Updates and improvements from Jonas Koelker.

[originally from svn r7601]
This commit is contained in:
Simon Tatham
2007-05-20 14:28:48 +00:00
parent 399ac356bd
commit 1c42aec234

677
filling.c
View File

@ -6,11 +6,26 @@
/* TODO:
*
* - use a typedef instead of int for numbers on the board
* + replace int with something else (signed char?)
* - the type should be signed (I use -board[i] temporarily)
* - problems are small (<= 9?): type can be char?
* + replace int with something else (signed short?)
* - the type should be signed (for -board[i] and -SENTINEL)
* - the type should be somewhat big: board[i] = i
* - Using shorts gives us 181x181 puzzles as upper bound.
*
* - make a somewhat more clever solver
* + enable "ghost regions" of size > 1
* - one can put an upper bound on the size of a ghost region
* by considering the board size and summing present hints.
* + for each square, for i=1..n, what is the distance to a region
* containing i? How full is the region? How is this useful?
*
* - in board generation, after having merged regions such that no
* more merges are necessary, try splitting (big) regions.
* + it seems that smaller regions make for better puzzles; see
* for instance the 7x7 puzzle in this file (grep for 7x7:).
*
* - symmetric hints (solo-style)
* + right now that means including _many_ hints, and the puzzles
* won't look any nicer. Not worth it (at the moment).
*
* - make the solver do recursion/backtracking.
* + This is for user-submitted puzzles, not for puzzle
@ -20,12 +35,14 @@
*
* - solo-like pencil marks?
*
* - speed up generation of puzzles of size >= 11x11
* - a user says that the difficulty is unevenly distributed.
* + partition into levels? Will they be non-crap?
*
* - Allow square contents > 9?
* + I could use letters for digits (solo does this), but
* letters don't have numeric significance (normal people hate
* base36), which is relevant here (much more than in solo).
* + [click, 1, 0, enter] => [10 in clicked square]?
* + How much information is needed to solve? Does one need to
* know the algorithm by which the largest number is set?
*
@ -42,20 +59,37 @@
*
* - use binary search when discovering the minimal sovable point
* + profile to show a need (but when the solver gets slower...)
* + avg 0.1s per 9x9, which _is_ human-patience noticable.
* + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100)
* + but the hints are independent, not linear, so... what?
*/
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "puzzles.h"
static unsigned char verbose;
static void printv(char *fmt, ...) {
if (verbose) {
va_list va;
va_start(va, fmt);
vprintf(fmt, va);
va_end(va);
}
}
/*****************************************************************************
* GAME CONFIGURATION AND PARAMETERS *
*****************************************************************************/
struct game_params {
int w, h;
int h, w;
};
struct shared_state {
@ -70,7 +104,7 @@ struct game_state {
int completed, cheated;
};
static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}};
static const struct game_params defaults[3] = {{7, 9}, {9, 13}, {13, 17}};
static game_params *default_params(void)
{
@ -88,7 +122,7 @@ static int game_fetch_preset(int i, char **name, game_params **params)
if (i < 0 || i >= lenof(defaults)) return FALSE;
*params = snew(game_params);
**params = defaults[i]; /* struct copy */
sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h);
sprintf(buf, "%dx%d", defaults[i].h, defaults[i].w);
*name = dupstr(buf);
return TRUE;
@ -232,9 +266,9 @@ static char *board_to_string(int *board, int w, int h) {
/* fill in the numbers */
for (i = 0; i < sz; ++i) {
const int x = i % w;
const int y = i / w;
if (board[i] == EMPTY) continue;
repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
const int y = i / w;
if (board[i] == EMPTY) continue;
repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
}
repr[chlen] = '\0';
@ -255,50 +289,28 @@ static char *game_text_format(game_state *state)
static const int dx[4] = {-1, 1, 0, 0};
static const int dy[4] = {0, 0, -1, 1};
/*
