James H has implemented a new `Tricky' difficulty level in Light Up:

a non-recursive level above Easy, which therefore moves the
recursive Hard mode further up still. Play-testing suggests that in
fact Tricky is often _harder_ than the old Hard mode, since the
latter had limited depth of recursion and would therefore spot
complex deductions only if it happened to start a recursion on the
right square; Tricky may be limited in the sophistication of its
complex deductions, but it never misses one, so its puzzles tend to
be hard all over.

Also in this checkin, a new source file `nullfe.c', containing all
the annoying stub functions required to make command-line solvers
link successfully. James wrote this for (the new) lightupsolver, and
I've used it to simplify the other stand-alone solvers.

[originally from svn r6254]
This commit is contained in:
Simon Tatham
2005-09-01 11:57:56 +00:00
parent 6992530a85
commit 94b36c11e0
10 changed files with 780 additions and 295 deletions

31
Recipe
View File

@ -25,10 +25,11 @@ UNTANGLE = untangle tree234
SLANT = slant dsf SLANT = slant dsf
MAP = map dsf MAP = map dsf
LOOPY = loopy tree234 dsf LOOPY = loopy tree234 dsf
LIGHTUP = lightup combi
ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
+ MINES samegame FLIP guess PEGS dominosa UNTANGLE blackbox SLANT + MINES samegame FLIP guess PEGS dominosa UNTANGLE blackbox SLANT
+ lightup MAP LOOPY inertia + LIGHTUP MAP LOOPY inertia
GTK = gtk printing ps GTK = gtk printing ps
@ -50,23 +51,27 @@ dominosa : [X] GTK COMMON dominosa
untangle : [X] GTK COMMON UNTANGLE untangle : [X] GTK COMMON UNTANGLE
blackbox : [X] GTK COMMON blackbox blackbox : [X] GTK COMMON blackbox
slant : [X] GTK COMMON SLANT slant : [X] GTK COMMON SLANT
lightup : [X] GTK COMMON lightup lightup : [X] GTK COMMON LIGHTUP
map : [X] GTK COMMON MAP map : [X] GTK COMMON MAP
loopy : [X] GTK COMMON LOOPY loopy : [X] GTK COMMON LOOPY
inertia : [X] GTK COMMON inertia inertia : [X] GTK COMMON inertia
# Auxiliary command-line programs. # Auxiliary command-line programs.
solosolver : [U] solo[STANDALONE_SOLVER] malloc STANDALONE = nullfe random misc malloc
patternsolver : [U] pattern[STANDALONE_SOLVER] malloc
mineobfusc : [U] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
slantsolver : [U] slant[STANDALONE_SOLVER] dsf malloc
mapsolver : [U] map[STANDALONE_SOLVER] dsf random misc malloc m.lib
solosolver : [C] solo[STANDALONE_SOLVER] malloc solosolver : [U] solo[STANDALONE_SOLVER] STANDALONE
patternsolver : [C] pattern[STANDALONE_SOLVER] malloc patternsolver : [U] pattern[STANDALONE_SOLVER] STANDALONE
mineobfusc : [C] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc mineobfusc : [U] mines[STANDALONE_OBFUSCATOR] tree234 STANDALONE
slantsolver : [C] slant[STANDALONE_SOLVER] dsf malloc slantsolver : [U] slant[STANDALONE_SOLVER] dsf STANDALONE
mapsolver : [C] map[STANDALONE_SOLVER] dsf random misc malloc mapsolver : [U] map[STANDALONE_SOLVER] dsf STANDALONE m.lib
lightupsolver : [U] lightup[STANDALONE_SOLVER] combi STANDALONE
solosolver : [C] solo[STANDALONE_SOLVER] STANDALONE
patternsolver : [C] pattern[STANDALONE_SOLVER] STANDALONE
mineobfusc : [C] mines[STANDALONE_OBFUSCATOR] tree234 STANDALONE
slantsolver : [C] slant[STANDALONE_SOLVER] dsf STANDALONE
mapsolver : [C] map[STANDALONE_SOLVER] dsf STANDALONE
lightupsolver : [C] lightup[STANDALONE_SOLVER] combi STANDALONE
# The Windows Net shouldn't be called `net.exe' since Windows # The Windows Net shouldn't be called `net.exe' since Windows
# already has a reasonably important utility program by that name! # already has a reasonably important utility program by that name!
