mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00

The serialised game stores a long-term and a short-term parameter structure, which correspond to me->params (the thing that gets used by the next New Game command) and me->curparams (the thing that _was_ used to generate _this_ game). So data relevant to the current game ought to be validated against the latter, but in fact I was accidentally passing the former to several validation calls. I think this probably avoided causing a problem because typically params and cparams don't differ very much: the usual reason why they're not the same is that somebody has manually entered a game description involving an incomplete description of the parameters (lacking generation-specific details like difficulty level), but by the very fact that those incomplete descriptions have to contain _enough_ information to understand a specific game description, copying just those parts of the description into the long-term params structure makes the two similar enough that validation won't fail. However, testing an upcoming patch which calls midend_deserialise at a more difficult moment (specifically, just after midend_set_params, meaning that the two params structures can now differ _arbitrarily_) reveals my error. Fixed to use cparams where that's the right thing.
This is the README accompanying the source code to Simon Tatham's puzzle collection. The collection's web site is at <https://www.chiark.greenend.org.uk/~sgtatham/puzzles/>. If you've obtained the source code by downloading a .tar.gz archive from the Puzzles web site, you should find several Makefiles in the source code. However, if you've checked the source code out from the Puzzles git repository, you won't find the Makefiles: they're automatically generated by `mkfiles.pl', so run that to create them. The Makefiles include: - `Makefile.am', together with the static `configure.ac', is intended as input to automake. Run `mkauto.sh' to turn these into a configure script and Makefile.in, after which you can then run `./configure' to create an actual Unix Makefile. - `Makefile.vc' should work under MS Visual C++ on Windows. Run 'nmake /f Makefile.vc' in a Visual Studio command prompt. - `Makefile.cyg' should work under Cygwin / MinGW. With appropriate tweaks and setting of TOOLPATH, it should work for both compiling on Windows and cross-compiling on Unix. - `Makefile.osx' should work under Mac OS X, provided the Xcode tools are installed. It builds a single monolithic OS X application capable of running any of the puzzles, or even more than one of them at a time. - `Makefile.wce' should work under MS eMbedded Visual C++ on Windows and the Pocket PC SDK; it builds Pocket PC binaries. Many of these Makefiles build a program called `nullgame' in addition to the actual game binaries. This program doesn't do anything; it's just a template for people to start from when adding a new game to the collection, and it's compiled every time to ensure that it _does_ compile and link successfully (because otherwise it wouldn't be much use as a template). Once it's built, you can run it if you really want to (but it's very boring), and then you should ignore it. DO NOT EDIT THE MAKEFILES DIRECTLY, if you plan to send any changes back to the maintainer. The makefiles are generated automatically by the Perl script `mkfiles.pl' from the file `Recipe' and the various .R files. If you need to change the makefiles as part of a patch, you should change Recipe, *.R, and/or mkfiles.pl. The manual is provided in Windows Help format for the Windows build; in text format for anyone who needs it; and in HTML for the Mac OS X application and for the web site. It is generated from a Halibut source file (puzzles.but), which is the preferred form for modification. To generate the manual in other formats, rebuild it, or learn about Halibut, visit the Halibut website at <https://www.chiark.greenend.org.uk/~sgtatham/halibut/>.
Description
Languages
C
93.3%
JavaScript
1.4%
Objective-C
1.1%
CMake
1.1%
HTML
0.8%
Other
2.2%