mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-22 00:15:46 -07:00
Optimisation patch from Mike: remember which squares we've entirely
finished dealing with, and don't do them again on the next loop. [originally from svn r6312]
This commit is contained in:
112
loopy.c
112
loopy.c
@ -1507,13 +1507,22 @@ static int line_status_from_point(const game_state *state,
|
||||
* solved grid */
|
||||
static solver_state *solve_game_rec(const solver_state *sstate_start, int diff)
|
||||
{
|
||||
int i, j;
|
||||
int i, j, w, h;
|
||||
int current_yes, current_no, desired;
|
||||
solver_state *sstate, *sstate_saved, *sstate_tmp;
|
||||
int t;
|
||||
/* char *text; */
|
||||
solver_state *sstate_rec_solved;
|
||||
int recursive_soln_count;
|
||||
char *square_solved;
|
||||
char *dot_solved;
|
||||
|
||||
h = sstate_start->state->h;
|
||||
w = sstate_start->state->w;
|
||||
|
||||
dot_solved = snewn(DOT_COUNT(sstate_start->state), char);
|
||||
square_solved = snewn(SQUARE_COUNT(sstate_start->state), char);
|
||||
memset(dot_solved, FALSE, DOT_COUNT(sstate_start->state));
|
||||
memset(square_solved, FALSE, SQUARE_COUNT(sstate_start->state));
|
||||
|
||||
#if 0
|
||||
printf("solve_game_rec: recursion_remaining = %d\n",
|
||||
@ -1522,16 +1531,11 @@ static solver_state *solve_game_rec(const solver_state *sstate_start, int diff)
|
||||
|
||||
sstate = dup_solver_state((solver_state *)sstate_start);
|
||||
|
||||
#if 0
|
||||
text = game_text_format(sstate->state);
|
||||
printf("%s\n", text);
|
||||
sfree(text);
|
||||
#endif
|
||||
|
||||
#define RETURN_IF_SOLVED \
|
||||
do { \
|
||||
update_solver_status(sstate); \
|
||||
if (sstate->solver_status != SOLVER_INCOMPLETE) { \
|
||||
sfree(dot_solved); sfree(square_solved); \
|
||||
free_solver_state(sstate_saved); \
|
||||
return sstate; \
|
||||
} \
|
||||
@ -1540,6 +1544,7 @@ static solver_state *solve_game_rec(const solver_state *sstate_start, int diff)
|
||||
#define FOUND_MISTAKE \
|
||||
do { \
|
||||
sstate->solver_status = SOLVER_MISTAKE; \
|
||||
sfree(dot_solved); sfree(square_solved); \
|
||||
free_solver_state(sstate_saved); \
|
||||
return sstate; \
|
||||
} while (0)
|
||||
@ -1556,20 +1561,30 @@ nonrecursive_solver:
|
||||
/* First we do the 'easy' work, that might cause concrete results */
|
||||
|
||||
/* Per-square deductions */
|
||||
for (j = 0; j < sstate->state->h; ++j) {
|
||||
for (i = 0; i < sstate->state->w; ++i) {
|
||||
for (j = 0; j < h; ++j) {
|
||||
for (i = 0; i < w; ++i) {
|
||||
/* Begin rules that look at the clue (if there is one) */
|
||||
if (square_solved[i + j*w])
|
||||
continue;
|
||||
|
||||
desired = CLUE_AT(sstate->state, i, j);
|
||||
if (desired == ' ')
|
||||
continue;
|
||||
|
||||
desired = desired - '0';
|
||||
current_yes = square_order(sstate->state, i, j, LINE_YES);
|
||||
current_no = square_order(sstate->state, i, j, LINE_NO);
|
||||
|
||||
if (current_yes + current_no == 4) {
|
||||
square_solved[i + j*w] = TRUE;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (desired < current_yes)
|
||||
FOUND_MISTAKE;
|
||||
if (desired == current_yes) {
|
||||
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
||||
square_solved[i + j*w] = TRUE;
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -1577,6 +1592,7 @@ nonrecursive_solver:
|
||||
FOUND_MISTAKE;
|
||||
if (4 - desired == current_no) {
|
||||
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES);
|
||||
