Files
puzzles/map.c
Simon Tatham b0614e6da8 `Solve' operation on an already solved map without an aux_info was
returning NULL due to no moves being required, leading to a strange
error message. Trivial fix.

[originally from svn r6198]
2005-08-22 09:27:52 +00:00

2216 lines
54 KiB
C

/*
* map.c: Game involving four-colouring a map.
*/
/*
* TODO:
*
* - error highlighting
* - clue marking
* - more solver brains?
* - better four-colouring algorithm?
* - pencil marks?
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
/*
* I don't seriously anticipate wanting to change the number of
* colours used in this game, but it doesn't cost much to use a
* #define just in case :-)
*/
#define FOUR 4
#define THREE (FOUR-1)
#define FIVE (FOUR+1)
#define SIX (FOUR+2)
/*
* Ghastly run-time configuration option, just for Gareth (again).
*/
static int flash_type = -1;
static float flash_length;
/*
* Difficulty levels. I do some macro ickery here to ensure that my
* enum and the various forms of my name list always match up.
*/
#define DIFFLIST(A) \
A(EASY,Easy,e) \
A(NORMAL,Normal,n)
#define ENUM(upper,title,lower) DIFF_ ## upper,
#define TITLE(upper,title,lower) #title,
#define ENCODE(upper,title,lower) #lower
#define CONFIG(upper,title,lower) ":" #title
enum { DIFFLIST(ENUM) DIFFCOUNT };
static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
static char const map_diffchars[] = DIFFLIST(ENCODE);
#define DIFFCONFIG DIFFLIST(CONFIG)
enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */
enum {
COL_BACKGROUND,
COL_GRID,
COL_0, COL_1, COL_2, COL_3,
NCOLOURS
};
struct game_params {
int w, h, n, diff;
};
struct map {
int refcount;
int *map;
int *graph;
int n;
int ngraph;
int *immutable;
};
struct game_state {
game_params p;
struct map *map;
int *colouring;
int completed, cheated;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = 20;
ret->h = 15;
ret->n = 30;
ret->diff = DIFF_NORMAL;
return ret;
}
static const struct game_params map_presets[] = {
{20, 15, 30, DIFF_EASY},
{20, 15, 30, DIFF_NORMAL},
{30, 25, 75, DIFF_NORMAL},
};
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char str[80];
if (i < 0 || i >= lenof(map_presets))
return FALSE;
ret = snew(game_params);
*ret = map_presets[i];
sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
map_diffnames[ret->diff]);
*name = dupstr(str);
*params = ret;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
char const *p = string;
params->w = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == 'x') {
p++;
params->h = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->h = params->w;
}
if (*p == 'n') {
p++;
params->n = atoi(p);
while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
} else {
params->n = params->w * params->h / 8;
}
if (*p == 'd') {
int i;
p++;
for (i = 0; i < DIFFCOUNT; i++)
if (*p == map_diffchars[i])
params->diff = i;
if (*p) p++;
}
}
static char *encode_params(game_params *params, int full)
{
char ret[400];
sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
if (full)
sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
return dupstr(ret);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(5, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Regions";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = "Difficulty";
ret[3].type = C_CHOICES;
ret[3].sval = DIFFCONFIG;
ret[3].ival = params->diff;
ret[4].name = NULL;
ret[4].type = C_END;
ret[4].sval = NULL;
ret[4].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->n = atoi(cfg[2].sval);
ret->diff = cfg[3].ival;
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->w < 2 || params->h < 2)
return "Width and height must be at least two";
if (params->n < 5)
return "Must have at least five regions";
if (params->n > params->w * params->h)
return "Too many regions to fit in grid";
return NULL;
}
/* ----------------------------------------------------------------------
* Cumulative frequency table functions.
*/
/*
* Initialise a cumulative frequency table. (Hardly worth writing
* this function; all it does is to initialise everything in the
* array to zero.)
*/
static void cf_init(int *table, int n)
{
int i;
for (i = 0; i < n; i++)
table[i] = 0;
}
/*
* Increment the count of symbol `sym' by `count'.
*/
static void cf_add(int *table, int n, int sym, int count)
{
int bit;
bit = 1;
while (sym != 0) {
if (sym & bit) {
table[sym] += count;
sym &= ~bit;
}
bit <<= 1;
}
table[0] += count;
}
/*
* Cumulative frequency lookup: return the total count of symbols
* with value less than `sym'.
*/
static int cf_clookup(int *table, int n, int sym)
{
int bit, index, limit, count;
if (sym == 0)
return 0;
assert(0 < sym && sym <= n);
count = table[0]; /* start with the whole table size */
bit = 1;
while (bit < n)
bit <<= 1;
limit = n;
while (bit > 0) {
/*
* Find the least number with its lowest set bit in this
* position which is greater than or equal to sym.
*/
index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
if (index < limit) {
count -= table[index];
limit = index;
}
bit >>= 1;
}
return count;
}
/*
* Single frequency lookup: return the count of symbol `sym'.
*/
static int cf_slookup(int *table, int n, int sym)
{
int count, bit;
assert(0 <= sym && sym < n);
count = table[sym];
for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
count -= table[sym+bit];
return count;
}
/*
* Return the largest symbol index such that the cumulative
* frequency up to that symbol is less than _or equal to_ count.
*/
static int cf_whichsym(int *table, int n, int count) {
int bit, sym, top;
assert(count >= 0 && count < table[0]);
bit = 1;
while (bit < n)
bit <<= 1;
sym = 0;
top = table[0];
while (bit > 0) {
if (sym+bit < n) {
if (count >= top - table[sym+bit])
sym += bit;
else
top -= table[sym+bit];
}
bit >>= 1;
}
return sym;
}
/* ----------------------------------------------------------------------
* Map generation.
*
* FIXME: this isn't entirely optimal at present, because it
* inherently prioritises growing the largest region since there
* are more squares adjacent to it. This acts as a destabilising
* influence leading to a few large regions and mostly small ones.
