In-game user interface to the solver.

[originally from svn r7572]
This commit is contained in:
Simon Tatham
2007-05-12 10:26:22 +00:00
parent 5b8b855376
commit 143081d296

View File

@ -5,14 +5,6 @@
/*
* TODO:
*
* - Solve function:
* * try to generate a solution when Solve is pressed
* + from the start, or from here? From here, I fear.
* + hence, not much point saving the solution in an aux
* string
* * Inertia-like method for telling the user the solution
* * standalone solver which draws diagrams
*
* - The dragging semantics are still subtly wrong in complex
* cases.
*
@ -33,6 +25,12 @@
* target marker pale.
* * The cattle grid effect is still disgusting. Think of
* something completely different.
* * I think TRCIRC and BLCIRC should actually be drawn, as a
* pair of differently coloured octants. Haul out the
* Bresenham code, I suspect.
* * The highlight for next-piece-to-move in the solver is
* excessive, and the shadow blends in too well with the
* piece lowlights. Adjust both.
*/
#include <stdio.h>
@ -139,6 +137,12 @@ struct game_immutable_state {
unsigned char *forcefield;
};
struct game_solution {
int nmoves;
int *moves; /* just like from solve_board() */
int refcount;
};
struct game_state {
int w, h;
unsigned char *board;
@ -147,7 +151,10 @@ struct game_state {
int lastmoved, lastmoved_pos; /* for move counting */
int movecount;
int completed;
int cheated;
struct game_immutable_state *imm;
struct game_solution *soln;
int soln_index;
};
static game_params *default_params(void)
@ -881,10 +888,6 @@ static char *new_game_desc(game_params *params, random_state *rs,
p += sprintf(p, ",%d,%d,%d", tx, ty, minmoves);
ret = sresize(ret, p+1 - ret, char);
/*
* FIXME: generate an aux string
*/
sfree(board);
sfree(forcefield);
@ -1077,6 +1080,10 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
else
state->completed = -1;
state->cheated = FALSE;
state->soln = NULL;
state->soln_index = -1;
return state;
}
@ -1096,8 +1103,13 @@ static game_state *dup_game(game_state *state)
ret->lastmoved_pos = state->lastmoved_pos;
ret->movecount = state->movecount;
ret->completed = state->completed;
ret->cheated = state->cheated;
ret->imm = state->imm;
ret->imm->refcount++;
ret->soln = state->soln;
ret->soln_index = state->soln_index;
if (ret->soln)
ret->soln->refcount++;
return ret;
}
@ -1108,6 +1120,10 @@ static void free_game(game_state *state)
sfree(state->imm->forcefield);
sfree(state->imm);
}
if (state->soln && --state->soln->refcount <= 0) {
sfree(state->soln->moves);
sfree(state->soln);
}
sfree(state->board);
sfree(state);
}
@ -1115,12 +1131,45 @@ static void free_game(game_state *state)
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
int *moves;
int nmoves;
int i;
char *ret, *p, sep;
/*
* FIXME: we have a solver, so use it
*
* FIXME: we should have generated an aux string, so use that
* Run the solver and attempt to find the shortest solution
* from the current position.
*/
return NULL;
nmoves = solve_board(state->w, state->h, state->board,
state->imm->forcefield, state->tx, state->ty,
-1, &moves);
if (nmoves < 0) {
*error = "Unable to find a solution to this puzzle";
return NULL;
}
if (nmoves == 0) {
*error = "Puzzle is already solved";
return NULL;
}
/*
* Encode the resulting solution as a move string.
*/
ret = snewn(nmoves * 40, char);
p = ret;
sep = 'S';
for (i = 0; i < nmoves; i++) {
p += sprintf(p, "%c%d-%d", sep, moves[i*2], moves[i*2+1]);
sep = ',';
}
sfree(moves);
assert(p - ret < nmoves * 40);
ret = sresize(ret, p+1 - ret, char);
return ret;
}
static char *game_text_format(game_state *state)
@ -1330,6 +1379,20 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
memset(ui->reachable, 0, wh);
return str;
} else if (button == ' ' && state->soln) {
/*
* Make the next move in the stored solution.