struct solver_state
{
int *dsf;
int *board;
int *connected;
int nempty;
};
static void print_board(int *board, int w, int h) {
char *repr = board_to_string(board, w, h);
fputs(repr, stdout);
free(repr);
}
*/
#define SENTINEL sz
/* determines whether a board (in dsf form) is valid. If possible,
* return a conflicting pair in *a and *b and a non-*b neighbour of *a
* in *c. If not possible, leave them unmodified. */
static void
validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) {
const int sz = w * h;
int i;
assert(*a == SENTINEL);
assert(*b == SENTINEL);
assert(*c == SENTINEL);
for (i = 0; i < sz && *a == sz; ++i) {
const int aa = dsf_canonify(dsf, sq[i]);
int cc = sz;
int j;
for (j = 0; j < 4; ++j) {
const int x = (sq[i] % w) + dx[j];
const int y = (sq[i] / w) + dy[j];
int bb;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
bb = dsf_canonify(dsf, w*y + x);
if (aa == bb) continue;
else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
*a = aa;
*b = bb;
*c = cc;
} else if (cc == sz) *c = cc = bb;
}
if (verbose) {
char *repr = board_to_string(board, w, h);
printv("%s\n", repr);
free(repr);
}
}
static game_state *new_game(midend *, game_params *, char *);
static void free_game(game_state *);
/* generate a random valid board; uses validate_board. */
#define SENTINEL sz
/* generate a random valid board; uses validate_board. */
static void make_board(int *board, int w, int h, random_state *rs) {
int *dsf;
@ -312,7 +324,6 @@ static void make_board(int *board, int w, int h, random_state *rs) {
* of size > w*h, so the special case only affects w=h=2. */
int nboards = 0;
int i;
assert(w >= 1);
@ -327,31 +338,52 @@ static void make_board(int *board, int w, int h, random_state *rs) {
for (i = 0; i < sz; ++i) board[i] = i;
while (1) {
++nboards;
shuffle(board, sz, sizeof (int), rs);
/* while the board can in principle be fixed */
while (1) {
int a = SENTINEL;
int b = SENTINEL;
int c = SENTINEL;
validate_board(dsf, w, h, board, &a, &b, &c);
if (a == SENTINEL /* meaning the board is valid */) {
int i;
for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
sfree(dsf);
/* printf("returning board number %d\n", nboards); */
return;
} else {
/* try to repair the invalid board */
a = dsf_canonify(dsf, a);
assert(a != dsf_canonify(dsf, b));
if (c != sz) assert(a != dsf_canonify(dsf, c));
dsf_merge(dsf, a, c == sz? b: c);
/* if repair impossible; make a new board */
if (dsf_size(dsf, a) > maxsize) break;
}
}
dsf_init(dsf, sz); /* re-init the dsf */
int change;
++nboards;
shuffle(board, sz, sizeof (int), rs);
/* while the board can in principle be fixed */
do {
change = FALSE;
for (i = 0; i < sz; ++i) {
int a = SENTINEL;
int b = SENTINEL;
int c = SENTINEL;
const int aa = dsf_canonify(dsf, board[i]);
int cc = sz;
int j;
for (j = 0; j < 4; ++j) {
const int x = (board[i] % w) + dx[j];
const int y = (board[i] / w) + dy[j];
int bb;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
bb = dsf_canonify(dsf, w*y + x);
if (aa == bb) continue;
else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
a = aa;
b = bb;
c = cc;
} else if (cc == sz) c = cc = bb;
}
if (a != SENTINEL) {
a = dsf_canonify(dsf, a);
assert(a != dsf_canonify(dsf, b));
if (c != sz) assert(a != dsf_canonify(dsf, c));
dsf_merge(dsf, a, c == sz? b: c);
/* if repair impossible; make a new board */
if (dsf_size(dsf, a) > maxsize) goto retry;
change = TRUE;
}
}
} while (change);
for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
sfree(dsf);
printv("returning board number %d\n", nboards);
return;
retry:
dsf_init(dsf, sz);
}
assert(FALSE); /* unreachable */
}
@ -393,31 +425,36 @@ static void *memdup(const void *ptr, size_t len, size_t esz) {
return dup;
}
static void expand(int *board, int *connected, int *dsf, int w, int h,
int dst, int src, int *empty, int *learn) {
static void expand(struct solver_state *s, int w, int h, int t, int f) {
int j;
assert(board);
assert(connected);
assert(dsf);
assert(empty);
assert(learn);
assert(board[dst] == EMPTY);
assert(board[src] != EMPTY);
board[dst] = board[src];
assert(s);
