mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

Most of these aren't especially useful, but if we're going to have them in the code base at all, we should at least ensure they compile: bit-rotted conditioned-out code is of no value. One of the new programs is 'galaxieseditor', which borrows most of the Galaxies code but changes the UI so that you can create and remove _dots_ instead of edges, and then run the solver to see whether it can solve the puzzle you've designed. Unlike the rest, this is a GUI helper tool, using the 'guiprogram' cmake function introduced in the previous commit. The programs are: - 'combi', a test program for the utility module that generates all combinations of n things - 'divvy', a test program for the module that divides a rectangle at random into equally-sized polyominoes - 'penrose-test', a test program for the Penrose-tiling generator used in Loopy, which outputs an SVG of a piece of tiling - 'penrose-vector', a much smaller test program for the vector arithmetic subroutines in that code - 'sort-test', a test of this code base's local array sorting routine - 'tree234-test', the exhaustive test code that's been in tree234.c all along. Not all of them compiled first time. Most of the fixes were the usual kind of thing: fixing compiler warnings by removing unused variables/functions, bringing uses of internal APIs up to date. A notable one was that galaxieseditor's interpret_move() modified the input game state, which was an error all along and is now detected by me having made it a const pointer; I had to replace that with an extra wrinkle in the move-string format, so that now execute_move() makes the modification. The one I'm _least_ proud of is squelching a huge number of format-string warnings in tree234-test by interposing a variadic function without __attribute__((printf)).
630 lines
16 KiB
C
630 lines
16 KiB
C
/* penrose.c
|
|
*
|
|
* Penrose tile generator.
|
|
*
|
|
* Uses half-tile technique outlined on:
|
|
*
|
|
* http://tartarus.org/simon/20110412-penrose/penrose.xhtml
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "puzzles.h" /* for malloc routines, and PI */
|
|
#include "penrose.h"
|
|
|
|
/* -------------------------------------------------------
|
|
* 36-degree basis vector arithmetic routines.
|
|
*/
|
|
|
|
/* Imagine drawing a
|
|
* ten-point 'clock face' like this:
|
|
*
|
|
* -E
|
|
* -D | A
|
|
* \ | /
|
|
* -C. \ | / ,B
|
|
* `-._\|/_,-'
|
|
* ,-' /|\ `-.
|
|
* -B' / | \ `C
|
|
* / | \
|
|
* -A | D
|
|
* E
|
|
*
|
|
* In case the ASCII art isn't clear, those are supposed to be ten
|
|
* vectors of length 1, all sticking out from the origin at equal
|
|
* angular spacing (hence 36 degrees). Our basis vectors are A,B,C,D (I
|
|
* choose them to be symmetric about the x-axis so that the final
|
|
* translation into 2d coordinates will also be symmetric, which I
|
|
* think will avoid minor rounding uglinesses), so our vector
|
|
* representation sets
|
|
*
|
|
* A = (1,0,0,0)
|
|
* B = (0,1,0,0)
|
|
* C = (0,0,1,0)
|
|
* D = (0,0,0,1)
|
|
*
|
|
* The fifth vector E looks at first glance as if it needs to be
|
|
* another basis vector, but in fact it doesn't, because it can be
|
|
* represented in terms of the other four. Imagine starting from the
|
|
* origin and following the path -A, +B, -C, +D: you'll find you've
|
|
* traced four sides of a pentagram, and ended up one E-vector away
|
|
* from the origin. So we have
|
|
*
|
|
* E = (-1,1,-1,1)
|
|
*
|
|
* This tells us that we can rotate any vector in this system by 36
|
|
* degrees: if we start with a*A + b*B + c*C + d*D, we want to end up
|
|
* with a*B + b*C + c*D + d*E, and we substitute our identity for E to
|
|
* turn that into a*B + b*C + c*D + d*(-A+B-C+D). In other words,
|
|
*
|
|
* rotate_one_notch_clockwise(a,b,c,d) = (-d, d+a, -d+b, d+c)
|
|
*
|
|
* and you can verify for yourself that applying that operation
|
|
* repeatedly starting with (1,0,0,0) cycles round ten vectors and
|
|
* comes back to where it started.