*/
char data[256];
int a1, a2;
a1 = state->soln->moves[state->soln_index*2];
a2 = state->soln->moves[state->soln_index*2+1];
if (a1 == state->lastmoved_pos)
a1 = state->lastmoved;
sprintf(data, "M%d-%d", a1, a2);
return dupstr(data);
}
return NULL;
@ -1379,12 +1442,59 @@ static game_state *execute_move(game_state *state, char *move)
{
int w = state->w, h = state->h /* , wh = w*h */;
char c;
int a1, a2, n;
int a1, a2, n, movesize;
game_state *ret = dup_game(state);
while (*move) {
c = *move;
if (c == 'M') {
if (c == 'S') {
/*
* This is a solve move, so we just set up a stored
* solution path.
*/
if (ret->soln && --ret->soln->refcount <= 0) {
sfree(ret->soln->moves);
sfree(ret->soln);
}
ret->soln = snew(struct game_solution);
ret->soln->nmoves = 0;
ret->soln->moves = NULL;
ret->soln->refcount = 1;
ret->soln_index = 0;
ret->cheated = TRUE;
movesize = 0;
move++;
while (1) {
if (sscanf(move, "%d-%d%n", &a1, &a2, &n) != 2) {
free_game(ret);
return NULL;
}
/*
* Special case: if the first move in the solution
* involves the piece for which we already have a
* partial stored move, adjust the source point to
* the original starting point of that piece.
*/
if (ret->soln->nmoves == 0 && a1 == ret->lastmoved)
a1 = ret->lastmoved_pos;
if (ret->soln->nmoves >= movesize) {
movesize = (ret->soln->nmoves + 48) * 4 / 3;
ret->soln->moves = sresize(ret->soln->moves,
2*movesize, int);
}
ret->soln->moves[2*ret->soln->nmoves] = a1;
ret->soln->moves[2*ret->soln->nmoves+1] = a2;
ret->soln->nmoves++;
move += n;
if (*move != ',')
break;
move++; /* eat comma */
}
} else if (c == 'M') {
move++;
if (sscanf(move, "%d-%d%n", &a1, &a2, &n) != 2 ||
!move_piece(w, h, state->board, ret->board,
@ -1412,6 +1522,36 @@ static game_state *execute_move(game_state *state, char *move)
ret->lastmoved_pos = a1;
ret->movecount++;
}
/*
* If we have a stored solution path, see if we've
* strayed from it or successfully made the next move
* along it.
*/
if (ret->soln && ret->lastmoved_pos >= 0) {
if (ret->lastmoved_pos !=
ret->soln->moves[ret->soln_index*2]) {
/* strayed from the path */
ret->soln->refcount--;
assert(ret->soln->refcount > 0);
/* `state' at least still exists */
ret->soln = NULL;
ret->soln_index = -1;
} else if (ret->lastmoved ==
ret->soln->moves[ret->soln_index*2+1]) {
/* advanced along the path */
ret->soln_index++;
if (ret->soln_index >= ret->soln->nmoves) {
/* finished the path! */
ret->soln->refcount--;
assert(ret->soln->refcount > 0);
/* `state' at least still exists */
ret->soln = NULL;
ret->soln_index = -1;
}
}
}
if (ret->board[a2] == MAINANCHOR &&
a2 == ret->ty * w + ret->tx && ret->completed < 0)
ret->completed = ret->movecount;
@ -1538,14 +1678,20 @@ static void game_free_drawstate(drawing *dr, game_drawstate *ds)
#define FG_MAIN 0x00000040UL
#define FG_NORMAL 0x00000080UL
#define FG_DRAGGING 0x00000100UL
#define FG_LBORDER 0x00000200UL
#define FG_TBORDER 0x00000400UL
#define FG_RBORDER 0x00000800UL
#define FG_BBORDER 0x00001000UL
#define FG_TLCORNER 0x00002000UL
#define FG_TRCORNER 0x00004000UL
#define FG_BLCORNER 0x00008000UL
#define FG_BRCORNER 0x00010000UL
#define FG_SHADOW 0x00000200UL
#define FG_SOLVEPIECE 0x00000400UL
#define FG_MAINPIECESH 11
#define FG_SHADOWSH 19
#define PIECE_LBORDER 0x00000001UL
#define PIECE_TBORDER 0x00000002UL
#define PIECE_RBORDER 0x00000004UL
#define PIECE_BBORDER 0x00000008UL
#define PIECE_TLCORNER 0x00000010UL
#define PIECE_TRCORNER 0x00000020UL
#define PIECE_BLCORNER 0x00000040UL
#define PIECE_BRCORNER 0x00000080UL
#define PIECE_MASK 0x000000FFUL
/*
* Utility function.
