);
|
|
return MOVE_UI_UPDATE;
|
|
} else if (IS_MOUSE_RELEASE(button) && ui->dragpoint >= 0) {
|
|
int p = ui->dragpoint;
|
|
char buf[80];
|
|
|
|
ui->dragpoint = -1; /* terminate drag, no matter what */
|
|
ui->cursorpoint = -1; /* also eliminate the cursor point */
|
|
|
|
/*
|
|
* First, see if we're within range. The user can cancel a
|
|
* drag by dragging the point right off the window.
|
|
*/
|
|
if (ui->newpoint.x < 0 ||
|
|
ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
|
|
ui->newpoint.y < 0 ||
|
|
ui->newpoint.y >= (long)state->h*ui->newpoint.d)
|
|
return MOVE_UI_UPDATE;
|
|
|
|
/*
|
|
* We aren't cancelling the drag. Construct a move string
|
|
* indicating where this point is going to.
|
|
*/
|
|
sprintf(buf, "P%d:%ld,%ld/%ld", p,
|
|
ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
|
|
ui->just_dragged = true;
|
|
return dupstr(buf);
|
|
} else if (IS_MOUSE_DRAG(button) || IS_MOUSE_RELEASE(button)) {
|
|
return MOVE_NO_EFFECT;
|
|
}
|
|
else if(IS_CURSOR_MOVE(button)) {
|
|
if(ui->dragpoint < 0) {
|
|
/*
|
|
* We're selecting a point with the cursor keys.
|
|
*
|
|
* If no point is currently highlighted, we assume the "0"
|
|
* point is highlighted to begin. Then, we search all the
|
|
* points and find the nearest one (by Euclidean distance)
|
|
* in the quadrant corresponding to the cursor key
|
|
* direction. A point is in the right quadrant if and only
|
|
* if the azimuth angle to that point from the cursor
|
|
* point is within a [-45 deg, +45 deg] interval from the
|
|
* direction vector of the cursor key.
|
|
*
|
|
* An important corner case here is if another point is in
|
|
* the exact same location as the currently highlighted
|
|
* point (which is a possibility with the "snap to grid"
|
|
* preference). In this case, we do not consider the other
|
|
* point as a candidate point, so as to prevent the cursor
|
|
* from being "stuck" on any point. The player can still
|
|
* select the overlapped point by dragging the highlighted
|
|
* point away and then navigating back.
|
|
*/
|
|
int i, best = -1;
|
|
float bestd = 0;
|
|
|
|
if(ui->cursorpoint < 0) {
|
|
ui->cursorpoint = 0;
|
|
}
|
|
|
|
point cur = state->pts[ui->cursorpoint];
|
|
|
|
for (i = 0; i < n; i++) {
|
|
point delta;
|
|
float distsq;
|
|
point p = state->pts[i];
|
|
int right_direction = false;
|
|
|
|
if(i == ui->cursorpoint)
|
|
continue;
|
|
|
|
/* Compute the vector p - cur. Check that it lies in
|
|
* the correct quadrant. */
|
|
delta.x = p.x * cur.d - cur.x * p.d;
|
|
delta.y = p.y * cur.d - cur.y * p.d;
|
|
delta.d = cur.d * p.d;
|
|
|
|
if(delta.x == 0 && delta.y == 0)
|
|
continue; /* overlaps cursor point - skip */
|
|
|
|
switch(button) {
|
|
case CURSOR_UP:
|
|
right_direction = (delta.y <= -delta.x) && (delta.y <= delta.x);
|
|
break;
|
|
case CURSOR_DOWN:
|
|
right_direction = (delta.y >= -delta.x) && (delta.y >= delta.x);
|
|
break;
|
|
case CURSOR_LEFT:
|
|
right_direction = (delta.y >= delta.x) && (delta.y <= -delta.x);
|
|
break;
|
|
case CURSOR_RIGHT:
|
|
right_direction = (delta.y <= delta.x) && (delta.y >= -delta.x);
|
|
break;
|
|
}
|
|
|
|
if(!right_direction)
|
|
continue;
|
|
|
|
/* Compute squared Euclidean distance */
|
|
distsq = normsq(delta);
|
|
|
|
if (best == -1 || distsq < bestd) {
|
|
best = i;
|
|
bestd = distsq;
|
|
}
|
|
}
|
|
|
|
if(best >= 0) {
|
|
ui->cursorpoint = best;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
}
|
|
else if(ui->dragpoint >= 0) {
|
|
/* Dragging a point with the cursor keys. */
|
|
int movement_increment = ds->tilesize / 2;
|
|
int dx = 0, dy = 0;
|
|
|
|
switch(button) {
|
|
case CURSOR_UP:
|
|
dy = -movement_increment;
|
|
break;
|
|
case CURSOR_DOWN:
|
|
dy = movement_increment;
|
|
break;
|
|
case CURSOR_LEFT:
|
|
dx = -movement_increment;
|
|
break;
|
|