@ -88,7 +93,7 @@ dominosa : [G] WINDOWS COMMON dominosa
untangle : [G] WINDOWS COMMON UNTANGLE untangle : [G] WINDOWS COMMON UNTANGLE
blackbox : [G] WINDOWS COMMON blackbox blackbox : [G] WINDOWS COMMON blackbox
slant : [G] WINDOWS COMMON SLANT slant : [G] WINDOWS COMMON SLANT
lightup : [G] WINDOWS COMMON lightup lightup : [G] WINDOWS COMMON LIGHTUP
map : [G] WINDOWS COMMON MAP map : [G] WINDOWS COMMON MAP
loopy : [G] WINDOWS COMMON LOOPY loopy : [G] WINDOWS COMMON LOOPY
inertia : [G] WINDOWS COMMON inertia inertia : [G] WINDOWS COMMON inertia

110
combi.c Normal file
View File

@ -0,0 +1,110 @@
#include <assert.h>
#include <string.h>
#include "puzzles.h"
/* horrific and doesn't check overflow. */
static long factx(long x, long y)
{
long acc = 1, i;
for (i = y; i <= x; i++)
acc *= i;
return acc;
}
void reset_combi(combi_ctx *combi)
{
int i;
combi->nleft = combi->total;
for (i = 0; i < combi->r; i++)
combi->a[i] = i;
}
combi_ctx *new_combi(int r, int n)
{
long nfr, nrf;
combi_ctx *combi;
assert(r <= n);
assert(n >= 1);
combi = snew(combi_ctx);
memset(combi, 0, sizeof(combi_ctx));
combi->r = r;
combi->n = n;
combi->a = snewn(r, int);
memset(combi->a, 0, r * sizeof(int));
nfr = factx(n, r+1);
nrf = factx(n-r, 1);
combi->total = (int)(nfr / nrf);
reset_combi(combi);
return combi;
}
/* returns NULL when we're done otherwise returns input. */
combi_ctx *next_combi(combi_ctx *combi)
{
int i = combi->r - 1, j;
if (combi->nleft == combi->total)
goto done;
else if (combi->nleft <= 0)
return NULL;
while (combi->a[i] == combi->n - combi->r + i)
i--;
combi->a[i] += 1;
for (j = i+1; j < combi->r; j++)
combi->a[j] = combi->a[i] + j - i;
done:
combi->nleft--;
return combi;
}
void free_combi(combi_ctx *combi)
{
sfree(combi->a);
sfree(combi);
}
/* compile this with:
* gcc -o combi.exe -DSTANDALONE_COMBI_TEST combi.c malloc.c
*/
#ifdef STANDALONE_COMBI_TEST
#include <stdio.h>
void fatal(char *fmt, ...)
{
abort();
}
int main(int argc, char *argv[])
{
combi_ctx *c;
int i, r, n;
if (argc < 3) {
fprintf(stderr, "Usage: combi R N\n");
exit(1);
}
r = atoi(argv[1]); n = atoi(argv[2]);
c = new_combi(r, n);
printf("combi %d of %d, %d elements.\n", c->r, c->n, c->total);
while (next_combi(c)) {
for (i = 0; i < c->r; i++) {
printf("%d ", c->a[i]);
}
printf("\n");
}
free_combi(c);
}
#endif

679
lightup.c
View File

@ -11,6 +11,20 @@
#include "puzzles.h" #include "puzzles.h"
/*
* In standalone solver mode, `verbose' is a variable which can be
* set by command-line option; in debugging mode it's simply always
* true.
*/
#if defined STANDALONE_SOLVER
#define SOLVER_DIAGNOSTICS
int verbose = 0;
#undef debug
#define debug(x) printf x
#elif defined SOLVER_DIAGNOSTICS
#define verbose 2
#endif
/* --- Constants, structure definitions, etc. --- */ /* --- Constants, structure definitions, etc. --- */
#define PREFERRED_TILE_SIZE 32 #define PREFERRED_TILE_SIZE 32
@ -36,11 +50,13 @@ enum {
enum { SYMM_NONE, SYMM_REF2, SYMM_ROT2, SYMM_REF4, SYMM_ROT4, SYMM_MAX }; enum { SYMM_NONE, SYMM_REF2, SYMM_ROT2, SYMM_REF4, SYMM_ROT4, SYMM_MAX };
#define DIFFCOUNT 2
struct game_params { struct game_params {
int w, h; int w, h;
int blackpc; /* %age of black squares */ int blackpc; /* %age of black squares */
int symm; int symm;
int recurse; int difficulty; /* 0 to DIFFCOUNT */
}; };
#define F_BLACK 1 #define F_BLACK 1
@ -125,14 +141,17 @@ static void get_surrounds(game_state *state, int ox, int oy, surrounds *s)
const struct game_params lightup_presets[] = { const struct game_params lightup_presets[] = {
{ 7, 7, 20, SYMM_ROT4, 0 }, { 7, 7, 20, SYMM_ROT4, 0 },
{ 7, 7, 20, SYMM_ROT4, 1 }, { 7, 7, 20, SYMM_ROT4, 1 },
{ 7, 7, 20, SYMM_ROT4, 2 },
{ 10, 10, 20, SYMM_ROT2, 0 }, { 10, 10, 20, SYMM_ROT2, 0 },
{ 10, 10, 20, SYMM_ROT2, 1 }, { 10, 10, 20, SYMM_ROT2, 1 },
#ifdef SLOW_SYSTEM #ifdef SLOW_SYSTEM
{ 12, 12, 20, SYMM_ROT2, 0 }, { 12, 12, 20, SYMM_ROT2, 0 },
{ 12, 12, 20, SYMM_ROT2, 1 } { 12, 12, 20, SYMM_ROT2, 1 },
#else #else
{ 10, 10, 20, SYMM_ROT2, 2 },
{ 14, 14, 20, SYMM_ROT2, 0 }, { 14, 14, 20, SYMM_ROT2, 0 },
{ 14, 14, 20, SYMM_ROT2, 1 } { 14, 14, 20, SYMM_ROT2, 1 },
{ 14, 14, 20, SYMM_ROT2, 2 }
#endif #endif
}; };
@ -157,7 +176,9 @@ static int game_fetch_preset(int i, char **name, game_params **params)
*params = ret; *params = ret;