@ -1584,6 +1730,163 @@ static void maybe_rect(drawing *dr, int x, int y, int w, int h, int coltype)
}
}
static void draw_wallpart(drawing *dr, game_drawstate *ds,
int tx, int ty, unsigned long val,
int cl, int cc, int ch)
{
draw_rect(dr, tx, ty, TILESIZE, TILESIZE, cc);
if (val & PIECE_LBORDER)
draw_rect(dr, tx, ty, HIGHLIGHT_WIDTH, TILESIZE,
ch);
if (val & PIECE_RBORDER)
draw_rect(dr, tx+TILESIZE-HIGHLIGHT_WIDTH, ty,
HIGHLIGHT_WIDTH, TILESIZE, cl);
if (val & PIECE_TBORDER)
draw_rect(dr, tx, ty, TILESIZE, HIGHLIGHT_WIDTH, ch);
if (val & PIECE_BBORDER)
draw_rect(dr, tx, ty+TILESIZE-HIGHLIGHT_WIDTH,
TILESIZE, HIGHLIGHT_WIDTH, cl);
if (!((PIECE_BBORDER | PIECE_LBORDER) &~ val))
draw_rect(dr, tx, ty+TILESIZE-HIGHLIGHT_WIDTH,
HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, cc);
if (!((PIECE_TBORDER | PIECE_RBORDER) &~ val))
draw_rect(dr, tx+TILESIZE-HIGHLIGHT_WIDTH, ty,
HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, cc);
if (val & PIECE_TLCORNER)
draw_rect(dr, tx, ty, HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, ch);
if (val & PIECE_BRCORNER)
draw_rect(dr, tx+TILESIZE-HIGHLIGHT_WIDTH,
ty+TILESIZE-HIGHLIGHT_WIDTH,
HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, cl);
}
static void draw_piecepart(drawing *dr, game_drawstate *ds,
int tx, int ty, unsigned long val,
int cl, int cc, int ch)
{
int x[6], y[6];
/*
* Drawing the blocks is hellishly fiddly. The blocks don't
* stretch to the full size of the tile; there's a border
* around them of size BORDER_WIDTH. Then they have bevelled
* borders of size HIGHLIGHT_WIDTH, and also rounded corners.
*
* I tried for some time to find a clean and clever way to
* figure out what needed drawing from the corner and border
* flags, but in the end the cleanest way I could find was the
* following. We divide the grid square into 25 parts by
* ruling four horizontal and four vertical lines across it;
* those lines are at BORDER_WIDTH and BORDER_WIDTH +
* HIGHLIGHT_WIDTH from the top, from the bottom, from the
* left and from the right. Then we carefully consider each of
* the resulting 25 sections of square, and decide separately
* what needs to go in it based on the flags. In complicated
* cases there can be up to five possibilities affecting any
* given section (no corner or border flags, just the corner
* flag, one border flag, the other border flag, both border
* flags). So there's a lot of very fiddly logic here and all
* I could really think to do was give it my best shot and
* then test it and correct all the typos. Not fun to write,
* and I'm sure it isn't fun to read either, but it seems to
* work.