* It might be better to do it some other way.
*/
#define WEIGHT_INCREASED 2 /* for increased perimeter */
#define WEIGHT_DECREASED 4 /* for decreased perimeter */
#define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */
/*
* Look at a square and decide which colours can be extended into
* it.
*
* If called with index < 0, it adds together one of
* WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
* colour that has a valid extension (according to the effect that
* it would have on the perimeter of the region being extended) and
* returns the overall total.
*
* If called with index >= 0, it returns one of the possible
* colours depending on the value of index, in such a way that the
* number of possible inputs which would give rise to a given
* return value correspond to the weight of that value.
*/
static int extend_options(int w, int h, int n, int *map,
int x, int y, int index)
{
int c, i, dx, dy;
int col[8];
int total = 0;
if (map[y*w+x] >= 0) {
assert(index < 0);
return 0; /* can't do this square at all */
}
/*
* Fetch the eight neighbours of this square, in order around
* the square.
*/
for (dy = -1; dy <= +1; dy++)
for (dx = -1; dx <= +1; dx++) {
int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
col[index] = map[(y+dy)*w+(x+dx)];
else
col[index] = -1;
}
/*
* Iterate over each colour that might be feasible.
*
* FIXME: this routine currently has O(n) running time. We
* could turn it into O(FOUR) by only bothering to iterate over
* the colours mentioned in the four neighbouring squares.
*/
for (c = 0; c < n; c++) {
int count, neighbours, runs;
/*
* One of the even indices of col (representing the
* orthogonal neighbours of this square) must be equal to
* c, or else this square is not adjacent to region c and
* obviously cannot become an extension of it at this time.
*/
neighbours = 0;
for (i = 0; i < 8; i += 2)
if (col[i] == c)
neighbours++;
if (!neighbours)
continue;
/*
* Now we know this square is adjacent to region c. The
* next question is, would extending it cause the region to
* become non-simply-connected? If so, we mustn't do it.
*
* We determine this by looking around col to see if we can
* find more than one separate run of colour c.
*/
runs = 0;
for (i = 0; i < 8; i++)
if (col[i] == c && col[(i+1) & 7] != c)
runs++;
if (runs > 1)
continue;
assert(runs == 1);
/*
* This square is a possibility. Determine its effect on
* the region's perimeter (computed from the number of
* orthogonal neighbours - 1 means a perimeter increase, 3
* a decrease, 2 no change; 4 is impossible because the
* region would already not be simply connected) and we're
* done.
*/
assert(neighbours > 0 && neighbours < 4);
count = (neighbours == 1 ? WEIGHT_INCREASED :
neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
total += count;
if (index >= 0 && index < count)
return c;
else
index -= count;
}
assert(index < 0);
return total;
}
static void genmap(int w, int h, int n, int *map, random_state *rs)
{
int wh = w*h;
int x, y, i, k;
int *tmp;
assert(n <= wh);
tmp = snewn(wh, int);
/*
* Clear the map, and set up `tmp' as a list of grid indices.
*/
for (i = 0; i < wh; i++) {
map[i] = -1;
tmp[i] = i;
}
/*
* Place the region seeds by selecting n members from `tmp'.
*/
k = wh;
for (i = 0; i < n; i++) {
int j = random_upto(rs, k);
map[tmp[j]] = i;
tmp[j] = tmp[--k];
}
/*
* Re-initialise `tmp' as a cumulative frequency table. This
* will store the number of possible region colours we can
* extend into each square.
*/
cf_init(tmp, wh);
/*
* Go through the grid and set up the initial cumulative
* frequencies.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
cf_add(tmp, wh, y*w+x,
extend_options(w, h, n, map, x, y, -1));
/*
* Now repeatedly choose a square we can extend a region into,
* and do so.
*/
while (tmp[0] > 0) {
int k = random_upto(rs, tmp[0]);
int sq;
int colour;
int xx, yy;
sq = cf_whichsym(tmp, wh, k);
k -= cf_clookup(tmp, wh, sq);
x = sq % w;
y = sq / w;
colour = extend_options(w, h, n, map, x, y, k);
map[sq] = colour;
/*
* Re-scan the nine cells around the one we've just
* modified.
*/
for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
cf_add(tmp, wh, yy*w+xx,
-cf_slookup(tmp, wh, yy*w+xx) +
extend_options(w, h, n, map, xx, yy, -1));
}
}
/*
* Finally, go through and normalise the region labels into
* order, meaning that indistinguishable maps are actually
* identical.
*/
for (i = 0; i < n; i++)
tmp[i] = -1;
k = 0;
for (i = 0; i < wh; i++) {
assert(map[i] >= 0);
if (tmp[map[i]] < 0)
tmp[map[i]] = k++;
map[i] = tmp[map[i]];
}
sfree(tmp);
}
/* ----------------------------------------------------------------------
* Functions to handle graphs.
*/
/*
* Having got a map in a square grid, convert it into a graph
* representation.
*/
static int gengraph(int w, int h, int n, int *map, int *graph)
{
int i, j, x, y;
/*
* Start by setting the graph up as an adjacency matrix. We'll
* turn it into a list later.
*/
for (i = 0; i < n*n; i++)
graph[i] = 0;
/*
* Iterate over the map looking for all adjacencies.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
int v, vx, vy;
v = map[y*w+x];
if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
graph[v*n+vx] = graph[vx*n+v] = 1;
if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
graph[v*n+vy] = graph[vy*n+v] = 1;
}
/*
* Turn the matrix into a list.