sprintf(buf, "%dx%d %s", sprintf(buf, "%dx%d %s",
ret->w, ret->h, ret->recurse ? "hard" : "easy"); ret->w, ret->h,
ret->difficulty == 2 ? "hard" :
ret->difficulty == 1 ? "tricky" : "easy");
*name = dupstr(buf); *name = dupstr(buf);
return TRUE; return TRUE;
@ -195,11 +216,16 @@ static void decode_params(game_params *params, char const *string)
string++; string++;
EATNUM(params->symm); EATNUM(params->symm);
} }
params->recurse = 0; params->difficulty = 0;
/* cope with old params */
if (*string == 'r') { if (*string == 'r') {
params->recurse = 1; params->difficulty = 2;
string++; string++;
} }
if (*string == 'd') {
string++;
EATNUM(params->difficulty);
}
} }
static char *encode_params(game_params *params, int full) static char *encode_params(game_params *params, int full)
@ -207,10 +233,10 @@ static char *encode_params(game_params *params, int full)
char buf[80]; char buf[80];
if (full) { if (full) {
sprintf(buf, "%dx%db%ds%d%s", sprintf(buf, "%dx%db%ds%dd%d",
params->w, params->h, params->blackpc, params->w, params->h, params->blackpc,
params->symm, params->symm,
params->recurse ? "r" : ""); params->difficulty);
} else { } else {
sprintf(buf, "%dx%d", params->w, params->h); sprintf(buf, "%dx%d", params->w, params->h);
} }
@ -251,8 +277,8 @@ static config_item *game_configure(game_params *params)
ret[4].name = "Difficulty"; ret[4].name = "Difficulty";
ret[4].type = C_CHOICES; ret[4].type = C_CHOICES;
ret[4].sval = ":Easy:Hard"; ret[4].sval = ":Easy:Tricky:Hard";
ret[4].ival = params->recurse; ret[4].ival = params->difficulty;
ret[5].name = NULL; ret[5].name = NULL;
ret[5].type = C_END; ret[5].type = C_END;
@ -270,7 +296,7 @@ static game_params *custom_params(config_item *cfg)
ret->h = atoi(cfg[1].sval); ret->h = atoi(cfg[1].sval);
ret->blackpc = atoi(cfg[2].sval); ret->blackpc = atoi(cfg[2].sval);
ret->symm = cfg[3].ival; ret->symm = cfg[3].ival;
ret->recurse = cfg[4].ival; ret->difficulty = cfg[4].ival;
return ret; return ret;
} }
@ -287,7 +313,9 @@ static char *validate_params(game_params *params, int full)
return "4-fold symmetry is only available with square grids"; return "4-fold symmetry is only available with square grids";
} }
if (params->symm < 0 || params->symm >= SYMM_MAX) if (params->symm < 0 || params->symm >= SYMM_MAX)
return "Unknown symmetry type"; return "Unknown symmetry type";
if (params->difficulty < 0 || params->difficulty > DIFFCOUNT)
return "Unknown difficulty level";
} }
return NULL; return NULL;
} }
@ -336,7 +364,6 @@ static void free_game(game_state *state)
sfree(state); sfree(state);
} }
#ifdef DIAGNOSTICS
static void debug_state(game_state *state) static void debug_state(game_state *state)
{ {
int x, y; int x, y;
@ -356,9 +383,9 @@ static void debug_state(game_state *state)
else if (GRID(state, flags, x, y) & F_IMPOSSIBLE) else if (GRID(state, flags, x, y) & F_IMPOSSIBLE)
c = 'X'; c = 'X';
} }
printf("%c", (int)c); debug(("%c", (int)c));
} }
printf(" "); debug((" "));
for (x = 0; x < state->w; x++) { for (x = 0; x < state->w; x++) {
if (GRID(state, flags, x, y) & F_BLACK) if (GRID(state, flags, x, y) & F_BLACK)
c = '#'; c = '#';
@ -366,13 +393,11 @@ static void debug_state(game_state *state)
c = (GRID(state, flags, x, y) & F_LIGHT) ? 'A' : 'a'; c = (GRID(state, flags, x, y) & F_LIGHT) ? 'A' : 'a';
c += GRID(state, lights, x, y); c += GRID(state, lights, x, y);
} }
printf("%c", (int)c); debug(("%c", (int)c));
} }
printf("\n"); debug(("\n"));
} }
printf("\n");
} }
#endif
/* --- Game completion test routines. --- */ /* --- Game completion test routines. --- */
@ -574,8 +599,8 @@ static void set_blacks(game_state *state, game_params *params, random_state *rs)
GRID(state,flags, GRID(state,flags,
state->w/2 + wodd - 1, state->h/2 + hodd - 1) |= F_BLACK; state->w/2 + wodd - 1, state->h/2 + hodd - 1) |= F_BLACK;
#ifdef DIAGNOSTICS #ifdef SOLVER_DIAGNOSTICS
debug_state(state); if (verbose) debug_state(state);
#endif #endif
} }
@ -679,7 +704,7 @@ static void place_lights(game_state *state, random_state *rs)
/* If we're not lighting any lights ourself, don't remove anything. */ /* If we're not lighting any lights ourself, don't remove anything. */
n = 0; n = 0;
FOREACHLIT(&lld, if (GRID(state,flags,lx,ly) & F_LIGHT) { n += 1; } ); FOREACHLIT(&lld, if (GRID(state,flags,lx,ly) & F_LIGHT) { n += 1; } );