*/
x[0] = tx;
x[1] = x[0] + BORDER_WIDTH;
x[2] = x[1] + HIGHLIGHT_WIDTH;
x[5] = tx + TILESIZE;
x[4] = x[5] - BORDER_WIDTH;
x[3] = x[4] - HIGHLIGHT_WIDTH;
y[0] = ty;
y[1] = y[0] + BORDER_WIDTH;
y[2] = y[1] + HIGHLIGHT_WIDTH;
y[5] = ty + TILESIZE;
y[4] = y[5] - BORDER_WIDTH;
y[3] = y[4] - HIGHLIGHT_WIDTH;
#define RECT(p,q) x[p], y[q], x[(p)+1]-x[p], y[(q)+1]-y[q]
maybe_rect(dr, RECT(0,0),
(val & (PIECE_TLCORNER | PIECE_TBORDER |
PIECE_LBORDER)) ? -1 : cc);
maybe_rect(dr, RECT(1,0),
(val & PIECE_TLCORNER) ? ch : (val & PIECE_TBORDER) ? -1 :
(val & PIECE_LBORDER) ? ch : cc);
maybe_rect(dr, RECT(2,0),
(val & PIECE_TBORDER) ? -1 : cc);
maybe_rect(dr, RECT(3,0),
(val & PIECE_TRCORNER) ? cl : (val & PIECE_TBORDER) ? -1 :
(val & PIECE_RBORDER) ? cl : cc);
maybe_rect(dr, RECT(4,0),
(val & (PIECE_TRCORNER | PIECE_TBORDER |
PIECE_RBORDER)) ? -1 : cc);
maybe_rect(dr, RECT(0,1),
(val & PIECE_TLCORNER) ? ch : (val & PIECE_LBORDER) ? -1 :
(val & PIECE_TBORDER) ? ch : cc);
maybe_rect(dr, RECT(1,1),
(val & PIECE_TLCORNER) ? cc : -1);
maybe_rect(dr, RECT(1,1),
(val & PIECE_TLCORNER) ? ch | TYPE_TLCIRC :
!((PIECE_TBORDER | PIECE_LBORDER) &~ val) ? ch | TYPE_BRCIRC :
(val & (PIECE_TBORDER | PIECE_LBORDER)) ? ch : cc);
maybe_rect(dr, RECT(2,1),
(val & PIECE_TBORDER) ? ch : cc);
maybe_rect(dr, RECT(3,1),
(val & (PIECE_TBORDER | PIECE_RBORDER)) == PIECE_TBORDER ? ch :
(val & (PIECE_TBORDER | PIECE_RBORDER)) == PIECE_RBORDER ? cl :
!((PIECE_TBORDER|PIECE_RBORDER) &~ val) ? cc | TYPE_BLCIRC :
cc);
maybe_rect(dr, RECT(4,1),
(val & PIECE_TRCORNER) ? ch : (val & PIECE_RBORDER) ? -1 :
(val & PIECE_TBORDER) ? ch : cc);
maybe_rect(dr, RECT(0,2),
(val & PIECE_LBORDER) ? -1 : cc);
maybe_rect(dr, RECT(1,2),
(val & PIECE_LBORDER) ? ch : cc);
maybe_rect(dr, RECT(2,2),
cc);
maybe_rect(dr, RECT(3,2),
(val & PIECE_RBORDER) ? cl : cc);
maybe_rect(dr, RECT(4,2),
(val & PIECE_RBORDER) ? -1 : cc);
maybe_rect(dr, RECT(0,3),
(val & PIECE_BLCORNER) ? cl : (val & PIECE_LBORDER) ? -1 :
(val & PIECE_BBORDER) ? cl : cc);
maybe_rect(dr, RECT(1,3),
(val & (PIECE_BBORDER | PIECE_LBORDER)) == PIECE_BBORDER ? cl :
(val & (PIECE_BBORDER | PIECE_LBORDER)) == PIECE_LBORDER ? ch :
!((PIECE_BBORDER|PIECE_LBORDER) &~ val) ? cc | TYPE_TRCIRC :
cc);
maybe_rect(dr, RECT(2,3),
(val & PIECE_BBORDER) ? cl : cc);
maybe_rect(dr, RECT(3,3),
(val & PIECE_BRCORNER) ? cc : -1);
maybe_rect(dr, RECT(3,3),
(val & PIECE_BRCORNER) ? cl | TYPE_BRCIRC :
!((PIECE_BBORDER | PIECE_RBORDER) &~ val) ? cl | TYPE_TLCIRC :
(val & (PIECE_BBORDER | PIECE_RBORDER)) ? cl : cc);
maybe_rect(dr, RECT(4,3),
(val & PIECE_BRCORNER) ? cl : (val & PIECE_RBORDER) ? -1 :
(val & PIECE_BBORDER) ? cl : cc);