case CURSOR_RIGHT:
|
|
dx = movement_increment;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* This code has a slightly inconvenient interaction with
|
|
* the snap to grid feature: if the point being dragged
|
|
* originates on a non-grid point which is in the bottom
|
|
* half or right half (or both) of a grid cell (a 75%
|
|
* probability), then dragging point right (if it
|
|
* originates from the right half) or down (if it
|
|
* originates from the bottom half) will cause the point
|
|
* to move one more grid cell than intended in that
|
|
* direction. I (F. Wei) it wasn't worth handling this
|
|
* corner case - if anyone feels inclined, please feel
|
|
* free to do so. */
|
|
place_dragged_point(state, ui, ds,
|
|
ui->newpoint.x * ds->tilesize / ui->newpoint.d + dx,
|
|
ui->newpoint.y * ds->tilesize / ui->newpoint.d + dy);
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if(button == CURSOR_SELECT) {
|
|
if(ui->dragpoint < 0 && ui->cursorpoint >= 0) {
|
|
/* begin drag */
|
|
ui->dragpoint = ui->cursorpoint;
|
|
ui->cursorpoint = -1;
|
|
ui->newpoint.x = state->pts[ui->dragpoint].x * ds->tilesize / state->pts[ui->dragpoint].d;
|
|
ui->newpoint.y = state->pts[ui->dragpoint].y * ds->tilesize / state->pts[ui->dragpoint].d;
|
|
ui->newpoint.d = ds->tilesize;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
else if(ui->dragpoint >= 0) {
|
|
/* end drag */
|
|
int p = ui->dragpoint;
|
|
char buf[80];
|
|
|
|
ui->cursorpoint = ui->dragpoint;
|
|
ui->dragpoint = -1; /* terminate drag, no matter what */
|
|
|
|
/*
|
|
* First, see if we're within range. The user can cancel a
|
|
* drag by dragging the point right off the window.
|
|
*/
|
|
if (ui->newpoint.x < 0 ||
|
|
ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
|
|
ui->newpoint.y < 0 ||
|
|
ui->newpoint.y >= (long)state->h*ui->newpoint.d)
|
|
return MOVE_UI_UPDATE;
|
|
|
|
/*
|
|
* We aren't cancelling the drag. Construct a move string
|
|
* indicating where this point is going to.
|
|
*/
|
|
sprintf(buf, "P%d:%ld,%ld/%ld", p,
|
|
ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
|
|
ui->just_dragged = true;
|
|
return dupstr(buf);
|
|
}
|
|
else if(ui->cursorpoint < 0) {
|
|
ui->cursorpoint = 0;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if(STRIP_BUTTON_MODIFIERS(button) == CURSOR_SELECT2 ||
|
|
STRIP_BUTTON_MODIFIERS(button) == '\t') {
|
|
/* Use spacebar or tab to cycle through the points. Shift
|
|
* reverses cycle direction. */
|
|
if(ui->dragpoint >= 0)
|
|
return MOVE_NO_EFFECT;
|
|
if(ui->cursorpoint < 0) {
|
|
ui->cursorpoint = 0;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
assert(ui->cursorpoint >= 0);
|
|
|
|
/* cursorpoint is valid - increment it */
|
|
int direction = (button & MOD_SHFT) ? -1 : 1;
|
|
ui->cursorpoint = (ui->cursorpoint + direction + state->params.n) % state->params.n;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
return MOVE_UNUSED;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int n = state->params.n;
|
|
int p, k;
|
|
long x, y, d;
|
|
game_state *ret = dup_game(state);
|
|
|
|
ret->just_solved = false;
|
|
|
|
while (*move) {
|
|
if (*move == 'S') {
|
|
move++;
|
|
if (*move == ';') move++;
|
|
ret->cheated = ret->just_solved = true;
|
|
}
|
|
if (*move == 'P' &&
|
|
sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
|
|
p >= 0 && p < n && d > 0) {
|
|
ret->pts[p].x = x;
|
|
ret->pts[p].y = y;
|
|
ret->pts[p].d = d;
|
|
|
|
move += k+1;
|
|
if (*move == ';') move++;
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
mark_crossings(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
const game_ui *ui, int *x, int *y)
|
|
{
|
|
*x = *y = COORDLIMIT(params->n) * tilesize;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
/*
|
|
* COL_BACKGROUND is what we use as the normal background colour.