*/
for (i = j = 0; i < n*n; i++)
if (graph[i])
graph[j++] = i;
return j;
}
static int graph_adjacent(int *graph, int n, int ngraph, int i, int j)
{
int v = i*n+j;
int top, bot, mid;
bot = -1;
top = ngraph;
while (top - bot > 1) {
mid = (top + bot) / 2;
if (graph[mid] == v)
return TRUE;
else if (graph[mid] < v)
bot = mid;
else
top = mid;
}
return FALSE;
}
static int graph_vertex_start(int *graph, int n, int ngraph, int i)
{
int v = i*n;
int top, bot, mid;
bot = -1;
top = ngraph;
while (top - bot > 1) {
mid = (top + bot) / 2;
if (graph[mid] < v)
bot = mid;
else
top = mid;
}
return top;
}
/* ----------------------------------------------------------------------
* Generate a four-colouring of a graph.
*
* FIXME: it would be nice if we could convert this recursion into
* pseudo-recursion using some sort of explicit stack array, for
* the sake of the Palm port and its limited stack.
*/
static int fourcolour_recurse(int *graph, int n, int ngraph,
int *colouring, int *scratch, random_state *rs)
{
int nfree, nvert, start, i, j, k, c, ci;
int cs[FOUR];
/*
* Find the smallest number of free colours in any uncoloured
* vertex, and count the number of such vertices.
*/
nfree = FIVE; /* start off bigger than FOUR! */
nvert = 0;
for (i = 0; i < n; i++)
if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
if (nfree > scratch[i*FIVE+FOUR]) {
nfree = scratch[i*FIVE+FOUR];
nvert = 0;
}
nvert++;
}
/*
* If there aren't any uncoloured vertices at all, we're done.
*/
if (nvert == 0)
return TRUE; /* we've got a colouring! */
/*
* Pick a random vertex in that set.
*/
j = random_upto(rs, nvert);
for (i = 0; i < n; i++)
if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
if (j-- == 0)
break;
assert(i < n);
start = graph_vertex_start(graph, n, ngraph, i);
/*
* Loop over the possible colours for i, and recurse for each
* one.
*/
ci = 0;
for (c = 0; c < FOUR; c++)
if (scratch[i*FIVE+c] == 0)
cs[ci++] = c;
shuffle(cs, ci, sizeof(*cs), rs);
while (ci-- > 0) {
c = cs[ci];
/*
* Fill in this colour.
*/
colouring[i] = c;
/*
* Update the scratch space to reflect a new neighbour
* of this colour for each neighbour of vertex i.
*/
for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
k = graph[j] - i*n;
if (scratch[k*FIVE+c] == 0)
scratch[k*FIVE+FOUR]--;
scratch[k*FIVE+c]++;
}
/*
* Recurse.
*/
if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
return TRUE; /* got one! */
/*
* If that didn't work, clean up and try again with a
* different colour.
*/
for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
k = graph[j] - i*n;
scratch[k*FIVE+c]--;
if (scratch[k*FIVE+c] == 0)
scratch[k*FIVE+FOUR]++;
}
colouring[i] = -1;
}
/*
* If we reach here, we were unable to find a colouring at all.
* (This doesn't necessarily mean the Four Colour Theorem is
* violated; it might just mean we've gone down a dead end and
* need to back up and look somewhere else. It's only an FCT
* violation if we get all the way back up to the top level and
* still fail.)
*/
return FALSE;
}
static void fourcolour(int *graph, int n, int ngraph, int *colouring,
random_state *rs)
{
int *scratch;
int i;
/*
* For each vertex and each colour, we store the number of
* neighbours that have that colour. Also, we store the number
* of free colours for the vertex.
*/
scratch = snewn(n * FIVE, int);
for (i = 0; i < n * FIVE; i++)
scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
/*
* Clear the colouring to start with.
*/
for (i = 0; i < n; i++)
colouring[i] = -1;
i = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
assert(i); /* by the Four Colour Theorem :-) */
sfree(scratch);
}
/* ----------------------------------------------------------------------
* Non-recursive solver.
*/
struct solver_scratch {
unsigned char *possible; /* bitmap of colours for each region */
int *graph;
int n;
int ngraph;
};
static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
{
struct solver_scratch *sc;
sc = snew(struct solver_scratch);
sc->graph = graph;
sc->n = n;
sc->ngraph = ngraph;
sc->possible = snewn(n, unsigned char);
return sc;
}
static void free_scratch(struct solver_scratch *sc)
{
sfree(sc->possible);
sfree(sc);
}
static int place_colour(struct solver_scratch *sc,
int *colouring, int index, int colour)
{
int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
int j, k;
if (!(sc->possible[index] & (1 << colour)))
return FALSE; /* can't do it */
sc->possible[index] = 1 << colour;
colouring[index] = colour;
/*
* Rule out this colour from all the region's neighbours.
*/
for (j = graph_vertex_start(graph, n, ngraph, index);
j < ngraph && graph[j] < n*(index+1); j++) {
k = graph[j] - index*n;
sc->possible[k] &= ~(1 << colour);
}
return TRUE;
}
/*
* Returns 0 for impossible, 1 for success, 2 for failure to
* converge (i.e. puzzle is either ambiguous or just too
* difficult).
*/
static int map_solver(struct solver_scratch *sc,
int *graph, int n, int ngraph, int *colouring,
int difficulty)
{
int i;
/*
* Initialise scratch space.
*/
for (i = 0; i < n; i++)
sc->possible[i] = (1 << FOUR) - 1;
/*
* Place clues.
*/
for (i = 0; i < n; i++)
if (colouring[i] >= 0) {
if (!place_colour(sc, colouring, i, colouring[i]))
return 0; /* the clues aren't even consistent! */
}
/*
* Now repeatedly loop until we find nothing further to do.
*/
while (1) {
int done_something = FALSE;
if (difficulty < DIFF_EASY)
break; /* can't do anything at all! */
/*
* Simplest possible deduction: find a region with only one
* possible colour.