maybe_rect(dr, RECT(0,4),
(val & (PIECE_BLCORNER | PIECE_BBORDER | PIECE_LBORDER)) ? -1 : cc);
maybe_rect(dr, RECT(1,4),
(val & PIECE_BLCORNER) ? ch : (val & PIECE_BBORDER) ? -1 :
(val & PIECE_LBORDER) ? ch : cc);
maybe_rect(dr, RECT(2,4),
(val & PIECE_BBORDER) ? -1 : cc);
maybe_rect(dr, RECT(3,4),
(val & PIECE_BRCORNER) ? cl : (val & PIECE_BBORDER) ? -1 :
(val & PIECE_RBORDER) ? cl : cc);
maybe_rect(dr, RECT(4,4),
(val & (PIECE_BRCORNER | PIECE_BBORDER |
PIECE_RBORDER)) ? -1 : cc);
#undef RECT
}
static void draw_tile(drawing *dr, game_drawstate *ds,
int x, int y, unsigned long val)
{
@ -1619,6 +1922,15 @@ static void draw_tile(drawing *dr, game_drawstate *ds,
}
}
/*
* Draw the tile midground: a shadow of a block, for
* displaying partial solutions.
*/
if (val & FG_SHADOW) {
draw_piecepart(dr, ds, tx, ty, (val >> FG_SHADOWSH) & PIECE_MASK,
cl, cl, cl);
}
/*
* Draw the tile foreground, i.e. some section of a block or
* wall.
@ -1632,33 +1944,9 @@ static void draw_tile(drawing *dr, game_drawstate *ds,
else if (val & FLASH_HIGH)
cc = ch;
draw_rect(dr, tx, ty, TILESIZE, TILESIZE, cc);
if (val & FG_LBORDER)
draw_rect(dr, tx, ty, HIGHLIGHT_WIDTH, TILESIZE,
ch);
if (val & FG_RBORDER)
draw_rect(dr, tx+TILESIZE-HIGHLIGHT_WIDTH, ty,
HIGHLIGHT_WIDTH, TILESIZE, cl);
if (val & FG_TBORDER)
draw_rect(dr, tx, ty, TILESIZE, HIGHLIGHT_WIDTH, ch);
if (val & FG_BBORDER)
draw_rect(dr, tx, ty+TILESIZE-HIGHLIGHT_WIDTH,
TILESIZE, HIGHLIGHT_WIDTH, cl);
if (!((FG_BBORDER | FG_LBORDER) &~ val))
draw_rect(dr, tx, ty+TILESIZE-HIGHLIGHT_WIDTH,
HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, cc);
if (!((FG_TBORDER | FG_RBORDER) &~ val))
draw_rect(dr, tx+TILESIZE-HIGHLIGHT_WIDTH, ty,
HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, cc);
if (val & FG_TLCORNER)
draw_rect(dr, tx, ty, HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, ch);
if (val & FG_BRCORNER)
draw_rect(dr, tx+TILESIZE-HIGHLIGHT_WIDTH,
ty+TILESIZE-HIGHLIGHT_WIDTH,
HIGHLIGHT_WIDTH, HIGHLIGHT_WIDTH, cl);
draw_wallpart(dr, ds, tx, ty, (val >> FG_MAINPIECESH) & PIECE_MASK,
cl, cc, ch);
} else if (val & (FG_MAIN | FG_NORMAL)) {
int x[6], y[6];
if (val & FG_DRAGGING)
cc = (val & FG_MAIN ? COL_MAIN_DRAGGING : COL_DRAGGING);
else
@ -1668,131 +1956,45 @@ static void draw_tile(drawing *dr, game_drawstate *ds,
if (val & FLASH_LOW)
cc = cl;
else if (val & FLASH_HIGH)
else if (val & (FLASH_HIGH | FG_SOLVEPIECE))
cc = ch;
/*
* Drawing the blocks is hellishly fiddly. The blocks
* don't stretch to the full size of the tile; there's a
* border around them of size BORDER_WIDTH. Then they have
* bevelled borders of size HIGHLIGHT_WIDTH, and also
* rounded corners.