if (n == 0) continue; if (n == 0) continue; /* [1] */
/* Check whether removing lights we're lighting would cause anything /* Check whether removing lights we're lighting would cause anything
* to go dark. */ * to go dark. */
@ -697,8 +722,11 @@ static void place_lights(game_state *state, random_state *rs)
} }
assert(grid_lit(state)); assert(grid_lit(state));
} }
/* if we got here, we've somehow removed all our lights and still have overlaps. */ /* could get here if the line at [1] continue'd out of the loop. */
assert(!"Shouldn't get here!"); if (grid_overlap(state)) {
debug_state(state);
assert(!"place_lights failed to resolve overlapping lights!");
}
} }
/* Fills in all black squares with numbers of adjacent lights. */ /* Fills in all black squares with numbers of adjacent lights. */
@ -749,9 +777,10 @@ static int try_solve_light(game_state *state, int ox, int oy,
FOREACHLIT(&lld, { tsl_callback(state, lx, ly, &sx, &sy, &n); }); FOREACHLIT(&lld, { tsl_callback(state, lx, ly, &sx, &sy, &n); });
if (n == 1) { if (n == 1) {
set_light(state, sx, sy, 1); set_light(state, sx, sy, 1);
#ifdef SOLVE_DIAGNOSTICS #ifdef SOLVER_DIAGNOSTICS
printf("(%d,%d) can only be lit from (%d,%d); setting to LIGHT\n", debug(("(%d,%d) can only be lit from (%d,%d); setting to LIGHT\n",
ox,oy,sx,sy); ox,oy,sx,sy));
if (verbose) debug_state(state);
#endif #endif
return 1; return 1;
} }
@ -765,6 +794,13 @@ static int could_place_light(unsigned int flags, int lights)
return (lights > 0) ? 0 : 1; return (lights > 0) ? 0 : 1;
} }
static int could_place_light_xy(game_state *state, int x, int y)
{
int lights = GRID(state,lights,x,y);
unsigned int flags = GRID(state,flags,x,y);
return (could_place_light(flags, lights)) ? 1 : 0;
}
/* For a given number square, determine whether we have enough info /* For a given number square, determine whether we have enough info
* to unambiguously place its lights. */ * to unambiguously place its lights. */
static int try_solve_number(game_state *state, int nx, int ny, static int try_solve_number(game_state *state, int nx, int ny,
@ -799,10 +835,6 @@ static int try_solve_number(game_state *state, int nx, int ny,
if (nl == 0) { if (nl == 0) {
/* we have placed all lights we need to around here; all remaining /* we have placed all lights we need to around here; all remaining
* surrounds are therefore IMPOSSIBLE. */ * surrounds are therefore IMPOSSIBLE. */
#ifdef SOLVE_DIAGNOSTICS
printf("Setting remaining surrounds to (%d,%d) IMPOSSIBLE.\n",
nx,ny);
#endif
GRID(state,flags,nx,ny) |= F_NUMBERUSED; GRID(state,flags,nx,ny) |= F_NUMBERUSED;
for (i = 0; i < s.npoints; i++) { for (i = 0; i < s.npoints; i++) {
if (!(s.points[i].f & F_MARK)) { if (!(s.points[i].f & F_MARK)) {
@ -810,12 +842,13 @@ static int try_solve_number(game_state *state, int nx, int ny,
ret = 1; ret = 1;
} }
} }
#ifdef SOLVER_DIAGNOSTICS
printf("Clue at (%d,%d) full; setting unlit to IMPOSSIBLE.\n",
nx,ny);
if (verbose) debug_state(state);
#endif
} else if (nl == ns) { } else if (nl == ns) {
/* we have as many lights to place as spaces; fill them all. */ /* we have as many lights to place as spaces; fill them all. */
#ifdef SOLVE_DIAGNOSTICS
printf("Setting all remaining surrounds to (%d,%d) LIGHT.\n",
nx,ny);
#endif
GRID(state,flags,nx,ny) |= F_NUMBERUSED; GRID(state,flags,nx,ny) |= F_NUMBERUSED;
for (i = 0; i < s.npoints; i++) { for (i = 0; i < s.npoints; i++) {
if (!(s.points[i].f & F_MARK)) { if (!(s.points[i].f & F_MARK)) {
@ -823,24 +856,373 @@ static int try_solve_number(game_state *state, int nx, int ny,
ret = 1; ret = 1;
} }
} }
#ifdef SOLVER_DIAGNOSTICS
printf("Clue at (%d,%d) trivial; setting unlit to LIGHT.\n",
nx,ny);
if (verbose) debug_state(state);
#endif
} }
return ret; return ret;
} }
struct setscratch {
int x, y;
int n;
};
#define SCRATCHSZ (state->w+state->h)
/* New solver algorithm: overlapping sets can add IMPOSSIBLE flags.
* Algorithm thanks to Simon:
*
* (a) Any square where you can place a light has a set of squares
* which would become non-lights as a result. (This includes
* squares lit by the first square, and can also include squares
* adjacent to the same clue square if the new light is the last
* one around that clue.) Call this MAKESDARK(x,y) with (x,y) being
* the square you place a light.