*/
for (i = 0; i < n; i++) if (colouring[i] < 0) {
int p = sc->possible[i];
if (p == 0)
return 0; /* puzzle is inconsistent */
if ((p & (p-1)) == 0) { /* p is a power of two */
int c;
for (c = 0; c < FOUR; c++)
if (p == (1 << c))
break;
assert(c < FOUR);
if (!place_colour(sc, colouring, i, c))
return 0; /* found puzzle to be inconsistent */
done_something = TRUE;
}
}
if (done_something)
continue;
if (difficulty < DIFF_NORMAL)
break; /* can't do anything harder */
/*
* Failing that, go up one level. Look for pairs of regions
* which (a) both have the same pair of possible colours,
* (b) are adjacent to one another, (c) are adjacent to the
* same region, and (d) that region still thinks it has one
* or both of those possible colours.
*
* Simplest way to do this is by going through the graph
* edge by edge, so that we start with property (b) and
* then look for (a) and finally (c) and (d).
*/
for (i = 0; i < ngraph; i++) {
int j1 = graph[i] / n, j2 = graph[i] % n;
int j, k, v, v2;
if (j1 > j2)
continue; /* done it already, other way round */
if (colouring[j1] >= 0 || colouring[j2] >= 0)
continue; /* they're not undecided */
if (sc->possible[j1] != sc->possible[j2])
continue; /* they don't have the same possibles */
v = sc->possible[j1];
/*
* See if v contains exactly two set bits.
*/
v2 = v & -v; /* find lowest set bit */
v2 = v & ~v2; /* clear it */
if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */
continue;
/*
* We've found regions j1 and j2 satisfying properties
* (a) and (b): they have two possible colours between
* them, and since they're adjacent to one another they
* must use _both_ those colours between them.
* Therefore, if they are both adjacent to any other
* region then that region cannot be either colour.
*
* Go through the neighbours of j1 and see if any are
* shared with j2.
*/
for (j = graph_vertex_start(graph, n, ngraph, j1);
j < ngraph && graph[j] < n*(j1+1); j++) {
k = graph[j] - j1*n;
if (graph_adjacent(graph, n, ngraph, k, j2) &&
(sc->possible[k] & v)) {
sc->possible[k] &= ~v;
done_something = TRUE;
}
}
}
if (!done_something)
break;
}
/*
* We've run out of things to deduce. See if we've got the lot.
*/
for (i = 0; i < n; i++)
if (colouring[i] < 0)
return 2;
return 1; /* success! */
}
/* ----------------------------------------------------------------------
* Game generation main function.
*/
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
struct solver_scratch *sc = NULL;
int *map, *graph, ngraph, *colouring, *colouring2, *regions;
int i, j, w, h, n, solveret, cfreq[FOUR];
int wh;
int mindiff, tries;
#ifdef GENERATION_DIAGNOSTICS
int x, y;
#endif
char *ret, buf[80];
int retlen, retsize;
w = params->w;
h = params->h;
n = params->n;
wh = w*h;
*aux = NULL;
map = snewn(wh, int);
graph = snewn(n*n, int);
colouring = snewn(n, int);
colouring2 = snewn(n, int);
regions = snewn(n, int);
/*
* This is the minimum difficulty below which we'll completely
* reject a map design. Normally we set this to one below the
* requested difficulty, ensuring that we have the right
* result. However, for particularly dense maps or maps with
* particularly few regions it might not be possible to get the
* desired difficulty, so we will eventually drop this down to
* -1 to indicate that any old map will do.
*/
mindiff = params->diff;
tries = 50;
while (1) {
/*
* Create the map.
*/
genmap(w, h, n, map, rs);
#ifdef GENERATION_DIAGNOSTICS
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int v = map[y*w+x];
if (v >= 62)
putchar('!');
else if (v >= 36)
putchar('a' + v-36);
else if (v >= 10)
putchar('A' + v-10);
else
putchar('0' + v);
}
putchar('\n');
}
#endif
/*
* Convert the map into a graph.
*/
ngraph = gengraph(w, h, n, map, graph);
#ifdef GENERATION_DIAGNOSTICS
for (i = 0; i < ngraph; i++)
printf("%d-%d\n", graph[i]/n, graph[i]%n);
#endif
/*
* Colour the map.
*/
fourcolour(graph, n, ngraph, colouring, rs);
#ifdef GENERATION_DIAGNOSTICS
for (i = 0; i < n; i++)
printf("%d: %d\n", i, colouring[i]);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int v = colouring[map[y*w+x]];
if (v >= 36)
putchar('a' + v-36);
else if (v >= 10)
putchar('A' + v-10);
else
putchar('0' + v);
}
putchar('\n');
}
#endif
/*
* Encode the solution as an aux string.
*/
if (*aux) /* in case we've come round again */
sfree(*aux);
retlen = retsize = 0;
ret = NULL;
for (i = 0; i < n; i++) {
int len;
if (colouring[i] < 0)
continue;
len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
if (retlen + len >= retsize) {
retsize = retlen + len + 256;
ret = sresize(ret, retsize, char);
}
strcpy(ret + retlen, buf);
retlen += len;
}
*aux = ret;
/*
* Remove the region colours one by one, keeping
* solubility. Also ensure that there always remains at
* least one region of every colour, so that the user can
* drag from somewhere.
*/
for (i = 0; i < FOUR; i++)
cfreq[i] = 0;
for (i = 0; i < n; i++) {
regions[i] = i;
cfreq[colouring[i]]++;
}
for (i = 0; i < FOUR; i++)
if (cfreq[i] == 0)
continue;
shuffle(regions, n, sizeof(*regions), rs);
if (sc) free_scratch(sc);
sc = new_scratch(graph, n, ngraph);
for (i = 0; i < n; i++) {
j = regions[i];
if (cfreq[colouring[j]] == 1)
continue; /* can't remove last region of colour */
memcpy(colouring2, colouring, n*sizeof(int));
colouring2[j] = -1;
solveret = map_solver(sc, graph, n, ngraph, colouring2,
params->diff);
assert(solveret >= 0); /* mustn't be impossible! */
if (solveret == 1) {
cfreq[colouring[j]]--;
colouring[j] = -1;
}
}
#ifdef GENERATION_DIAGNOSTICS
for (i = 0; i < n; i++)
if (colouring[i] >= 0) {
if (i >= 62)
putchar('!');
else if (i >= 36)
putchar('a' + i-36);
else if (i >= 10)
putchar('A' + i-10);
else
putchar('0' + i);
printf(": %d\n", colouring[i]);
}
#endif
/*
* Finally, check that the puzzle is _at least_ as hard as
* required, and indeed that it isn't already solved.