assert(s->board[t] == EMPTY); /* expand to empty square */
assert(s->board[f] != EMPTY); /* expand from non-empty square */
printv(
"learn: expanding %d from (%d, %d) into (%d, %d)\n",
s->board[f], f % w, f / w, t % w, t / w);
s->board[t] = s->board[f];
for (j = 0; j < 4; ++j) {
const int x = (dst % w) + dx[j];
const int y = (dst / w) + dy[j];
const int x = (t % w) + dx[j];
const int y = (t / w) + dy[j];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (board[idx] != board[dst]) continue;
merge(dsf, connected, dst, idx);
if (s->board[idx] != s->board[t]) continue;
merge(s->dsf, s->connected, t, idx);
}
/* printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */
--*empty;
*learn = TRUE;
--s->nempty;
}
static void flood(int *board, int w, int h, int i, int n) {
static void clear_count(int *board, int sz) {
int i;
for (i = 0; i < sz; ++i) {
if (board[i] >= 0) continue;
else if (board[i] == -SENTINEL) board[i] = EMPTY;
else board[i] = -board[i];
}
}
static void flood_count(int *board, int w, int h, int i, int n, int *c) {
const int sz = w * h;
int k;
@ -425,30 +462,23 @@ static void flood(int *board, int w, int h, int i, int n) {
else if (board[i] == n) board[i] = -board[i];
else return;
if (--*c == 0) return;
for (k = 0; k < 4; ++k) {
const int x = (i % w) + dx[k];
const int y = (i / w) + dy[k];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
flood(board, w, h, idx, n);
flood_count(board, w, h, idx, n, c);
if (*c == 0) return;
}
}
static int count_and_clear(int *board, int sz) {
int count = -1;
int i;
for (i = 0; i < sz; ++i) {
if (board[i] >= 0) continue;
++count;
if (board[i] == -SENTINEL) board[i] = EMPTY;
else board[i] = -board[i];
}
return count;
}
static int count(int *board, int w, int h, int i) {
flood(board, w, h, i, board[i]);
return count_and_clear(board, w * h);
static int check_capacity(int *board, int w, int h, int i) {
int n = board[i];
flood_count(board, w, h, i, board[i], &n);
clear_count(board, w * h);
return n == 0;
}
static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
@ -467,7 +497,7 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
root = dsf_canonify(dsf, idx);
for (m = 0; m < nhits && root != hits[m]; ++m);
if (m < nhits) continue;
/* printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */
printv("\t (%d, %d) contrib %d to size\n", x, y, dsf[root] >> 2);
size += dsf_size(dsf, root);
assert(dsf_size(dsf, root) >= 1);
hits[nhits++] = root;
@ -504,7 +534,8 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
*
* CONNECTED COMPONENT FORCED EXPANSION (too small):
* When a CC must include a particular square, because otherwise there
* would not be enough room to complete it.
* would not be enough room to complete it. This includes squares not
* adjacent to the CC through learn_critical_square.
* +---+---+
* | 2 | _ |
* +---+---+
@ -523,185 +554,245 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
*
* TODO: backtracking.
*/
#define EXPAND(a, b)\
expand(board, connected, dsf, w, h, a, b, &nempty, &learn)
static void filled_square(struct solver_state *s, int w, int h, int i) {
int j;
for (j = 0; j < 4; ++j) {
const int x = (i % w) + dx[j];
const int y = (i / w) + dy[j];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (s->board[i] == s->board[idx])
merge(s->dsf, s->connected, i, idx);
}
}
static void init_solver_state(struct solver_state *s, int w, int h) {
const int sz = w * h;
int i;
assert(s);
s->nempty = 0;
for (i = 0; i < sz; ++i) s->connected[i] = i;
for (i = 0; i < sz; ++i)
if (s->board[i] == EMPTY) ++s->nempty;
else filled_square(s, w, h, i);
}
static int learn_expand_or_one(struct solver_state *s, int w, int h) {
const int sz = w * h;
int i;
int learn = FALSE;
assert(s);
for (i = 0; i < sz; ++i) {
int j;
int one = TRUE;
if (s->board[i] != EMPTY) continue;
for (j = 0; j < 4; ++j) {
const int x = (i % w) + dx[j];
const int y = (i / w) + dy[j];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (s->board[idx] == EMPTY) {
one = FALSE;
continue;
}
if (one &&
(s->board[idx] == 1 ||
(s->board[idx] >= expandsize(s->board, s->dsf, w, h,
i, s->board[idx]))))