* (b) Any unlit square has a set of squares on which you could place
* a light to illuminate it. (Possibly including itself, of
* course.) This set of squares has the property that _at least
* one_ of them must contain a light. Sets of this type also arise
* from clue squares. Call this MAKESLIGHT(x,y), again with (x,y)
* the square you would place a light.
* (c) If there exists (dx,dy) and (lx,ly) such that MAKESDARK(dx,dy) is
* a superset of MAKESLIGHT(lx,ly), this implies that placing a light at
* (dx,dy) would either leave no remaining way to illuminate a certain
* square, or would leave no remaining way to fulfill a certain clue
* (at lx,ly). In either case, a light can be ruled out at that position.
*
* So, we construct all possible MAKESLIGHT sets, both from unlit squares
* and clue squares, and then we look for plausible MAKESDARK sets that include
* our (lx,ly) to see if we can find a (dx,dy) to rule out. By the time we have
* constructed the MAKESLIGHT set we don't care about (lx,ly), just the set
* members.
*
* Once we have such a set, Simon came up with a Cunning Plan to find
* the most sensible MAKESDARK candidate:
*
* (a) for each square S in your set X, find all the squares which _would_
* rule it out. That means any square which would light S, plus
* any square adjacent to the same clue square as S (provided
* that clue square has only one remaining light to be placed).
* It's not hard to make this list. Don't do anything with this
* data at the moment except _count_ the squares.
* (b) Find the square S_min in the original set which has the
* _smallest_ number of other squares which would rule it out.
* (c) Find all the squares that rule out S_min (it's probably
* better to recompute this than to have stored it during step
* (a), since the CPU requirement is modest but the storage
* cost would get ugly.) For each of these squares, see if it
* rules out everything else in the set X. Any which does can
* be marked as not-a-light.
*
*/
typedef void (*trl_cb)(game_state *state, int dx, int dy,
struct setscratch *scratch, int n, void *ctx);
static void try_rule_out(game_state *state, int x, int y,
struct setscratch *scratch, int n,
trl_cb cb, void *ctx);
static void trl_callback_search(game_state *state, int dx, int dy,
struct setscratch *scratch, int n, void *ignored)
{
int i;
#ifdef SOLVER_DIAGNOSTICS
if (verbose) debug(("discount cb: light at (%d,%d)\n", dx, dy));
#endif
for (i = 0; i < n; i++) {
if (dx == scratch[i].x && dy == scratch[i].y) {
scratch[i].n = 1;
return;
}
}
}
static void trl_callback_discount(game_state *state, int dx, int dy,
struct setscratch *scratch, int n, void *ctx)
{
int *didsth = (int *)ctx;
int i;
if (GRID(state,flags,dx,dy) & F_IMPOSSIBLE) {
#ifdef SOLVER_DIAGNOSTICS
debug(("Square at (%d,%d) already impossible.\n", dx,dy));
#endif
return;
}
/* Check whether a light at (dx,dy) rules out everything
* in scratch, and mark (dx,dy) as IMPOSSIBLE if it does.
* We can use try_rule_out for this as well, as the set of
* squares which would rule out (x,y) is the same as the
* set of squares which (x,y) would rule out. */
#ifdef SOLVER_DIAGNOSTICS
if (verbose) debug(("Checking whether light at (%d,%d) rules out everything in scratch.\n", dx, dy));
#endif
for (i = 0; i < n; i++)
scratch[i].n = 0;
try_rule_out(state, dx, dy, scratch, n, trl_callback_search, NULL);
for (i = 0; i < n; i++) {
if (scratch[i].n == 0) return;
}
/* The light ruled out everything in scratch. Yay. */
GRID(state,flags,dx,dy) |= F_IMPOSSIBLE;
#ifdef SOLVER_DIAGNOSTICS
debug(("Set reduction discounted square at (%d,%d):\n", dx,dy));
if (verbose) debug_state(state);
#endif
*didsth = 1;
}
static void trl_callback_incn(game_state *state, int dx, int dy,
struct setscratch *scratch, int n, void *ctx)
{
struct setscratch *s = (struct setscratch *)ctx;
s->n++;
}
static void try_rule_out(game_state *state, int x, int y,
struct setscratch *scratch, int n,
trl_cb cb, void *ctx)
{
/* XXX Find all the squares which would rule out (x,y); anything
* that would light it as well as squares adjacent to same clues
* as X assuming that clue only has one remaining light.
* Call the callback with each square. */
ll_data lld;
surrounds s, ss;
int i, j, curr_lights, tot_lights;
/* Find all squares that would rule out a light at (x,y) and call trl_cb
* with them: anything that would light (x,y)... */
list_lights(state, x, y, 0, &lld);
FOREACHLIT(&lld, { if (could_place_light_xy(state, lx, ly)) { cb(state, lx, ly, scratch, n, ctx); } });
/* ... as well as any empty space (that isn't x,y) next to any clue square
* next to (x,y) that only has one light left to place. */
get_surrounds(state, x, y, &s);
for (i = 0; i < s.npoints; i++) {
if (!GRID(state,flags,s.points[i].x,s.points[i].y) & F_NUMBERED)
continue;
/* we have an adjacent clue square; find /it's/ surrounds
* and count the remaining lights it needs. */
get_surrounds(state,s.points[i].x,s.points[i].y,&ss);
curr_lights = 0;
for (j = 0; j < ss.npoints; j++) {
if (GRID(state,flags,ss.points[j].x,ss.points[j].y) & F_LIGHT)
curr_lights++;
}
tot_lights = GRID(state, lights, s.points[i].x, s.points[i].y);
/* We have a clue with tot_lights to fill, and curr_lights currently
* around it. If adding a light at (x,y) fills up the clue (i.e.