* (Calling map_solver with negative difficulty ensures the
* latter - if a solver which _does nothing_ can't solve
* it, it's too easy!)
*/
memcpy(colouring2, colouring, n*sizeof(int));
if (map_solver(sc, graph, n, ngraph, colouring2,
mindiff - 1) == 1) {
/*
* Drop minimum difficulty if necessary.
*/
if (mindiff > 0 && (n < 9 || n > 3*wh/2)) {
if (tries-- <= 0)
mindiff = 0; /* give up and go for Easy */
}
continue;
}
break;
}
/*
* Encode as a game ID. We do this by:
*
* - first going along the horizontal edges row by row, and
* then the vertical edges column by column
* - encoding the lengths of runs of edges and runs of
* non-edges
* - the decoder will reconstitute the region boundaries from
* this and automatically number them the same way we did
* - then we encode the initial region colours in a Slant-like
* fashion (digits 0-3 interspersed with letters giving
* lengths of runs of empty spaces).
*/
retlen = retsize = 0;
ret = NULL;
{
int run, pv;
/*
* Start with a notional non-edge, so that there'll be an
* explicit `a' to distinguish the case where we start with
* an edge.
*/
run = 1;
pv = 0;
for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
int x, y, dx, dy, v;
if (i < w*(h-1)) {
/* Horizontal edge. */
y = i / w;
x = i % w;
dx = 0;
dy = 1;
} else {
/* Vertical edge. */
x = (i - w*(h-1)) / h;
y = (i - w*(h-1)) % h;
dx = 1;
dy = 0;
}
if (retlen + 10 >= retsize) {
retsize = retlen + 256;
ret = sresize(ret, retsize, char);
}
v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
if (pv != v) {
ret[retlen++] = 'a'-1 + run;
run = 1;
pv = v;
} else {
/*
* 'z' is a special case in this encoding. Rather
* than meaning a run of 26 and a state switch, it
* means a run of 25 and _no_ state switch, because
* otherwise there'd be no way to encode runs of
* more than 26.
*/
if (run == 25) {
ret[retlen++] = 'z';
run = 0;
}
run++;
}
}
ret[retlen++] = 'a'-1 + run;
ret[retlen++] = ',';
run = 0;
for (i = 0; i < n; i++) {
if (retlen + 10 >= retsize) {
retsize = retlen + 256;
ret = sresize(ret, retsize, char);
}
if (colouring[i] < 0) {
/*
* In _this_ encoding, 'z' is a run of 26, since
* there's no implicit state switch after each run.
* Confusingly different, but more compact.
*/
if (run == 26) {
ret[retlen++] = 'z';
run = 0;
}
run++;
} else {
if (run > 0)
ret[retlen++] = 'a'-1 + run;
ret[retlen++] = '0' + colouring[i];
run = 0;
}
}
if (run > 0)
ret[retlen++] = 'a'-1 + run;
ret[retlen] = '\0';
assert(retlen < retsize);
}
free_scratch(sc);
sfree(regions);
sfree(colouring2);
sfree(colouring);
sfree(graph);
sfree(map);
return ret;
}
static char *parse_edge_list(game_params *params, char **desc, int *map)
{
int w = params->w, h = params->h, wh = w*h, n = params->n;
int i, k, pos, state;
char *p = *desc;
for (i = 0; i < wh; i++)
map[wh+i] = i;
pos = -1;
state = 0;
/*
* Parse the game description to get the list of edges, and
* build up a disjoint set forest as we go (by identifying
* pairs of squares whenever the edge list shows a non-edge).
*/
while (*p && *p != ',') {
if (*p < 'a' || *p > 'z')
return "Unexpected character in edge list";
if (*p == 'z')
k = 25;
else
k = *p - 'a' + 1;
while (k-- > 0) {
int x, y, dx, dy;
if (pos < 0) {
pos++;
continue;
} else if (pos < w*(h-1)) {
/* Horizontal edge. */
y = pos / w;
x = pos % w;
dx = 0;
dy = 1;
} else if (pos < 2*wh-w-h) {
/* Vertical edge. */
x = (pos - w*(h-1)) / h;
y = (pos - w*(h-1)) % h;
dx = 1;
dy = 0;
} else
return "Too much data in edge list";
if (!state)
dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
pos++;
}
if (*p != 'z')
state = !state;
p++;
}
assert(pos <= 2*wh-w-h);
if (pos < 2*wh-w-h)
return "Too little data in edge list";
/*
* Now go through again and allocate region numbers.