|
|
*
|
|
* The other operation that may be required is to construct vectors
|
|
* with lengths that are multiples of phi. That can be done by
|
|
* observing that the vector C-B is parallel to E and has length 1/phi,
|
|
* and the vector D-A is parallel to E and has length phi. So this
|
|
* tells us that given any vector, we can construct one which points in
|
|
* the same direction and is 1/phi or phi times its length, like this:
|
|
*
|
|
* divide_by_phi(vector) = rotate(vector, 2) - rotate(vector, 3)
|
|
* multiply_by_phi(vector) = rotate(vector, 1) - rotate(vector, 4)
|
|
*
|
|
* where rotate(vector, n) means applying the above
|
|
* rotate_one_notch_clockwise primitive n times. Expanding out the
|
|
* applications of rotate gives the following direct representation in
|
|
* terms of the vector coordinates:
|
|
*
|
|
* divide_by_phi(a,b,c,d) = (b-d, c+d-b, a+b-c, c-a)
|
|
* multiply_by_phi(a,b,c,d) = (a+b-d, c+d, a+b, c+d-a)
|
|
*
|
|
* and you can verify for yourself that those two operations are
|
|
* inverses of each other (as you'd hope!).
|
|
*
|
|
* Having done all of this, testing for equality between two vectors is
|
|
* a trivial matter of comparing the four integer coordinates. (Which
|
|
* it _wouldn't_ have been if we'd kept E as a fifth basis vector,
|
|
* because then (-1,1,-1,1,0) and (0,0,0,0,1) would have had to be
|
|
* considered identical. So leaving E out is vital.)
|
|
*/
|
|
|
|
struct vector { int a, b, c, d; };
|
|
|
|
static vector v_origin(void)
|
|
{
|
|
vector v;
|
|
v.a = v.b = v.c = v.d = 0;
|
|
return v;
|
|
}
|
|
|
|
/* We start with a unit vector of B: this means we can easily
|
|
* draw an isoceles triangle centred on the X axis. */
|
|
#ifdef TEST_VECTORS
|
|
|
|
static vector v_unit(void)
|
|
{
|
|
vector v;
|
|
|
|
v.b = 1;
|
|
v.a = v.c = v.d = 0;
|
|
return v;
|
|
}
|
|
|
|
#endif
|
|
|
|
#define COS54 0.5877852
|
|
#define SIN54 0.8090169
|
|
#define COS18 0.9510565
|
|
#define SIN18 0.3090169
|
|
|
|
/* These two are a bit rough-and-ready for now. Note that B/C are
|
|
* 18 degrees from the x-axis, and A/D are 54 degrees. */
|
|
double v_x(vector *vs, int i)
|
|
{
|
|
return (vs[i].a + vs[i].d) * COS54 +
|
|
(vs[i].b + vs[i].c) * COS18;
|
|
}
|
|
|
|
double v_y(vector *vs, int i)
|
|
{
|
|
return (vs[i].a - vs[i].d) * SIN54 +
|
|
(vs[i].b - vs[i].c) * SIN18;
|
|
|
|
}
|
|
|
|
static vector v_trans(vector v, vector trans)
|
|
{
|
|
v.a += trans.a;
|
|
v.b += trans.b;
|
|
v.c += trans.c;
|
|
v.d += trans.d;
|
|
return v;
|
|
}
|
|
|
|
static vector v_rotate_36(vector v)
|
|
{
|
|
vector vv;
|
|
vv.a = -v.d;
|
|
vv.b = v.d + v.a;
|
|
vv.c = -v.d + v.b;
|
|
vv.d = v.d + v.c;
|
|
return vv;
|
|
}
|
|
|
|
static vector v_rotate(vector v, int ang)
|
|
{
|
|
int i;