*
* I tried for some time to find a clean and clever way to
* figure out what needed drawing from the corner and
* border flags, but in the end the cleanest way I could
* find was the following. We divide the grid square into
* 25 parts by ruling four horizontal and four vertical
* lines across it; those lines are at BORDER_WIDTH and
* BORDER_WIDTH+HIGHLIGHT_WIDTH from the top, from the
* bottom, from the left and from the right. Then we
* carefully consider each of the resulting 25 sections of
* square, and decide separately what needs to go in it
* based on the flags. In complicated cases there can be
* up to five possibilities affecting any given section
* (no corner or border flags, just the corner flag, one
* border flag, the other border flag, both border flags).
* So there's a lot of very fiddly logic here and all I
* could really think to do was give it my best shot and
* then test it and correct all the typos. Not fun to
* write, and I'm sure it isn't fun to read either, but it
* seems to work.
*/
x[0] = tx;
x[1] = x[0] + BORDER_WIDTH;
x[2] = x[1] + HIGHLIGHT_WIDTH;
x[5] = tx + TILESIZE;
x[4] = x[5] - BORDER_WIDTH;
x[3] = x[4] - HIGHLIGHT_WIDTH;
y[0] = ty;
y[1] = y[0] + BORDER_WIDTH;
y[2] = y[1] + HIGHLIGHT_WIDTH;
y[5] = ty + TILESIZE;
y[4] = y[5] - BORDER_WIDTH;
y[3] = y[4] - HIGHLIGHT_WIDTH;
#define RECT(p,q) x[p], y[q], x[(p)+1]-x[p], y[(q)+1]-y[q]
maybe_rect(dr, RECT(0,0),
(val & (FG_TLCORNER | FG_TBORDER | FG_LBORDER)) ? -1 : cc);
maybe_rect(dr, RECT(1,0),
(val & FG_TLCORNER) ? ch : (val & FG_TBORDER) ? -1 :
(val & FG_LBORDER) ? ch : cc);
maybe_rect(dr, RECT(2,0),
(val & FG_TBORDER) ? -1 : cc);
maybe_rect(dr, RECT(3,0),
(val & FG_TRCORNER) ? cl : (val & FG_TBORDER) ? -1 :
(val & FG_RBORDER) ? cl : cc);
maybe_rect(dr, RECT(4,0),
(val & (FG_TRCORNER | FG_TBORDER | FG_RBORDER)) ? -1 : cc);
maybe_rect(dr, RECT(0,1),
(val & FG_TLCORNER) ? ch : (val & FG_LBORDER) ? -1 :
(val & FG_TBORDER) ? ch : cc);
maybe_rect(dr, RECT(1,1),
(val & FG_TLCORNER) ? cc : -1);
maybe_rect(dr, RECT(1,1),
(val & FG_TLCORNER) ? ch | TYPE_TLCIRC :
!((FG_TBORDER | FG_LBORDER) &~ val) ? ch | TYPE_BRCIRC :
(val & (FG_TBORDER | FG_LBORDER)) ? ch : cc);
maybe_rect(dr, RECT(2,1),
(val & FG_TBORDER) ? ch : cc);
maybe_rect(dr, RECT(3,1),
(val & (FG_TBORDER | FG_RBORDER)) == FG_TBORDER ? ch :
(val & (FG_TBORDER | FG_RBORDER)) == FG_RBORDER ? cl :
!((FG_TBORDER|FG_RBORDER) &~ val) ? cc | TYPE_BLCIRC : cc);
maybe_rect(dr, RECT(4,1),
(val & FG_TRCORNER) ? ch : (val & FG_RBORDER) ? -1 :
(val & FG_TBORDER) ? ch : cc);
maybe_rect(dr, RECT(0,2),
(val & FG_LBORDER) ? -1 : cc);
maybe_rect(dr, RECT(1,2),
(val & FG_LBORDER) ? ch : cc);
maybe_rect(dr, RECT(2,2),
cc);
maybe_rect(dr, RECT(3,2),
(val & FG_RBORDER) ? cl : cc);
maybe_rect(dr, RECT(4,2),
(val & FG_RBORDER) ? -1 : cc);
maybe_rect(dr, RECT(0,3),
(val & FG_BLCORNER) ? cl : (val & FG_LBORDER) ? -1 :