*/
pos = 0;
for (i = 0; i < wh; i++)
map[i] = -1;
for (i = 0; i < wh; i++) {
k = dsf_canonify(map+wh, i);
if (map[k] < 0)
map[k] = pos++;
map[i] = map[k];
}
if (pos != n)
return "Edge list defines the wrong number of regions";
*desc = p;
return NULL;
}
static char *validate_desc(game_params *params, char *desc)
{
int w = params->w, h = params->h, wh = w*h, n = params->n;
int area;
int *map;
char *ret;
map = snewn(2*wh, int);
ret = parse_edge_list(params, &desc, map);
if (ret)
return ret;
sfree(map);
if (*desc != ',')
return "Expected comma before clue list";
desc++; /* eat comma */
area = 0;
while (*desc) {
if (*desc >= '0' && *desc < '0'+FOUR)
area++;
else if (*desc >= 'a' && *desc <= 'z')
area += *desc - 'a' + 1;
else
return "Unexpected character in clue list";
desc++;
}
if (area < n)
return "Too little data in clue list";
else if (area > n)
return "Too much data in clue list";
return NULL;
}
static game_state *new_game(midend *me, game_params *params, char *desc)
{
int w = params->w, h = params->h, wh = w*h, n = params->n;
int i, pos;
char *p;
game_state *state = snew(game_state);
state->p = *params;
state->colouring = snewn(n, int);
for (i = 0; i < n; i++)
state->colouring[i] = -1;
state->completed = state->cheated = FALSE;
state->map = snew(struct map);
state->map->refcount = 1;
state->map->map = snewn(wh*4, int);
state->map->graph = snewn(n*n, int);
state->map->n = n;
state->map->immutable = snewn(n, int);
for (i = 0; i < n; i++)
state->map->immutable[i] = FALSE;
p = desc;
{
char *ret;
ret = parse_edge_list(params, &p, state->map->map);
assert(!ret);
}
/*
* Set up the other three quadrants in `map'.
*/
for (i = wh; i < 4*wh; i++)
state->map->map[i] = state->map->map[i % wh];
assert(*p == ',');
p++;
/*
* Now process the clue list.
*/
pos = 0;
while (*p) {
if (*p >= '0' && *p < '0'+FOUR) {
state->colouring[pos] = *p - '0';
state->map->immutable[pos] = TRUE;
pos++;
} else {
assert(*p >= 'a' && *p <= 'z');
pos += *p - 'a' + 1;
}
p++;
}
assert(pos == n);
state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
/*
* Attempt to smooth out some of the more jagged region
* outlines by the judicious use of diagonally divided squares.
*/
{
random_state *rs = random_init(desc, strlen(desc));
int *squares = snewn(wh, int);
int done_something;
for (i = 0; i < wh; i++)
squares[i] = i;
shuffle(squares, wh, sizeof(*squares), rs);
do {
done_something = FALSE;
for (i = 0; i < wh; i++) {
int y = squares[i] / w, x = squares[i] % w;
int c = state->map->map[y*w+x];
int tc, bc, lc, rc;
if (x == 0 || x == w-1 || y == 0 || y == h-1)
continue;
if (state->map->map[TE * wh + y*w+x] !=
state->map->map[BE * wh + y*w+x])
continue;
tc = state->map->map[BE * wh + (y-1)*w+x];
bc = state->map->map[TE * wh + (y+1)*w+x];
lc = state->map->map[RE * wh + y*w+(x-1)];
rc = state->map->map[LE * wh + y*w+(x+1)];
/*
* If this square is adjacent on two sides to one
* region and on the other two sides to the other
* region, and is itself one of the two regions, we can
* adjust it so that it's a diagonal.
*/
if (tc != bc && (tc == c || bc == c)) {
if ((lc == tc && rc == bc) ||
(lc == bc && rc == tc)) {
state->map->map[TE * wh + y*w+x] = tc;
state->map->map[BE * wh + y*w+x] = bc;
state->map->map[LE * wh + y*w+x] = lc;
state->map->map[RE * wh + y*w+x] = rc;
done_something = TRUE;
}
}
}
} while (done_something);
sfree(squares);
random_free(rs);
}
return state;
}
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
ret->p = state->p;
ret->colouring = snewn(state->p.n, int);
memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
ret->map = state->map;
ret->map->refcount++;
ret->completed = state->completed;
ret->cheated = state->cheated;
return ret;
}
static void free_game(game_state *state)
{
if (--state->map->refcount <= 0) {
sfree(state->map->map);
sfree(state->map->graph);
sfree(state->map->immutable);
sfree(state->map);
}
sfree(state->colouring);
sfree(state);
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
if (!aux) {
/*
* Use the solver.
*/
int *colouring;
struct solver_scratch *sc;
int sret;
int i;
char *ret, buf[80];
int retlen, retsize;
colouring = snewn(state->map->n, int);
memcpy(colouring, state->colouring, state->map->n * sizeof(int));
sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
sret = map_solver(sc, state->map->graph, state->map->n,
state->map->ngraph, colouring, DIFFCOUNT-1);
free_scratch(sc);
if (sret != 1) {
sfree(colouring);
if (sret == 0)
*error = "Puzzle is inconsistent";
else
*error = "Unable to find a unique solution for this puzzle";
return NULL;
}
retsize = 64;
ret = snewn(retsize, char);
strcpy(ret, "S");
retlen = 1;
for (i = 0; i < state->map->n; i++) {
int len;
assert(colouring[i] >= 0);
if (colouring[i] == currstate->colouring[i])
continue;
assert(!state->map->immutable[i]);
len = sprintf(buf, ";%d:%d", colouring[i], i);
if (retlen + len >= retsize) {
retsize = retlen + len + 256;
ret = sresize(ret, retsize, char);
}
strcpy(ret + retlen, buf);
retlen += len;
}
sfree(colouring);
return ret;
}
return dupstr(aux);
}
static char *game_text_format(game_state *state)
{
return NULL;
}
struct game_ui {
int drag_colour; /* -1 means no drag active */
int dragx, dragy;
};
static game_ui *new_ui(game_state *state)
{
game_ui *ui = snew(game_ui);
ui->dragx = ui->dragy = -1;
ui->drag_colour = -2;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
}
struct game_drawstate {
int tilesize;
unsigned char *drawn;
int started;
int dragx, dragy, drag_visible;
blitter *bl;
};
#define TILESIZE (ds->tilesize)
#define BORDER (TILESIZE)
#define COORD(x) ( (x) * TILESIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
static int region_from_coords(game_state *state, game_drawstate *ds,
int x, int y)
{
int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
int tx = FROMCOORD(x), ty = FROMCOORD(y);
int dx = x - COORD(tx), dy = y - COORD(ty);
int quadrant;
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
return -1; /* border */
quadrant = 2 * (dx > dy) + (TILESIZE - dx > dy);
quadrant = (quadrant == 0 ? BE :
quadrant == 1 ? LE :
quadrant == 2 ? RE : TE);
return state->map->map[quadrant * wh + ty*w+tx];
}
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
char buf[80];
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
int r = region_from_coords(state, ds, x, y);
if (r >= 0)
ui->drag_colour = state->colouring[r];
else
ui->drag_colour = -1;
ui->dragx = x;
ui->dragy = y;
return "";
}
if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
ui->drag_colour > -2) {
ui->dragx = x;
ui->dragy = y;
return "";
}
if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
ui->drag_colour > -2) {
int r = region_from_coords(state, ds, x, y);
int c = ui->drag_colour;
/*
* Cancel the drag, whatever happens.