|
|
|
|
assert((ang % 36) == 0);
|
|
while (ang < 0) ang += 360;
|
|
ang = 360-ang;
|
|
for (i = 0; i < (ang/36); i++)
|
|
v = v_rotate_36(v);
|
|
return v;
|
|
}
|
|
|
|
#ifdef TEST_VECTORS
|
|
|
|
static vector v_scale(vector v, int sc)
|
|
{
|
|
v.a *= sc;
|
|
v.b *= sc;
|
|
v.c *= sc;
|
|
v.d *= sc;
|
|
return v;
|
|
}
|
|
|
|
#endif
|
|
|
|
static vector v_growphi(vector v)
|
|
{
|
|
vector vv;
|
|
vv.a = v.a + v.b - v.d;
|
|
vv.b = v.c + v.d;
|
|
vv.c = v.a + v.b;
|
|
vv.d = v.c + v.d - v.a;
|
|
return vv;
|
|
}
|
|
|
|
static vector v_shrinkphi(vector v)
|
|
{
|
|
vector vv;
|
|
vv.a = v.b - v.d;
|
|
vv.b = v.c + v.d - v.b;
|
|
vv.c = v.a + v.b - v.c;
|
|
vv.d = v.c - v.a;
|
|
return vv;
|
|
}
|
|
|
|
#ifdef TEST_VECTORS
|
|
|
|
static const char *v_debug(vector v)
|
|
{
|
|
static char buf[255];
|
|
sprintf(buf,
|
|
"(%d,%d,%d,%d)[%2.2f,%2.2f]",
|
|
v.a, v.b, v.c, v.d, v_x(&v,0), v_y(&v,0));
|
|
return buf;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* -------------------------------------------------------
|
|
* Tiling routines.
|
|
*/
|
|
|
|
static vector xform_coord(vector vo, int shrink, vector vtrans, int ang)
|
|
{
|
|
if (shrink < 0)
|
|
vo = v_shrinkphi(vo);
|
|
else if (shrink > 0)
|
|
vo = v_growphi(vo);
|
|
|
|
vo = v_rotate(vo, ang);
|
|
vo = v_trans(vo, vtrans);
|
|
|
|
return vo;
|
|
}
|
|
|
|
|
|
#define XFORM(n,o,s,a) vs[(n)] = xform_coord(v_edge, (s), vs[(o)], (a))
|
|
|
|
static int penrose_p2_small(penrose_state *state, int depth, int flip,
|
|
vector v_orig, vector v_edge);
|
|
|
|
static int penrose_p2_large(penrose_state *state, int depth, int flip,
|
|
vector v_orig, vector v_edge)
|
|
{
|
|
vector vv_orig, vv_edge;
|
|
|
|
#ifdef DEBUG_PENROSE
|
|
{
|
|
vector vs[3];
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, 0);
|
|
XFORM(2, 0, 0, -36*flip);
|
|
|
|
state->new_tile(state, vs, 3, depth);
|
|
}
|
|
#endif
|
|
|
|
if (flip > 0) {
|
|
vector vs[4];
|
|
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, -36);
|
|
XFORM(2, 0, 0, 0);
|
|
XFORM(3, 0, 0, 36);
|
|
|
|
state->new_tile(state, vs, 4, depth);
|
|
}
|
|
if (depth >= state->max_depth) return 0;
|
|
|
|
vv_orig = v_trans(v_orig, v_rotate(v_edge, -36*flip));
|
|
vv_edge = v_rotate(v_edge, 108*flip);
|
|
|
|
penrose_p2_small(state, depth+1, flip,
|
|
v_orig, v_shrinkphi(v_edge));
|
|
|
|
penrose_p2_large(state, depth+1, flip,
|
|
vv_orig, v_shrinkphi(vv_edge));
|
|
penrose_p2_large(state, depth+1, -flip,
|
|
vv_orig, v_shrinkphi(vv_edge));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int penrose_p2_small(penrose_state *state, int depth, int flip,
|
|
vector v_orig, vector v_edge)
|
|
{
|
|
vector vv_orig;
|
|
|
|
#ifdef DEBUG_PENROSE
|
|
{
|
|
vector vs[3];
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, 0);