|
|
* Unusually, though, it isn't colour #0: COL_SYSBACKGROUND, a bit
|
|
* darker, takes that place. This means that if the user resizes
|
|
* an Untangle window so as to change its aspect ratio, the
|
|
* still-square playable area will be distinguished from the dead
|
|
* space around it.
|
|
*/
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_SYSBACKGROUND);
|
|
|
|
ret[COL_LINE * 3 + 0] = 0.0F;
|
|
ret[COL_LINE * 3 + 1] = 0.0F;
|
|
ret[COL_LINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_CROSSEDLINE * 3 + 0] = 1.0F;
|
|
ret[COL_CROSSEDLINE * 3 + 1] = 0.0F;
|
|
ret[COL_CROSSEDLINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_OUTLINE * 3 + 0] = 0.0F;
|
|
ret[COL_OUTLINE * 3 + 1] = 0.0F;
|
|
ret[COL_OUTLINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_POINT * 3 + 0] = 0.0F;
|
|
ret[COL_POINT * 3 + 1] = 0.0F;
|
|
ret[COL_POINT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
|
|
ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
|
|
ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_CURSORPOINT * 3 + 0] = 0.5F;
|
|
ret[COL_CURSORPOINT * 3 + 1] = 0.5F;
|
|
ret[COL_CURSORPOINT * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
|
|
ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
|
|
ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_FLASH1 * 3 + 0] = 0.5F;
|
|
ret[COL_FLASH1 * 3 + 1] = 0.5F;
|
|
ret[COL_FLASH1 * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_FLASH2 * 3 + 0] = 1.0F;
|
|
ret[COL_FLASH2 * 3 + 1] = 1.0F;
|
|
ret[COL_FLASH2 * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->tilesize = 0;
|
|
ds->x = snewn(state->params.n, long);
|
|
ds->y = snewn(state->params.n, long);
|
|
for (i = 0; i < state->params.n; i++)
|
|
ds->x[i] = ds->y[i] = -1;
|
|
ds->bg = -1;
|
|
ds->dragpoint = -1;
|
|
ds->cursorpoint = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->y);
|
|
sfree(ds->x);
|
|
sfree(ds);
|
|
}
|
|
|
|
static point mix(point a, point b, float distance)
|
|
{
|
|
point ret;
|
|
|
|
ret.d = a.d * b.d;
|
|
ret.x = (long)(a.x * b.d + distance * (b.x * a.d - a.x * b.d));
|
|
ret.y = (long)(a.y * b.d + distance * (b.y * a.d - a.y * b.d));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w, h;
|
|
edge *e;
|
|
int i, j;
|
|
int bg;
|
|
bool points_moved;
|
|
|
|
/*
|
|
* There's no terribly sensible way to do partial redraws of
|
|
* this game, so I'm going to have to resort to redrawing the
|
|
* whole thing every time.
|
|
*/
|
|
|
|
if (flashtime == 0)
|
|
bg = COL_BACKGROUND;
|
|
else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0)
|
|
bg = COL_FLASH1;
|
|
else
|
|
bg = COL_FLASH2;
|
|
|
|
/*
|
|
* To prevent excessive spinning on redraw during a completion
|
|
* flash, we first check to see if _either_ the flash
|
|
* background colour has changed _or_ at least one point has
|
|
* moved _or_ a drag has begun or ended, and abandon the redraw
|
|
* if neither is the case.
|
|
*
|
|
* Also in this loop we work out the coordinates of all the
|
|
* points for this redraw.