*/
ui->drag_colour = -2;
ui->dragx = ui->dragy = -1;
if (r < 0)
return ""; /* drag into border; do nothing else */
if (state->map->immutable[r])
return ""; /* can't change this region */
if (state->colouring[r] == c)
return ""; /* don't _need_ to change this region */
sprintf(buf, "%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(game_state *state, char *move)
{
int n = state->p.n;
game_state *ret = dup_game(state);
int c, k, adv, i;
while (*move) {
c = *move;
if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
k >= 0 && k < state->p.n) {
move += 1 + adv;
ret->colouring[k] = (c == 'C' ? -1 : c - '0');
} else if (*move == 'S') {
move++;
ret->cheated = TRUE;
} else {
free_game(ret);
return NULL;
}
if (*move && *move != ';') {
free_game(ret);
return NULL;
}
if (*move)
move++;
}
/*
* Check for completion.
*/
if (!ret->completed) {
int ok = TRUE;
for (i = 0; i < n; i++)
if (ret->colouring[i] < 0) {
ok = FALSE;
break;
}
if (ok) {
for (i = 0; i < ret->map->ngraph; i++) {
int j = ret->map->graph[i] / n;
int k = ret->map->graph[i] % n;
if (ret->colouring[j] == ret->colouring[k]) {
ok = FALSE;
break;
}
}
}
if (ok)
ret->completed = TRUE;
}
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = params->w * TILESIZE + 2 * BORDER + 1;
*y = params->h * TILESIZE + 2 * BORDER + 1;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
if (ds->bl)
blitter_free(dr, ds->bl);
ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3);
}
const float map_colours[FOUR][3] = {
{0.7F, 0.5F, 0.4F},
{0.8F, 0.7F, 0.4F},
{0.5F, 0.6F, 0.4F},
{0.55F, 0.45F, 0.35F},
};
const int map_hatching[FOUR] = {
HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH
};
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_GRID * 3 + 0] = 0.0F;
ret[COL_GRID * 3 + 1] = 0.0F;
ret[COL_GRID * 3 + 2] = 0.0F;
memcpy(ret + COL_0 * 3, map_colours[0], 3 * sizeof(float));
memcpy(ret + COL_1 * 3, map_colours[1], 3 * sizeof(float));
memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float));
memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float));
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
ds->tilesize = 0;
ds->drawn = snewn(state->p.w * state->p.h, unsigned char);
memset(ds->drawn, 0xFF, state->p.w * state->p.h);
ds->started = FALSE;
ds->bl = NULL;
ds->drag_visible = FALSE;
ds->dragx = ds->dragy = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->drawn);
if (ds->bl)
blitter_free(dr, ds->bl);
sfree(ds);
}
static void draw_square(drawing *dr, game_drawstate *ds,
game_params *params, struct map *map,
int x, int y, int v)
{
int w = params->w, h = params->h, wh = w*h;
int tv = v / FIVE, bv = v % FIVE;
clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
/*
* Draw the region colour.
*/
draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
(tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
/*
* Draw the second region colour, if this is a diagonally
* divided square.
*/
if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
int coords[6];
coords[0] = COORD(x)-1;
coords[1] = COORD(y+1)+1;
if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
coords[2] = COORD(x+1)+1;
else
coords[2] = COORD(x)-1;
coords[3] = COORD(y)-1;
coords[4] = COORD(x+1)+1;
coords[5] = COORD(y+1)+1;
draw_polygon(dr, coords, 3,
(bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
}
/*
* Draw the grid lines, if required.
*/
if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
draw_rect(dr, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
if (x <= 0 || y <= 0 ||
map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
unclip(dr);
draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
int x, y;
int flash;
if (ds->drag_visible) {
blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
ds->drag_visible = FALSE;
}
/*
* The initial contents of the window are not guaranteed and
* can vary with front ends. To be on the safe side, all games
* should start by drawing a big background-colour rectangle
* covering the whole window.
*/
if (!ds->started) {
int ww, wh;
game_compute_size(&state->p, TILESIZE, &ww, &wh);
draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
draw_rect(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
COL_GRID);
draw_update(dr, 0, 0, ww, wh);
ds->started = TRUE;
}
if (flashtime) {
if (flash_type == 1)
flash = (int)(flashtime * FOUR / flash_length);
else
flash = 1 + (int)(flashtime * THREE / flash_length);
} else
flash = -1;
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
int v;
if (tv < 0)
tv = FOUR;
if (bv < 0)
bv = FOUR;
if (flash >= 0) {
if (flash_type == 1) {
if (tv == flash)
tv = FOUR;
if (bv == flash)
bv = FOUR;
} else if (flash_type == 2) {
if (flash % 2)
tv = bv = FOUR;
} else {
if (tv != FOUR)
tv = (tv + flash) % FOUR;
if (bv != FOUR)
bv = (bv + flash) % FOUR;
}
}
v = tv * FIVE + bv;
if (ds->drawn[y*w+x] != v) {
draw_square(dr, ds, &state->p, state->map, x, y, v);
ds->drawn[y*w+x] = v;
}
}
/*
* Draw the dragged colour blob if any.