|
|
XFORM(2, 0, -1, -36*flip);
|
|
|
|
state->new_tile(state, vs, 3, depth);
|
|
}
|
|
#endif
|
|
|
|
if (flip > 0) {
|
|
vector vs[4];
|
|
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, -72);
|
|
XFORM(2, 0, -1, -36);
|
|
XFORM(3, 0, 0, 0);
|
|
|
|
state->new_tile(state, vs, 4, depth);
|
|
}
|
|
|
|
if (depth >= state->max_depth) return 0;
|
|
|
|
vv_orig = v_trans(v_orig, v_edge);
|
|
|
|
penrose_p2_large(state, depth+1, -flip,
|
|
v_orig, v_shrinkphi(v_rotate(v_edge, -36*flip)));
|
|
|
|
penrose_p2_small(state, depth+1, flip,
|
|
vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int penrose_p3_small(penrose_state *state, int depth, int flip,
|
|
vector v_orig, vector v_edge);
|
|
|
|
static int penrose_p3_large(penrose_state *state, int depth, int flip,
|
|
vector v_orig, vector v_edge)
|
|
{
|
|
vector vv_orig;
|
|
|
|
#ifdef DEBUG_PENROSE
|
|
{
|
|
vector vs[3];
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 1, 0);
|
|
XFORM(2, 0, 0, -36*flip);
|
|
|
|
state->new_tile(state, vs, 3, depth);
|
|
}
|
|
#endif
|
|
|
|
if (flip > 0) {
|
|
vector vs[4];
|
|
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, -36);
|
|
XFORM(2, 0, 1, 0);
|
|
XFORM(3, 0, 0, 36);
|
|
|
|
state->new_tile(state, vs, 4, depth);
|
|
}
|
|
if (depth >= state->max_depth) return 0;
|
|
|
|
vv_orig = v_trans(v_orig, v_edge);
|
|
|
|
penrose_p3_large(state, depth+1, -flip,
|
|
vv_orig, v_shrinkphi(v_rotate(v_edge, 180)));
|
|
|
|
penrose_p3_small(state, depth+1, flip,
|
|
vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip)));
|
|
|
|
vv_orig = v_trans(v_orig, v_growphi(v_edge));
|
|
|
|
penrose_p3_large(state, depth+1, flip,
|
|
vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip)));
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int penrose_p3_small(penrose_state *state, int depth, int flip,
|
|
vector v_orig, vector v_edge)
|
|
{
|
|
vector vv_orig;
|
|
|
|
#ifdef DEBUG_PENROSE
|
|
{
|
|
vector vs[3];
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, 0);
|
|
XFORM(2, 0, 0, -36*flip);
|
|
|
|
state->new_tile(state, vs, 3, depth);
|
|
}
|
|
#endif
|
|
|
|
if (flip > 0) {
|
|
vector vs[4];
|
|
|
|
vs[0] = v_orig;
|
|
XFORM(1, 0, 0, -36);
|
|
XFORM(3, 0, 0, 0);
|
|
XFORM(2, 3, 0, -36);
|
|
|
|
state->new_tile(state, vs, 4, depth);
|
|
}
|
|
if (depth >= state->max_depth) return 0;
|
|
|
|
/* NB these two are identical to the first two of p3_large. */
|
|
vv_orig = v_trans(v_orig, v_edge);
|
|
|
|
penrose_p3_large(state, depth+1, -flip,
|
|
vv_orig, v_shrinkphi(v_rotate(v_edge, 180)));
|
|
|
|
penrose_p3_small(state, depth+1, flip,
|
|
vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* -------------------------------------------------------
|
|
* Utility routines.