one = FALSE;
assert(s->board[i] == EMPTY);
s->board[i] = -SENTINEL;
if (check_capacity(s->board, w, h, idx)) continue;
assert(s->board[i] == EMPTY);
printv("learn: expanding in one\n");
expand(s, w, h, i, idx);
learn = TRUE;
break;
}
if (j == 4 && one) {
printv("learn: one at (%d, %d)\n", i % w, i / w);
assert(s->board[i] == EMPTY);
s->board[i] = 1;
assert(s->nempty);
--s->nempty;
learn = TRUE;
}
}
return learn;
}
static int learn_blocked_expansion(struct solver_state *s, int w, int h) {
const int sz = w * h;
int i;
int learn = FALSE;
assert(s);
/* for every connected component */
for (i = 0; i < sz; ++i) {
int exp = SENTINEL;
int j;
if (s->board[i] == EMPTY) continue;
j = dsf_canonify(s->dsf, i);
/* (but only for each connected component) */
if (i != j) continue;
/* (and not if it's already complete) */
if (dsf_size(s->dsf, j) == s->board[j]) continue;
/* for each square j _in_ the connected component */
do {
int k;
printv(" looking at (%d, %d)\n", j % w, j / w);
/* for each neighbouring square (idx) */
for (k = 0; k < 4; ++k) {
const int x = (j % w) + dx[k];
const int y = (j / w) + dy[k];
const int idx = w*y + x;
int size;
/* int l;
int nhits = 0;
int hits[4]; */
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (s->board[idx] != EMPTY) continue;
if (exp == idx) continue;
printv("\ttrying to expand onto (%d, %d)\n", x, y);
/* find out the would-be size of the new connected
* component if we actually expanded into idx */
/*
size = 1;
for (l = 0; l < 4; ++l) {
const int lx = x + dx[l];
const int ly = y + dy[l];
const int idxl = w*ly + lx;
int root;
int m;
if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
if (board[idxl] != board[j]) continue;
root = dsf_canonify(dsf, idxl);
for (m = 0; m < nhits && root != hits[m]; ++m);
if (m != nhits) continue;
// printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
size += dsf_size(dsf, root);
assert(dsf_size(dsf, root) >= 1);
hits[nhits++] = root;
}
*/
size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]);
/* ... and see if that size is too big, or if we
* have other expansion candidates. Otherwise
* remember the (so far) only candidate. */
printv("\tthat would give a size of %d\n", size);
if (size > s->board[j]) continue;
/* printv("\tnow knowing %d expansions\n", nexpand + 1); */
if (exp != SENTINEL) goto next_i;
assert(exp != idx);
exp = idx;
}
j = s->connected[j]; /* next square in the same CC */
assert(s->board[i] == s->board[j]);
} while (j != i);
/* end: for each square j _in_ the connected component */
if (exp == SENTINEL) continue;
printv("learning to expand\n");
expand(s, w, h, exp, i);
learn = TRUE;
next_i:
;
}
/* end: for each connected component */
return learn;
}
static int learn_critical_square(struct solver_state *s, int w, int h) {
const int sz = w * h;
int i;
int learn = FALSE;
assert(s);
/* for each connected component */
for (i = 0; i < sz; ++i) {
int j;
if (s->board[i] == EMPTY) continue;
if (i != dsf_canonify(s->dsf, i)) continue;
if (dsf_size(s->dsf, i) == s->board[i]) continue;
assert(s->board[i] != 1);
/* for each empty square */
for (j = 0; j < sz; ++j) {
if (s->board[j] != EMPTY) continue;
s->board[j] = -SENTINEL;
if (check_capacity(s->board, w, h, i)) continue;
/* if not expanding s->board[i] to s->board[j] implies
* that s->board[i] can't reach its full size, ... */
assert(s->nempty);
printv(
"learn: ds %d at (%d, %d) blocking (%d, %d)\n",
s->board[i], j % w, j / w, i % w, i / w);
--s->nempty;
s->board[j] = s->board[i];
filled_square(s, w, h, j);
learn = TRUE;
}
}
return learn;
}
static int solver(const int *orig, int w, int h, char **solution) {
const int sz = w * h;
int *board = memdup(orig, sz, sizeof (int));
int *dsf = snew_dsf(sz); /* eqv classes: connected components */
int *connected = snewn(sz, int); /* connected[n] := n.next; */
struct solver_state ss;
ss.board = memdup(orig, sz, sizeof (int));
ss.dsf = snew_dsf(sz); /* eqv classes: connected components */
ss.connected = snewn(sz, int); /* connected[n] := n.next; */
/* cyclic disjoint singly linked lists, same partitioning as dsf.