square_solved[i + j*w] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1584,12 +1600,20 @@ nonrecursive_solver:
|
||||
RETURN_IF_SOLVED;
|
||||
|
||||
/* Per-dot deductions */
|
||||
for (j = 0; j < sstate->state->h + 1; ++j) {
|
||||
for (i = 0; i < sstate->state->w + 1; ++i) {
|
||||
for (j = 0; j < h + 1; ++j) {
|
||||
for (i = 0; i < w + 1; ++i) {
|
||||
if (dot_solved[i + j*(w+1)])
|
||||
continue;
|
||||
|
||||
switch (dot_order(sstate->state, i, j, LINE_YES)) {
|
||||
case 0:
|
||||
if (dot_order(sstate->state, i, j, LINE_NO) == 3) {
|
||||
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
||||
switch (dot_order(sstate->state, i, j, LINE_NO)) {
|
||||
case 3:
|
||||
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
||||
/* fall through */
|
||||
case 4:
|
||||
dot_solved[i + j*(w+1)] = TRUE;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
@ -1598,7 +1622,7 @@ nonrecursive_solver:
|
||||
if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
|
||||
if (dir2_dot(sstate->state, i, j) == LINE_UNKNOWN){ \
|
||||
sstate->dot_howmany \
|
||||
[i + (sstate->state->w + 1) * j] |= 1<<dline; \
|
||||
[i + (w + 1) * j] |= 1<<dline; \
|
||||
} \
|
||||
}
|
||||
case 1:
|
||||
@ -1625,22 +1649,28 @@ nonrecursive_solver:
|
||||
case 2: /* 1 yes, 2 no */
|
||||
dot_setall(sstate->state, i, j,
|
||||
LINE_UNKNOWN, LINE_YES);
|
||||
dot_solved[i + j*(w+1)] = TRUE;
|
||||
break;
|
||||
case 3: /* 1 yes, 3 no */
|
||||
FOUND_MISTAKE;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
||||
dot_solved[i + j*(w+1)] = TRUE;
|
||||
break;
|
||||
case 3:
|
||||
case 4:
|
||||
FOUND_MISTAKE;
|
||||
break;
|
||||
}
|
||||
if (diff > DIFF_EASY) {
|
||||
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
|
||||
if (sstate->dot_atleastone \
|
||||
[i + (sstate->state->w + 1) * j] & 1<<dline) { \
|
||||
[i + (w + 1) * j] & 1<<dline) { \
|
||||
sstate->dot_atmostone \
|
||||
[i + (sstate->state->w + 1) * j] |= 1<<OPP_DLINE(dline); \
|
||||
[i + (w + 1) * j] |= 1<<OPP_DLINE(dline); \
|
||||
}
|
||||
/* If at least one of a dline in a dot is YES, at most one
|
||||
* of the opposite dline to that dot must be YES. */
|
||||
@ -1651,11 +1681,13 @@ nonrecursive_solver:
|
||||
}
|
||||
|
||||
/* More obscure per-square operations */
|
||||
for (j = 0; j < sstate->state->h; ++j) {
|
||||
for (i = 0; i < sstate->state->w; ++i) {
|
||||
for (j = 0; j < h; ++j) {
|
||||
for (i = 0; i < w; ++i) {
|
||||
if (square_solved[i + j*w])
|
||||
continue;
|
||||
|
||||
#define H1(dline, dir1_sq, dir2_sq, a, b, dot_howmany, line_query, line_set) \
|
||||
if (sstate->dot_howmany[i+a + (sstate->state->w + 1) * (j+b)] &\
|
||||
1<<dline) { \
|
||||
if (sstate->dot_howmany[i+a + (w + 1) * (j+b)] & 1<<dline) { \
|
||||
t = dir1_sq(sstate->state, i, j); \
|
||||
if (t == line_query) \
|
||||
dir2_sq(sstate->state, i, j) = line_set; \
|
||||
@ -1687,17 +1719,15 @@ nonrecursive_solver:
|
||||
#undef H1
|
||||
|
||||
switch (CLUE_AT(sstate->state, i, j)) {
|
||||
case '0':
|
||||
case '1':
|
||||
if (diff > DIFF_EASY) {
|
||||
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
||||
/* At most one of any DLINE can be set */ \
|
||||
sstate->dot_atmostone \
|
||||
[i+a + (sstate->state->w + 1) * (j+b)] |= 1<<dline; \
|
||||
[i+a + (w + 1) * (j+b)] |= 1<<dline; \
|
||||
/* This DLINE provides enough YESes to solve the clue */\
|
||||
if (sstate->dot_atleastone \
|
||||
[i+a + (sstate->state->w + 1) * (j+b)] & \
|
||||
1<<dline) { \
|
||||
[i+a + (w + 1) * (j+b)] & 1<<dline) { \
|
||||
dot_setall_dlines(sstate, OPP_DLINE(dline), \