*/
if (ui->drag_colour > -2) {
ds->dragx = ui->dragx - TILESIZE/2 - 2;
ds->dragy = ui->dragy - TILESIZE/2 - 2;
blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
draw_circle(dr, ui->dragx, ui->dragy, TILESIZE/2,
(ui->drag_colour < 0 ? COL_BACKGROUND :
COL_0 + ui->drag_colour), COL_GRID);
draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
ds->drag_visible = TRUE;
}
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->cheated && !newstate->cheated) {
if (flash_type < 0) {
char *env = getenv("MAP_ALTERNATIVE_FLASH");
if (env)
flash_type = atoi(env);
else
flash_type = 0;
flash_length = (flash_type == 1 ? 0.50 : 0.30);
}
return flash_length;
} else
return 0.0F;
}
static int game_wants_statusbar(void)
{
return FALSE;
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(game_params *params, float *x, float *y)
{
int pw, ph;
/*
* I'll use 4mm squares by default, I think. Simplest way to
* compute this size is to compute the pixel puzzle size at a
* given tile size and then scale.
*/
game_compute_size(params, 400, &pw, &ph);
*x = pw / 100.0;
*y = ph / 100.0;
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
int ink, c[FOUR], i;
int x, y, r;
int *coords, ncoords, coordsize;
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
ink = print_mono_colour(dr, 0);
for (i = 0; i < FOUR; i++)
c[i] = print_rgb_colour(dr, map_hatching[i], map_colours[i][0],
map_colours[i][1], map_colours[i][2]);
coordsize = 0;
coords = NULL;
print_line_width(dr, TILESIZE / 16);
/*
* Draw a single filled polygon around each region.
*/
for (r = 0; r < n; r++) {
int octants[8], lastdir, d1, d2, ox, oy;
/*
* Start by finding a point on the region boundary. Any
* point will do. To do this, we'll search for a square
* containing the region and then decide which corner of it
* to use.
*/
x = w;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (state->map->map[wh*0+y*w+x] == r ||
state->map->map[wh*1+y*w+x] == r ||
state->map->map[wh*2+y*w+x] == r ||
state->map->map[wh*3+y*w+x] == r)
break;
}
if (x < w)
break;
}
assert(y < h && x < w); /* we must have found one somewhere */
/*
* This is the first square in lexicographic order which
* contains part of this region. Therefore, one of the top
* two corners of the square must be what we're after. The
* only case in which it isn't the top left one is if the
* square is diagonally divided and the region is in the
* bottom right half.
*/
if (state->map->map[wh*TE+y*w+x] != r &&
state->map->map[wh*LE+y*w+x] != r)
x++; /* could just as well have done y++ */
/*
* Now we have a point on the region boundary. Trace around
* the region until we come back to this point,
* accumulating coordinates for a polygon draw operation as
* we go.
*/
lastdir = -1;
ox = x;
oy = y;
ncoords = 0;
do {
/*
* There are eight possible directions we could head in
* from here. We identify them by octant numbers, and
* we also use octant numbers to identify the spaces
* between them:
*
* 6 7 0
* \ 7|0 /
* \ | /
* 6 \|/ 1
* 5-----+-----1
* 5 /|\ 2
* / | \
* / 4|3 \
* 4 3 2
*/
octants[0] = x<w && y>0 ? state->map->map[wh*LE+(y-1)*w+x] : -1;
octants[1] = x<w && y>0 ? state->map->map[wh*BE+(y-1)*w+x] : -1;
octants[2] = x<w && y<h ? state->map->map[wh*TE+y*w+x] : -1;
octants[3] = x<w && y<h ? state->map->map[wh*LE+y*w+x] : -1;
octants[4] = x>0 && y<h ? state->map->map[wh*RE+y*w+(x-1)] : -1;
octants[5] = x>0 && y<h ? state->map->map[wh*TE+y*w+(x-1)] : -1;
octants[6] = x>0 && y>0 ? state->map->map[wh*BE+(y-1)*w+(x-1)] :-1;
octants[7] = x>0 && y>0 ? state->map->map[wh*RE+(y-1)*w+(x-1)] :-1;
d1 = d2 = -1;
for (i = 0; i < 8; i++)
if ((octants[i] == r) ^ (octants[(i+1)%8] == r)) {
assert(d2 == -1);
if (d1 == -1)
d1 = i;
else
d2 = i;
}
/* printf("%% %d,%d r=%d: d1=%d d2=%d lastdir=%d\n", x, y, r, d1, d2, lastdir); */
assert(d1 != -1 && d2 != -1);
if (d1 == lastdir)
d1 = d2;
/*
* Now we're heading in direction d1. Save the current
* coordinates.
*/
if (ncoords + 2 > coordsize) {
coordsize += 128;
coords = sresize(coords, coordsize, int);
}
coords[ncoords++] = COORD(x);
coords[ncoords++] = COORD(y);
/*
* Compute the new coordinates.
*/
x += (d1 % 4 == 3 ? 0 : d1 < 4 ? +1 : -1);
y += (d1 % 4 == 1 ? 0 : d1 > 1 && d1 < 5 ? +1 : -1);
assert(x >= 0 && x <= w && y >= 0 && y <= h);
lastdir = d1 ^ 4;
} while (x != ox || y != oy);
draw_polygon(dr, coords, ncoords/2,
state->colouring[r] >= 0 ?
c[state->colouring[r]] : -1, ink);
}
sfree(coords);
}
#ifdef COMBINED
#define thegame map
#endif
const struct game thegame = {
"Map", "games.map",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
FALSE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
20, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
TRUE, TRUE, game_print_size, game_print,
game_wants_statusbar,
FALSE, game_timing_state,
0, /* mouse_priorities */
};