* The lists lets you iterate over a partition given any member */
int nempty = 0;
printv("trying to solve this:\n");
print_board(ss.board, w, h);
int learn;
int i;
for (i = 0; i < sz; i++) connected[i] = i;
for (i = 0; i < sz; ++i) {
int j;
if (board[i] == EMPTY) ++nempty;
else for (j = 0; j < 4; ++j) {
const int x = (i % w) + dx[j];
const int y = (i / w) + dy[j];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (board[i] == board[idx]) merge(dsf, connected, i, idx);
}
}
/* puts("trying to solve this:");
print_board(board, w, h); */
/* TODO: refactor this code, it's too long */
init_solver_state(&ss, w, h);
do {
int i;
learn = FALSE;
if (learn_blocked_expansion(&ss, w, h)) continue;
if (learn_expand_or_one(&ss, w, h)) continue;
if (learn_critical_square(&ss, w, h)) continue;
break;
} while (ss.nempty);
/* for every connected component */
for (i = 0; i < sz; ++i) {
int exp = SENTINEL;
int j;
/* If the component consists of empty squares */
if (board[i] == EMPTY) {
int k;
int one = TRUE;
for (k = 0; k < 4; ++k) {
const int x = (i % w) + dx[k];
const int y = (i / w) + dy[k];
const int idx = w*y + x;
int n;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (board[idx] == EMPTY) {
one = FALSE;
continue;
}
if (one &&
(board[idx] == 1 ||
(board[idx] >= expandsize(board, dsf, w, h,
i, board[idx]))))
one = FALSE;
assert(board[i] == EMPTY);
board[i] = -SENTINEL;
n = count(board, w, h, idx);
assert(board[i] == EMPTY);
if (n >= board[idx]) continue;
EXPAND(i, idx);
break;
}
if (k == 4 && one) {
assert(board[i] == EMPTY);
board[i] = 1;
assert(nempty);
--nempty;
learn = TRUE;
}
continue;
}
/* printf("expanding blob of (%d, %d)\n", i % w, i / w); */
j = dsf_canonify(dsf, i);
/* (but only for each connected component) */
if (i != j) continue;
/* (and not if it's already complete) */
if (dsf_size(dsf, j) == board[j]) continue;
/* for each square j _in_ the connected component */
do {
int k;
/* printf(" looking at (%d, %d)\n", j % w, j / w); */
/* for each neighbouring square (idx) */
for (k = 0; k < 4; ++k) {
const int x = (j % w) + dx[k];
const int y = (j / w) + dy[k];
const int idx = w*y + x;
int size;
/* int l;
int nhits = 0;
int hits[4]; */
if (x < 0 || x >= w || y < 0 || y >= h) continue;
if (board[idx] != EMPTY) continue;
if (exp == idx) continue;
/* printf("\ttrying to expand onto (%d, %d)\n", x, y); */
/* find out the would-be size of the new connected
* component if we actually expanded into idx */
/*
size = 1;
for (l = 0; l < 4; ++l) {
const int lx = x + dx[l];
const int ly = y + dy[l];
const int idxl = w*ly + lx;
int root;
int m;
if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
if (board[idxl] != board[j]) continue;
root = dsf_canonify(dsf, idxl);
for (m = 0; m < nhits && root != hits[m]; ++m);
if (m != nhits) continue;
// printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
size += dsf_size(dsf, root);
assert(dsf_size(dsf, root) >= 1);
hits[nhits++] = root;
}
*/
size = expandsize(board, dsf, w, h, idx, board[j]);
/* ... and see if that size is too big, or if we
* have other expansion candidates. Otherwise
* remember the (so far) only candidate. */
/* printf("\tthat would give a size of %d\n", size); */
if (size > board[j]) continue;
/* printf("\tnow knowing %d expansions\n", nexpand + 1); */
if (exp != SENTINEL) goto next_i;
assert(exp != idx);
exp = idx;
}
j = connected[j]; /* next square in the same CC */
assert(board[i] == board[j]);
} while (j != i);
/* end: for each square j _in_ the connected component */
if (exp == SENTINEL) continue;