* curr_lights + 1 = tot_lights) then we need to discount all other
* unlit squares around the clue. */
if ((curr_lights + 1) == tot_lights) {
for (j = 0; j < ss.npoints; j++) {
int lx = ss.points[j].x, ly = ss.points[j].y;
if (lx == x && ly == y) continue;
if (could_place_light_xy(state, lx, ly))
cb(state, lx, ly, scratch, n, ctx);
}
}
}
}
#ifdef SOLVER_DIAGNOSTICS
static void debug_scratch(const char *msg, struct setscratch *scratch, int n)
{
int i;
debug(("%s scratch (%d elements):\n", msg, n));
for (i = 0; i < n; i++) {
debug((" (%d,%d) n%d\n", scratch[i].x, scratch[i].y, scratch[i].n));
}
}
#endif
static int discount_set(game_state *state,
struct setscratch *scratch, int n)
{
int i, besti, bestn, didsth = 0;
#ifdef SOLVER_DIAGNOSTICS
if (verbose > 1) debug_scratch("discount_set", scratch, n);
#endif
if (n == 0) return 0;
for (i = 0; i < n; i++) {
try_rule_out(state, scratch[i].x, scratch[i].y, scratch, n,
trl_callback_incn, (void*)&(scratch[i]));
}
#ifdef SOLVER_DIAGNOSTICS
if (verbose > 1) debug_scratch("discount_set after count", scratch, n);
#endif
besti = -1; bestn = SCRATCHSZ;
for (i = 0; i < n; i++) {
if (scratch[i].n < bestn) {
bestn = scratch[i].n;
besti = i;
}
}
#ifdef SOLVER_DIAGNOSTICS
if (verbose > 1) debug(("best square (%d,%d) with n%d.\n",
scratch[besti].x, scratch[besti].y, scratch[besti].n));
#endif
try_rule_out(state, scratch[besti].x, scratch[besti].y, scratch, n,
trl_callback_discount, (void*)&didsth);
#ifdef SOLVER_DIAGNOSTICS
if (didsth) debug((" [from square (%d,%d)]\n",
scratch[besti].x, scratch[besti].y));
#endif
return didsth;
}
static void discount_clear(game_state *state, struct setscratch *scratch, int *n)
{
*n = 0;
memset(scratch, 0, SCRATCHSZ * sizeof(struct setscratch));
}
static void unlit_cb(game_state *state, int lx, int ly,
struct setscratch *scratch, int *n)
{
if (could_place_light_xy(state, lx, ly)) {
scratch[*n].x = lx; scratch[*n].y = ly; (*n)++;
}
}
/* Construct a MAKESLIGHT set from an unlit square. */
static int discount_unlit(game_state *state, int x, int y,
struct setscratch *scratch)
{
ll_data lld;
int n, didsth;
#ifdef SOLVER_DIAGNOSTICS
if (verbose) debug(("Trying to discount for unlit square at (%d,%d).\n", x, y));
if (verbose > 1) debug_state(state);
#endif
discount_clear(state, scratch, &n);
list_lights(state, x, y, 1, &lld);
FOREACHLIT(&lld, { unlit_cb(state, lx, ly, scratch, &n); });
didsth = discount_set(state, scratch, n);
#ifdef SOLVER_DIAGNOSTICS
if (didsth) debug((" [from unlit square at (%d,%d)].\n", x, y));
#endif
return didsth;
}
/* Construct a series of MAKESLIGHT sets from a clue square.
* for a clue square with N remaining spaces that must contain M lights, every
* subset of size N-M+1 of those N spaces forms such a set.
*/
static int discount_clue(game_state *state, int x, int y,
struct setscratch *scratch)
{
int slen, m = GRID(state, lights, x, y), n, i, didsth = 0, lights;
unsigned int flags;
surrounds s, sempty;
combi_ctx *combi;
if (m == 0) return 0;
#ifdef SOLVER_DIAGNOSTICS
if (verbose) debug(("Trying to discount for sets at clue (%d,%d).\n", x, y));
if (verbose > 1) debug_state(state);
#endif
/* m is no. of lights still to place; starts off at the clue value
* and decreases when we find a light already down.
