Switch Untangle to using long' rather than int' in its internal

rationals, for the sake of 16-bit-int platforms such as Palm. Thanks
to James H.

[originally from svn r6114]
This commit is contained in:
Simon Tatham
2005-07-17 17:12:21 +00:00
parent e33a57b703
commit 0e68ad82a9

View File

@ -50,7 +50,7 @@ typedef struct point {
* Points are stored using rational coordinates, with the same
* denominator for both coordinates.
*/
int x, y, d;
long x, y, d;
} point;
typedef struct edge {
@ -201,7 +201,7 @@ static char *validate_params(game_params *params, int full)
*/
static int cross(point a1, point a2, point b1, point b2)
{
int b1x, b1y, b2x, b2y, px, py, d1, d2, d3;
long b1x, b1y, b2x, b2y, px, py, d1, d2, d3;
/*
* The condition for crossing is that b1 and b2 are on opposite
@ -358,7 +358,7 @@ static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
*/
static void make_circle(point *pts, int n, int w)
{
int d, r, c, i;
long d, r, c, i;
/*
* First, decide on a denominator. Although in principle it
@ -380,8 +380,8 @@ static void make_circle(point *pts, int n, int w)
for (i = 0; i < n; i++) {
double angle = i * 2 * PI / n;
double x = r * sin(angle), y = - r * cos(angle);
pts[i].x = (int)(c + x + 0.5);
pts[i].y = (int)(c + y + 0.5);
pts[i].x = (long)(c + x + 0.5);
pts[i].y = (long)(c + y + 0.5);
pts[i].d = d;
}
}
@ -389,10 +389,10 @@ static void make_circle(point *pts, int n, int w)
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int n = params->n;
int w, h, i, j, k, m;
int n = params->n, i;
long w, h, j, k, m;
point *pts, *pts2;
int *tmp;
long *tmp;
tree234 *edges, *vertices;
edge *e, *e2;
vertex *v, *vs, *vlist;
@ -404,7 +404,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
* Choose n points from this grid.
*/
pts = snewn(n, point);
tmp = snewn(w*h, int);
tmp = snewn(w*h, long);
for (i = 0; i < w*h; i++)
tmp[i] = i;
shuffle(tmp, w*h, sizeof(*tmp), rs);
@ -523,7 +523,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
* they come out with at least one crossed line when arranged
* in a circle (so that the puzzle isn't immediately solved!).
*/
tmp = snewn(n, int);
tmp = snewn(n, long);
for (i = 0; i < n; i++)
tmp[i] = i;
pts2 = snewn(n, point);
@ -603,14 +603,14 @@ static char *new_game_desc(game_params *params, random_state *rs,
}
pts2[j].x += pts2[j].d / 2;
pts2[j].y += pts2[j].d / 2;
auxlen += sprintf(buf, ";P%d:%d,%d/%d", i,
auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
pts2[j].x, pts2[j].y, pts2[j].d);
}
k = 0;
auxstr = snewn(auxlen, char);
auxstr[k++] = 'S';
for (i = 0; i < n; i++)
k += sprintf(auxstr+k, ";P%d:%d,%d/%d", i,
k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
pts2[i].x, pts2[i].y, pts2[i].d);
assert(k < auxlen);
*aux = auxstr;
@ -776,7 +776,7 @@ static void game_changed_state(game_ui *ui, game_state *oldstate,
}
struct game_drawstate {
int tilesize;
long tilesize;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
@ -785,7 +785,8 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int n = state->params.n;
if (button == LEFT_BUTTON) {
int i, best, bestd;
int i, best;
long bestd;
/*
* Begin drag. We drag the vertex _nearest_ to the pointer,
@ -797,11 +798,11 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
bestd = 0;
for (i = 0; i < n; i++) {
int px = state->pts[i].x * ds->tilesize / state->pts[i].d;
int py = state->pts[i].y * ds->tilesize / state->pts[i].d;
int dx = px - x;
int dy = py - y;
int d = dx*dx + dy*dy;
long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
long dx = px - x;
long dy = py - y;
long d = dx*dx + dy*dy;
if (best == -1 || bestd > d) {
best = i;
@ -832,15 +833,17 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
* First, see if we're within range. The user can cancel a
* drag by dragging the point right off the window.
*/
if (ui->newpoint.x < 0 || ui->newpoint.x >= state->w*ui->newpoint.d ||
ui->newpoint.y < 0 || ui->newpoint.y >= state->h*ui->newpoint.d)
if (ui->newpoint.x < 0 ||
ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
ui->newpoint.y < 0 ||
ui->newpoint.y >= (long)state->h*ui->newpoint.d)
return "";
/*
* We aren't cancelling the drag. Construct a move string
* indicating where this point is going to.
*/
sprintf(buf, "P%d:%d,%d/%d", p,
sprintf(buf, "P%d:%ld,%ld/%ld", p,
ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
ui->just_dragged = TRUE;
return dupstr(buf);
@ -852,7 +855,8 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
static game_state *execute_move(game_state *state, char *move)
{
int n = state->params.n;
int p, x, y, d, k;
int p, k;
long x, y, d;
game_state *ret = dup_game(state);
ret->just_solved = FALSE;
@ -864,7 +868,7 @@ static game_state *execute_move(game_state *state, char *move)
ret->cheated = ret->just_solved = TRUE;
}
if (*move == 'P' &&
sscanf(move+1, "%d:%d,%d/%d%n", &p, &x, &y, &d, &k) == 4 &&
sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
p >= 0 && p < n && d > 0) {
ret->pts[p].x = x;
ret->pts[p].y = y;
@ -1005,7 +1009,7 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
point p1, p2;
int x1, y1, x2, y2;
long x1, y1, x2, y2;
p1 = state->pts[e->a];
p2 = state->pts[e->b];
@ -1037,7 +1041,8 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
int thisc = (j == 0 ? COL_POINT :
j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
for (i = 0; i < state->params.n; i++) {
int x, y, c;
long x, y;
int c;
point p = state->pts[i];
if (ui->dragpoint == i) {