(val & FG_BBORDER) ? cl : cc);
maybe_rect(dr, RECT(1,3),
(val & (FG_BBORDER | FG_LBORDER)) == FG_BBORDER ? cl :
(val & (FG_BBORDER | FG_LBORDER)) == FG_LBORDER ? ch :
!((FG_BBORDER|FG_LBORDER) &~ val) ? cc | TYPE_TRCIRC : cc);
maybe_rect(dr, RECT(2,3),
(val & FG_BBORDER) ? cl : cc);
maybe_rect(dr, RECT(3,3),
(val & FG_BRCORNER) ? cc : -1);
maybe_rect(dr, RECT(3,3),
(val & FG_BRCORNER) ? cl | TYPE_BRCIRC :
!((FG_BBORDER | FG_RBORDER) &~ val) ? cl | TYPE_TLCIRC :
(val & (FG_BBORDER | FG_RBORDER)) ? cl : cc);
maybe_rect(dr, RECT(4,3),
(val & FG_BRCORNER) ? cl : (val & FG_RBORDER) ? -1 :
(val & FG_BBORDER) ? cl : cc);
maybe_rect(dr, RECT(0,4),
(val & (FG_BLCORNER | FG_BBORDER | FG_LBORDER)) ? -1 : cc);
maybe_rect(dr, RECT(1,4),
(val & FG_BLCORNER) ? ch : (val & FG_BBORDER) ? -1 :
(val & FG_LBORDER) ? ch : cc);
maybe_rect(dr, RECT(2,4),
(val & FG_BBORDER) ? -1 : cc);
maybe_rect(dr, RECT(3,4),
(val & FG_BRCORNER) ? cl : (val & FG_BBORDER) ? -1 :
(val & FG_RBORDER) ? cl : cc);
maybe_rect(dr, RECT(4,4),
(val & (FG_BRCORNER | FG_BBORDER | FG_RBORDER)) ? -1 : cc);
#undef RECT
draw_piecepart(dr, ds, tx, ty, (val >> FG_MAINPIECESH) & PIECE_MASK,
cl, cc, ch);
}
draw_update(dr, tx, ty, TILESIZE, TILESIZE);
}
static unsigned long find_piecepart(int w, int h, int *dsf, int x, int y)
{
int i = y*w+x;
int canon = dsf_canonify(dsf, i);
unsigned long val = 0;
if (x == 0 || canon != dsf_canonify(dsf, i-1))
val |= PIECE_LBORDER;
if (y== 0 || canon != dsf_canonify(dsf, i-w))
val |= PIECE_TBORDER;
if (x == w-1 || canon != dsf_canonify(dsf, i+1))
val |= PIECE_RBORDER;
if (y == h-1 || canon != dsf_canonify(dsf, i+w))
val |= PIECE_BBORDER;
if (!(val & (PIECE_TBORDER | PIECE_LBORDER)) &&
canon != dsf_canonify(dsf, i-1-w))
val |= PIECE_TLCORNER;
if (!(val & (PIECE_TBORDER | PIECE_RBORDER)) &&
canon != dsf_canonify(dsf, i+1-w))
val |= PIECE_TRCORNER;
if (!(val & (PIECE_BBORDER | PIECE_LBORDER)) &&
canon != dsf_canonify(dsf, i-1+w))
val |= PIECE_BLCORNER;
if (!(val & (PIECE_BBORDER | PIECE_RBORDER)) &&
canon != dsf_canonify(dsf, i+1+w))
val |= PIECE_BRCORNER;
return val;
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
@ -1800,7 +2002,7 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
int w = state->w, h = state->h, wh = w*h;
unsigned char *board;
int *dsf;
int x, y, mainanchor, mainpos, dragpos;
int x, y, mainanchor, mainpos, dragpos, solvepos, solvesrc, solvedst;
if (!ds->started) {
/*
@ -1827,6 +2029,16 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
assert(mpret);
}
if (state->soln) {
solvesrc = state->soln->moves[state->soln_index*2];
solvedst = state->soln->moves[state->soln_index*2+1];
if (solvesrc == state->lastmoved_pos)
solvesrc = state->lastmoved;
if (solvesrc == ui->drag_anchor)
solvesrc = ui->drag_currpos;
} else
solvesrc = solvedst = -1;
/*
* Build a dsf out of that board, so we can conveniently tell
* which edges are connected and which aren't.