|
||||
i+(1-a), j+(1-b), \
|
||||
LINE_UNKNOWN, LINE_NO); \
|
||||
@ -1710,11 +1740,9 @@ nonrecursive_solver:
|
||||
if (diff > DIFF_EASY) {
|
||||
#define H1(dline, dot_at1one, dot_at2one, a, b) \
|
||||
if (sstate->dot_at1one \
|
||||
[i+a + (sstate->state->w + 1) * (j+b)] & \
|
||||
1<<dline) { \
|
||||
[i+a + (w + 1) * (j+b)] & 1<<dline) { \
|
||||
sstate->dot_at2one \
|
||||
[i+(1-a) + (sstate->state->w + 1) * (j+(1-b))] |= \
|
||||
1<<OPP_DLINE(dline); \
|
||||
[i+(1-a) + (w + 1) * (j+(1-b))] |= 1<<OPP_DLINE(dline); \
|
||||
}
|
||||
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
||||
H1(dline, dot_atleastone, dot_atmostone, a, b); \
|
||||
@ -1727,16 +1755,14 @@ nonrecursive_solver:
|
||||
#undef H1
|
||||
break;
|
||||
case '3':
|
||||
case '4':
|
||||
if (diff > DIFF_EASY) {
|
||||
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
||||
/* At least one of any DLINE can be set */ \
|
||||
sstate->dot_atleastone \
|
||||
[i+a + (sstate->state->w + 1) * (j+b)] |= 1<<dline; \
|
||||
[i+a + (w + 1) * (j+b)] |= 1<<dline; \
|
||||
/* This DLINE provides enough NOs to solve the clue */ \
|
||||
if (sstate->dot_atmostone \
|
||||
[i+a + (sstate->state->w + 1) * (j+b)] & \
|
||||
1<<dline) { \
|
||||
[i+a + (w + 1) * (j+b)] & 1<<dline) { \
|
||||
dot_setall_dlines(sstate, OPP_DLINE(dline), \
|
||||
i+(1-a), j+(1-b), \
|
||||
LINE_UNKNOWN, LINE_YES); \
|
||||
@ -1762,8 +1788,8 @@ nonrecursive_solver:
|
||||
* clues, count the satisfied clues, and count the
|
||||
* satisfied-minus-one clues.
|
||||
*/
|
||||
for (j = 0; j <= sstate->state->h; ++j) {
|
||||
for (i = 0; i <= sstate->state->w; ++i) {
|
||||
for (j = 0; j <= h; ++j) {
|
||||
for (i = 0; i <= w; ++i) {
|
||||
if (RIGHTOF_DOT(sstate->state, i, j) == LINE_YES) {
|
||||
merge_dots(sstate, i, j, i+1, j);
|
||||
edgecount++;
|
||||
@ -1791,8 +1817,8 @@ nonrecursive_solver:
|
||||
* equivalence class. If we find one, test to see if the
|
||||
* loop it would create is a solution.
|
||||
*/
|
||||
for (j = 0; j <= sstate->state->h; ++j) {
|
||||
for (i = 0; i <= sstate->state->w; ++i) {
|
||||
for (j = 0; j <= h; ++j) {
|
||||
for (i = 0; i <= w; ++i) {
|
||||
for (d = 0; d < 2; d++) {
|
||||
int i2, j2, eqclass, val;
|
||||
|
||||
@ -1810,11 +1836,9 @@ nonrecursive_solver:
|
||||
j2 = j+1;
|
||||
}
|
||||
|
||||
eqclass = dsf_canonify(sstate->dotdsf,
|
||||
j * (sstate->state->w+1) + i);
|
||||
eqclass = dsf_canonify(sstate->dotdsf, j * (w+1) + i);
|
||||
if (eqclass != dsf_canonify(sstate->dotdsf,
|
||||
j2 * (sstate->state->w+1) +
|
||||
i2))
|
||||
j2 * (w+1) + i2))
|
||||
continue;
|
||||
|
||||
val = LINE_NO; /* loop is bad until proven otherwise */
|
||||
@ -1906,6 +1930,8 @@ nonrecursive_solver:
|
||||
free_solver_state(sstate_saved);
|
||||
}
|
||||
|
||||
sfree(dot_solved); sfree(square_solved);
|
||||
|
||||
if (sstate->solver_status == SOLVER_SOLVED ||
|
||||
sstate->solver_status == SOLVER_AMBIGUOUS) {
|
||||
/* s/LINE_UNKNOWN/LINE_NO/g */
|
||||
@ -1983,8 +2009,8 @@ nonrecursive_solver:
|
||||
sstate = dup_solver_state(sstate_saved); \
|
||||
}
|
||||
|
||||
for (j = 0; j < sstate->state->h + 1; ++j) {
|
||||
for (i = 0; i < sstate->state->w + 1; ++i) {
|
||||
for (j = 0; j < h + 1; ++j) {
|
||||
for (i = 0; i < w + 1; ++i) {
|
||||
/* Only perform recursive calls on 'loose ends' */
|
||||
if (dot_order(sstate->state, i, j, LINE_YES) == 1) {
|
||||
DO_RECURSIVE_CALL(LEFTOF_DOT);
|
||||
|
Reference in New Issue
Block a user