/* printf("expand b: %d -> %d\n", i, exp); */
EXPAND(exp, i);
next_i:
;
}
/* end: for each connected component */
} while (learn && nempty);
/* puts("best guess:");
print_board(board, w, h); */
printv("best guess:\n");
print_board(ss.board, w, h);
if (solution) {
int i;
assert(*solution == NULL);
*solution = snewn(sz + 2, char);
**solution = 's';
for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0';
for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0';
(*solution)[sz + 1] = '\0';
/* We don't need the \0 for execute_move (the only user)
* I'm just being printf-friendly in case I wanna print */
}
sfree(dsf);
sfree(board);
sfree(connected);
sfree(ss.dsf);
sfree(ss.board);
sfree(ss.connected);
return !nempty;
return !ss.nempty;
}
static int *make_dsf(int *dsf, int *board, const int w, const int h) {
@ -744,6 +835,31 @@ static int compare(const void *pa, const void *pb) {
return g_board[*(const int *)pb] - g_board[*(const int *)pa];
}
static void minimize_clue_set(int *board, int w, int h, int *randomize) {
const int sz = w * h;
int i;
int *board_cp = snewn(sz, int);
memcpy(board_cp, board, sz * sizeof (int));
/* since more clues only helps and never hurts, one pass will do
* just fine: if we can remove clue n with k clues of index > n,
* we could have removed clue n with >= k clues of index > n.
* So an additional pass wouldn't do anything [use induction]. */
for (i = 0; i < sz; ++i) {
if (board[randomize[i]] == EMPTY) continue;
board[randomize[i]] = EMPTY;
/* (rot.) symmetry tends to include _way_ too many hints */
/* board[sz - randomize[i] - 1] = EMPTY; */
if (!solver(board, w, h, NULL)) {
board[randomize[i]] = board_cp[randomize[i]];
/* board[sz - randomize[i] - 1] =
board_cp[sz - randomize[i] - 1]; */
}
}
sfree(board_cp);
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
@ -752,7 +868,6 @@ static char *new_game_desc(game_params *params, random_state *rs,
const int sz = w * h;
int *board = snewn(sz, int);
int *randomize = snewn(sz, int);
int *solver_board = snewn(sz, int);
char *game_description = snewn(sz + 1, char);
int i;
@ -762,35 +877,23 @@ static char *new_game_desc(game_params *params, random_state *rs,
}
make_board(board, w, h, rs);
memcpy(solver_board, board, sz * sizeof (int));
g_board = board;
qsort(randomize, sz, sizeof (int), compare);
/* since more clues only helps and never hurts, one pass will do
* just fine: if we can remove clue n with k clues of index > n,
* we could have removed clue n with >= k clues of index > n.
* So an additional pass wouldn't do anything [use induction]. */
for (i = 0; i < sz; ++i) {
solver_board[randomize[i]] = EMPTY;
if (!solver(solver_board, w, h, NULL))
solver_board[randomize[i]] = board[randomize[i]];
}
minimize_clue_set(board, w, h, randomize);
for (i = 0; i < sz; ++i) {
assert(solver_board[i] >= 0);
assert(solver_board[i] < 10);
game_description[i] = solver_board[i] + '0';
assert(board[i] >= 0);
assert(board[i] < 10);
game_description[i] = board[i] + '0';
}
game_description[sz] = '\0';
/*
solver(solver_board, w, h, aux);
print_board(solver_board, w, h);
solver(board, w, h, aux);
print_board(board, w, h);
*/
sfree(randomize);
sfree(solver_board);
sfree(board);
return game_description;
@ -802,7 +905,7 @@ static char *validate_desc(game_params *params, char *desc)
const int sz = params->w * params->h;
const char m = '0' + max(max(params->w, params->h), 3);
/* printf("desc = '%s'; sz = %d\n", desc, sz); */
printv("desc = '%s'; sz = %d\n", desc, sz);
for (i = 0; desc[i] && i < sz; ++i)
if (!isdigit((unsigned char) *desc))