@ -1851,6 +2063,7 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
assert(mainanchor >= 0);
mainpos = dsf_canonify(dsf, mainanchor);
dragpos = ui->drag_currpos > 0 ? dsf_canonify(dsf, ui->drag_currpos) : -1;
solvepos = solvesrc >= 0 ? dsf_canonify(dsf, solvesrc) : -1;
/*
* Now we can construct the data about what we want to draw.
@ -1892,31 +2105,28 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
val |= FG_NORMAL;
if (canon == dragpos)
val |= FG_DRAGGING;
if (canon == solvepos)
val |= FG_SOLVEPIECE;
/*
* Now look around to see if other squares
* belonging to the same block are adjacent to us.
*/
if (x == 0 || canon != dsf_canonify(dsf, i-1))
val |= FG_LBORDER;
if (y== 0 || canon != dsf_canonify(dsf, i-w))
val |= FG_TBORDER;
if (x == w-1 || canon != dsf_canonify(dsf, i+1))
val |= FG_RBORDER;
if (y == h-1 || canon != dsf_canonify(dsf, i+w))
val |= FG_BBORDER;
if (!(val & (FG_TBORDER | FG_LBORDER)) &&
canon != dsf_canonify(dsf, i-1-w))
val |= FG_TLCORNER;
if (!(val & (FG_TBORDER | FG_RBORDER)) &&
canon != dsf_canonify(dsf, i+1-w))
val |= FG_TRCORNER;
if (!(val & (FG_BBORDER | FG_LBORDER)) &&
canon != dsf_canonify(dsf, i-1+w))
val |= FG_BLCORNER;
if (!(val & (FG_BBORDER | FG_RBORDER)) &&
canon != dsf_canonify(dsf, i+1+w))
val |= FG_BRCORNER;
val |= find_piecepart(w, h, dsf, x, y) << FG_MAINPIECESH;
}
/*
* If we're in the middle of showing a solution,
* display a shadow piece for the target of the
* current move.
*/
if (solvepos >= 0) {
int si = i - solvedst + solvesrc;
if (si >= 0 && si < wh && dsf_canonify(dsf, si) == solvepos) {
val |= find_piecepart(w, h, dsf,
si % w, si / w) << FG_SHADOWSH;
val |= FG_SHADOW;
}
}
if (val != ds->grid[i]) {
@ -1931,11 +2141,10 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
{
char statusbuf[256];
/*
* FIXME: do something about auto-solve?
*/
sprintf(statusbuf, "%sMoves: %d",
(state->completed >= 0 ? "COMPLETED! " : ""),
(state->completed >= 0 ?
(state->cheated ? "Auto-solved. " : "COMPLETED! ") :
(state->cheated ? "Auto-solver used. " : "")),
(state->completed >= 0 ? state->completed : state->movecount));
if (state->minmoves >= 0)
sprintf(statusbuf+strlen(statusbuf), " (min %d)",
@ -1995,7 +2204,7 @@ const struct game thegame = {
new_game,
dup_game,
free_game,
FALSE, solve_game, /* FIXME */
TRUE, solve_game,
TRUE, game_text_format,
new_ui,
free_ui,