* n is no. of spaces left; starts off at 0 and goes up when we find
* a plausible space. */
get_surrounds(state, x, y, &s);
memset(&sempty, 0, sizeof(surrounds));
for (i = 0; i < s.npoints; i++) {
int lx = s.points[i].x, ly = s.points[i].y;
flags = GRID(state,flags,lx,ly);
lights = GRID(state,lights,lx,ly);
if (flags & F_LIGHT) m--;
if (could_place_light(flags, lights)) {
sempty.points[sempty.npoints].x = lx;
sempty.points[sempty.npoints].y = ly;
sempty.npoints++;
}
}
n = sempty.npoints; /* sempty is now a surrounds of only blank squares. */
if (n == 0) return 0; /* clue is full already. */
if (m < 0 || m > n) return 0; /* become impossible. */
combi = new_combi(n - m + 1, n);
while (next_combi(combi)) {
discount_clear(state, scratch, &slen);
for (i = 0; i < combi->r; i++) {
scratch[slen].x = sempty.points[combi->a[i]].x;
scratch[slen].y = sempty.points[combi->a[i]].y;
slen++;
}
if (discount_set(state, scratch, slen)) didsth = 1;
}
free_combi(combi);
#ifdef SOLVER_DIAGNOSTICS
if (didsth) debug((" [from clue at (%d,%d)].\n", x, y));
#endif
return didsth;
}
#define F_SOLVE_FORCEUNIQUE 1
#define F_SOLVE_DISCOUNTSETS 2
#define F_SOLVE_ALLOWRECURSE 4
static unsigned int flags_from_difficulty(int difficulty)
{
unsigned int sflags = F_SOLVE_FORCEUNIQUE;
assert(difficulty <= DIFFCOUNT);
if (difficulty >= 1) sflags |= F_SOLVE_DISCOUNTSETS;
if (difficulty >= 2) sflags |= F_SOLVE_ALLOWRECURSE;
return sflags;
}
#define MAXRECURSE 5
static int solve_sub(game_state *state, static int solve_sub(game_state *state,
int forceunique, int maxrecurse, int depth, unsigned int solve_flags, int depth,
int *maxdepth) int *maxdepth)
{ {
unsigned int flags; unsigned int flags;
int x, y, didstuff, ncanplace, lights; int x, y, didstuff, ncanplace, lights;
int bestx, besty, n, bestn, copy_soluble, self_soluble, ret; int bestx, besty, n, bestn, copy_soluble, self_soluble, ret, maxrecurse = 0;
game_state *scopy; game_state *scopy;
ll_data lld; ll_data lld;
struct setscratch *sscratch = NULL;
#ifdef SOLVE_DIAGNOSTICS #ifdef SOLVER_DIAGNOSTICS
printf("solve_sub: depth = %d\n", depth); printf("solve_sub: depth = %d\n", depth);
#endif #endif
if (maxdepth && *maxdepth < depth) *maxdepth = depth; if (maxdepth && *maxdepth < depth) *maxdepth = depth;
if (solve_flags & F_SOLVE_ALLOWRECURSE) maxrecurse = MAXRECURSE;
while (1) { while (1) {
if (grid_overlap(state)) { if (grid_overlap(state)) {
@ -848,10 +1230,10 @@ static int solve_sub(game_state *state,
* (assuming a soluble grid). However, if we're trying to solve * (assuming a soluble grid). However, if we're trying to solve
* from a half-completed *incorrect* grid this might occur; we * from a half-completed *incorrect* grid this might occur; we
* just return the 'no solutions' code in this case. */ * just return the 'no solutions' code in this case. */
return 0; ret = 0; goto done;
} }
if (grid_correct(state)) return 1; if (grid_correct(state)) { ret = 1; goto done; }
ncanplace = 0; ncanplace = 0;
didstuff = 0; didstuff = 0;
@ -868,12 +1250,42 @@ static int solve_sub(game_state *state,
} }
} }
if (didstuff) continue; if (didstuff) continue;
if (!ncanplace) return 0; /* nowhere to put a light, puzzle in unsoluble. */ if (!ncanplace) {
/* nowhere to put a light, puzzle is unsoluble. */
ret = 0; goto done;
}
if (solve_flags & F_SOLVE_DISCOUNTSETS) {
if (!sscratch) sscratch = snewn(SCRATCHSZ, struct setscratch);
/* Try a more cunning (and more involved) way... more details above. */
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
flags = GRID(state,flags,x,y);
lights = GRID(state,lights,x,y);
if (!(flags & F_BLACK) && lights == 0) {
if (discount_unlit(state, x, y, sscratch)) {
didstuff = 1;
goto reduction_success;
}
} else if (flags & F_NUMBERED) {
if (discount_clue(state, x, y, sscratch)) {
didstuff = 1;
goto reduction_success;
}
}
}
}
}
reduction_success:
if (didstuff) continue;
/* We now have to make a guess; we have places to put lights but /* We now have to make a guess; we have places to put lights but
* no definite idea about where they can go. */ * no definite idea about where they can go. */
if (depth >= maxrecurse) return -1; /* mustn't delve any deeper. */ if (depth >= maxrecurse) {
/* mustn't delve any deeper. */
ret = -1; goto done;
}
/* Of all the squares that we could place a light, pick the one /* Of all the squares that we could place a light, pick the one
* that would light the most currently unlit squares. */ * that would light the most currently unlit squares. */
/* This heuristic was just plucked from the air; there may well be /* This heuristic was just plucked from the air; there may well be
@ -902,25 +1314,30 @@ static int solve_sub(game_state *state,
* and once as 'impossible'; we need to make one copy to do this. */ * and once as 'impossible'; we need to make one copy to do this. */