|
|
*/
|
|
points_moved = false;
|
|
for (i = 0; i < state->params.n; i++) {
|
|
point p = state->pts[i];
|
|
long x, y;
|
|
|
|
if (ui->dragpoint == i)
|
|
p = ui->newpoint;
|
|
|
|
if (oldstate)
|
|
p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
|
|
|
|
x = p.x * ds->tilesize / p.d;
|
|
y = p.y * ds->tilesize / p.d;
|
|
|
|
if (ds->x[i] != x || ds->y[i] != y)
|
|
points_moved = true;
|
|
|
|
ds->x[i] = x;
|
|
ds->y[i] = y;
|
|
}
|
|
|
|
if (ds->bg == bg &&
|
|
ds->dragpoint == ui->dragpoint &&
|
|
ds->cursorpoint == ui->cursorpoint && !points_moved)
|
|
return; /* nothing to do */
|
|
|
|
ds->dragpoint = ui->dragpoint;
|
|
ds->cursorpoint = ui->cursorpoint;
|
|
ds->bg = bg;
|
|
|
|
game_compute_size(&state->params, ds->tilesize, ui, &w, &h);
|
|
draw_rect(dr, 0, 0, w, h, bg);
|
|
|
|
/*
|
|
* Draw the edges.
|
|
*/
|
|
|
|
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
|
|
draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b],
|
|
ui->show_crossed_edges &&
|
|
(oldstate?oldstate:state)->crosses[i] ?
|
|
COL_CROSSEDLINE : COL_LINE);
|
|
}
|
|
|
|
/*
|
|
* Draw the points.
|
|
*
|
|
* When dragging, we vary the point colours to highlight the drag
|
|
* point and neighbour points. The draw order is defined so that
|
|
* the most relevant points (i.e., the dragged point and cursor
|
|
* point) are drawn last, so they appear on top of other points.
|
|
*/
|
|
static const int draw_order[] = {
|
|
COL_POINT,
|
|
COL_NEIGHBOUR,
|
|
COL_CURSORPOINT,
|
|
COL_DRAGPOINT
|
|
};
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
int thisc = draw_order[j];
|
|
for (i = 0; i < state->params.n; i++) {
|
|
int c;
|
|
|
|
if (ui->dragpoint == i) {
|
|
c = COL_DRAGPOINT;
|
|
} else if(ui->cursorpoint == i) {
|
|
c = COL_CURSORPOINT;
|
|
} else if (ui->dragpoint >= 0 &&
|
|
isedge(state->graph->edges, ui->dragpoint, i)) {
|
|
c = COL_NEIGHBOUR;
|
|
} else {
|
|
c = COL_POINT;
|
|
}
|
|
|
|
if (c == thisc) {
|
|
if (ui->vertex_numbers) {
|
|
char buf[80];
|
|
draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg);
|
|
sprintf(buf, "%d", i);
|
|
draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE,
|
|
DRAG_THRESHOLD*3/2,
|
|
ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
|
|
} else {
|
|
draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS,
|
|
c, COL_OUTLINE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
draw_update(dr, 0, 0, w, h);
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (ui->just_moved)
|
|
return 0.0F;
|
|
if ((dir < 0 ? oldstate : newstate)->just_solved)
|
|
ui->anim_length = SOLVEANIM_TIME;
|
|
else
|
|
ui->anim_length = ANIM_TIME;
|
|
return ui->anim_length;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
point pt;
|
|
if(ui->dragpoint >= 0)
|
|
pt = ui->newpoint;
|
|
else if(ui->cursorpoint >= 0)
|
|
pt = state->pts[ui->cursorpoint];
|
|
else
|
|
return;
|
|
|
|
int cx = ds->tilesize * pt.x / pt.d;
|
|
int cy = ds->tilesize * pt.y / pt.d;
|
|
|
|
*x = cx - CIRCLE_RADIUS;
|
|
*y = cy - CIRCLE_RADIUS;
|
|
*w = *h = 2 * CIRCLE_RADIUS + 1;
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame untangle
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Untangle", "games.untangle", "untangle",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
false, NULL, NULL, /* can_format_as_text_now, text_format */
|
|
get_prefs, set_prefs,
|
|
new_ui,
|
|
free_ui,
|
|
NULL, /* encode_ui */
|
|
NULL, /* decode_ui */
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
NULL, /* current_key_label */
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILESIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
false, false, NULL, NULL, /* print_size, print */
|
|
false, /* wants_statusbar */
|
|
false, NULL, /* timing_state */
|
|
SOLVE_ANIMATES, /* flags */
|
|
};
|