|
|
*/
|
|
|
|
double penrose_side_length(double start_size, int depth)
|
|
{
|
|
return start_size / pow(PHI, depth);
|
|
}
|
|
|
|
void penrose_count_tiles(int depth, int *nlarge, int *nsmall)
|
|
{
|
|
/* Steal sgt's fibonacci thingummy. */
|
|
}
|
|
|
|
/*
|
|
* It turns out that an acute isosceles triangle with sides in ratio 1:phi:phi
|
|
* has an incentre which is conveniently 2*phi^-2 of the way from the apex to
|
|
* the base. Why's that convenient? Because: if we situate the incentre of the
|
|
* triangle at the origin, then we can place the apex at phi^-2 * (B+C), and
|
|
* the other two vertices at apex-B and apex-C respectively. So that's an acute
|
|
* triangle with its long sides of unit length, covering a circle about the
|
|
* origin of radius 1-(2*phi^-2), which is conveniently enough phi^-3.
|
|
*
|
|
* (later mail: this is an overestimate by about 5%)
|
|
*/
|
|
|
|
int penrose(penrose_state *state, int which, int angle)
|
|
{
|
|
vector vo = v_origin();
|
|
vector vb = v_origin();
|
|
|
|
vo.b = vo.c = -state->start_size;
|
|
vo = v_shrinkphi(v_shrinkphi(vo));
|
|
|
|
vb.b = state->start_size;
|
|
|
|
vo = v_rotate(vo, angle);
|
|
vb = v_rotate(vb, angle);
|
|
|
|
if (which == PENROSE_P2)
|
|
return penrose_p2_large(state, 0, 1, vo, vb);
|
|
else
|
|
return penrose_p3_small(state, 0, 1, vo, vb);
|
|
}
|
|
|
|
/*
|
|
* We're asked for a MxN grid, which just means a tiling fitting into roughly
|
|
* an MxN space in some kind of reasonable unit - say, the side length of the
|
|
* two-arrow edges of the tiles. By some reasoning in a previous email, that
|
|
* means we want to pick some subarea of a circle of radius 3.11*sqrt(M^2+N^2).
|
|
* To cover that circle, we need to subdivide a triangle large enough that it
|
|
* contains a circle of that radius.
|
|
*
|
|
* Hence: start with those three vectors marking triangle vertices, scale them
|
|
* all up by phi repeatedly until the radius of the inscribed circle gets
|
|
* bigger than the target, and then recurse into that triangle with the same
|
|
* recursion depth as the number of times you scaled up. That will give you
|
|
* tiles of unit side length, covering a circle big enough that if you randomly
|
|
* choose an orientation and coordinates within the circle, you'll be able to
|
|
* get any valid piece of Penrose tiling of size MxN.
|
|
*/
|
|
#define INCIRCLE_RADIUS 0.22426 /* phi^-3 less 5%: see above */
|
|
|
|
void penrose_calculate_size(int which, int tilesize, int w, int h,
|
|
double *required_radius, int *start_size, int *depth)
|
|
{
|
|
double rradius, size;
|
|
int n = 0;
|
|
|
|
/*
|
|
* Fudge factor to scale P2 and P3 tilings differently. This
|
|
* doesn't seem to have much relevance to questions like the
|
|
* average number of tiles per unit area; it's just aesthetic.
|
|
*/
|
|
if (which == PENROSE_P2)
|
|
tilesize = tilesize * 3 / 2;
|
|
else
|
|
tilesize = tilesize * 5 / 4;
|
|
|
|
rradius = tilesize * 3.11 * sqrt((double)(w*w + h*h));
|
|
size = tilesize;
|
|
|
|
while ((size * INCIRCLE_RADIUS) < rradius) {
|
|
n++;
|
|
size = size * PHI;
|
|
}
|
|
|
|
*start_size = (int)size;
|
|
*depth = n;
|
|
*required_radius = rradius;
|
|
}
|
|
|
|
/* -------------------------------------------------------
|
|
* Test code.
|
|
*/
|
|
|
|
#ifdef TEST_PENROSE
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
int show_recursion = 0;
|
|
int ntiles, nfinal;
|
|
|
|
int test_cb(penrose_state *state, vector *vs, int n, int depth)
|
|
{
|
|
int i, xoff = 0, yoff = 0;
|
|
double l = penrose_side_length(state->start_size, depth);
|
|
double rball = l / 10.0;
|
|
const char *col;
|
|
|
|
ntiles++;
|
|
if (state->max_depth == depth) {
|
|
col = n == 4 ? "black" : "green";
|
|
nfinal++;
|
|
} else {
|
|
if (!show_recursion)
|
|
return 0;
|
|
col = n == 4 ? "red" : "blue";
|
|
}
|
|
if (n != 4) yoff = state->start_size;
|
|
|
|
printf("<polygon points=\"");
|
|
for (i = 0; i < n; i++) {
|
|
printf("%s%f,%f", (i == 0) ? "" : " ",
|
|
v_x(vs, i) + xoff, v_y(vs, i) + yoff);
|
|
}
|
|
printf("\" style=\"fill: %s; fill-opacity: 0.2; stroke: %s\" />\n", col, col);
|
|
printf("<ellipse cx=\"%f\" cy=\"%f\" rx=\"%f\" ry=\"%f\" fill=\"%s\" />",
|
|
v_x(vs, 0) + xoff, v_y(vs, 0) + yoff, rball, rball, col);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void usage_exit(void)
|
|
{
|
|
fprintf(stderr, "Usage: penrose-test [--recursion] P2|P3 SIZE DEPTH\n");
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
penrose_state ps;
|
|
int which = 0;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (!strcmp(p, "-h") || !strcmp(p, "--help")) {
|
|
usage_exit();
|
|
} else if (!strcmp(p, "--recursion")) {
|
|
show_recursion = 1;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "Unrecognised option '%s'\n", p);
|
|
exit(1);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (argc < 3) usage_exit();
|
|
|
|
if (strcmp(argv[0], "P2") == 0) which = PENROSE_P2;
|
|
else if (strcmp(argv[0], "P3") == 0) which = PENROSE_P3;
|
|
else usage_exit();
|
|
|
|
ps.start_size = atoi(argv[1]);
|
|
ps.max_depth = atoi(argv[2]);
|
|
ps.new_tile = test_cb;
|
|
|
|
ntiles = nfinal = 0;
|
|
|
|
printf("\
|
|
<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\
|
|
<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 20010904//EN\"\n\
|
|
\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n\
|
|
\n\
|
|
<svg xmlns=\"http://www.w3.org/2000/svg\"\n\
|
|
xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n\n");
|
|
|
|
printf("<g>\n");
|
|
penrose(&ps, which, 0);
|
|
printf("</g>\n");
|
|
|
|
printf("<!-- %d tiles and %d leaf tiles total -->\n",
|
|
ntiles, nfinal);
|
|
|
|
printf("</svg>");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TEST_VECTORS
|
|
|
|
static void dbgv(const char *msg, vector v)
|
|
{
|
|
printf("%s: %s\n", msg, v_debug(v));
|
|
}
|
|
|
|
int main(int argc, const char *argv[])
|
|
{
|
|
vector v = v_unit();
|
|
|
|
dbgv("unit vector", v);
|
|
v = v_rotate(v, 36);
|
|
dbgv("rotated 36", v);
|
|
v = v_scale(v, 2);
|
|
dbgv("scaled x2", v);
|
|
v = v_shrinkphi(v);
|
|
dbgv("shrunk phi", v);
|
|
v = v_rotate(v, -36);
|
|
dbgv("rotated -36", v);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|