scopy = dup_game(state); scopy = dup_game(state);
#ifdef SOLVER_DIAGNOSTICS
debug(("Recursing #1: trying (%d,%d) as IMPOSSIBLE\n", bestx, besty));
#endif
GRID(state,flags,bestx,besty) |= F_IMPOSSIBLE; GRID(state,flags,bestx,besty) |= F_IMPOSSIBLE;
self_soluble = solve_sub(state, forceunique, maxrecurse, self_soluble = solve_sub(state, solve_flags, depth+1, maxdepth);
depth+1, maxdepth);
if (!forceunique && self_soluble > 0) { if (!(solve_flags & F_SOLVE_FORCEUNIQUE) && self_soluble > 0) {
/* we didn't care about finding all solutions, and we just /* we didn't care about finding all solutions, and we just
* found one; return with it immediately. */ * found one; return with it immediately. */
free_game(scopy); free_game(scopy);
return self_soluble; ret = self_soluble;
goto done;
} }
#ifdef SOLVER_DIAGNOSTICS
debug(("Recursing #2: trying (%d,%d) as LIGHT\n", bestx, besty));
#endif
set_light(scopy, bestx, besty, 1); set_light(scopy, bestx, besty, 1);
copy_soluble = solve_sub(scopy, forceunique, maxrecurse, copy_soluble = solve_sub(scopy, solve_flags, depth+1, maxdepth);
depth+1, maxdepth);
/* If we wanted a unique solution but we hit our recursion limit /* If we wanted a unique solution but we hit our recursion limit
* (on either branch) then we have to assume we didn't find possible * (on either branch) then we have to assume we didn't find possible
* extra solutions, and return 'not soluble'. */ * extra solutions, and return 'not soluble'. */
if (forceunique && if ((solve_flags & F_SOLVE_FORCEUNIQUE) &&
((copy_soluble < 0) || (self_soluble < 0))) { ((copy_soluble < 0) || (self_soluble < 0))) {
ret = -1; ret = -1;
/* Make sure that whether or not it was self or copy (or both) that /* Make sure that whether or not it was self or copy (or both) that
@ -940,17 +1357,25 @@ static int solve_sub(game_state *state,
ret = copy_soluble + self_soluble; ret = copy_soluble + self_soluble;
} }
free_game(scopy); free_game(scopy);
return ret; goto done;
} }
done:
if (sscratch) sfree(sscratch);
#ifdef SOLVER_DIAGNOSTICS
if (ret < 0)
debug(("solve_sub: depth = %d returning, ran out of recursion.\n",
depth));
else
debug(("solve_sub: depth = %d returning, %d solutions.\n",
depth, ret));
#endif
return ret;
} }
#define MAXRECURSE 5
/* Fills in the (possibly partially-complete) game_state as far as it can, /* Fills in the (possibly partially-complete) game_state as far as it can,
* returning the number of possible solutions. If it returns >0 then the * returning the number of possible solutions. If it returns >0 then the
* game_state will be in a solved state, but you won't know which one. */ * game_state will be in a solved state, but you won't know which one. */
static int dosolve(game_state *state, static int dosolve(game_state *state, int solve_flags, int *maxdepth)
int allowguess, int forceunique, int *maxdepth)
{ {
int x, y, nsol; int x, y, nsol;
@ -959,8 +1384,7 @@ static int dosolve(game_state *state,
GRID(state,flags,x,y) &= ~F_NUMBERUSED; GRID(state,flags,x,y) &= ~F_NUMBERUSED;
} }
} }
nsol = solve_sub(state, forceunique, nsol = solve_sub(state, solve_flags, 0, maxdepth);
allowguess ? MAXRECURSE : 0, 0, maxdepth);
return nsol; return nsol;
} }
@ -993,29 +1417,27 @@ static void unplace_lights(game_state *state)
} }
} }
static int puzzle_is_good(game_state *state, game_params *params, int *mdepth) static int puzzle_is_good(game_state *state, int difficulty)
{ {
int nsol; int nsol, mdepth = 0;
unsigned int sflags = flags_from_difficulty(difficulty);
*mdepth = 0;
unplace_lights(state); unplace_lights(state);
#ifdef DIAGNOSTICS #ifdef SOLVER_DIAGNOSTICS
debug_state(state); debug(("Trying to solve with difficulty %d (0x%x):\n",
difficulty, sflags));
if (verbose) debug_state(state);
#endif #endif
nsol = dosolve(state, params->recurse, TRUE, mdepth); nsol = dosolve(state, sflags, &mdepth);
/* if we wanted an easy puzzle, make sure we didn't need recursion. */ /* if we wanted an easy puzzle, make sure we didn't need recursion. */
if (!params->recurse && *mdepth > 0) { if (!(sflags & F_SOLVE_ALLOWRECURSE) && mdepth > 0) {
#ifdef DIAGNOSTICS debug(("Ignoring recursive puzzle.\n"));
printf("Ignoring recursive puzzle.\n");
#endif
return 0; return 0;
} }
#ifdef DIAGNOSTICS debug(("%d solutions found.\n", nsol));
printf("%d solutions found.\n", nsol);
#endif
if (nsol <= 0) return 0; if (nsol <= 0) return 0;
if (nsol > 1) return 0; if (nsol > 1) return 0;
return 1; return 1;
@ -1052,7 +1474,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive) char **aux, int interactive)
{ {
game_state *news = new_state(params), *copys; game_state *news = new_state(params), *copys;
int nsol, i, run, x, y, wh = params->w*params->h, num, mdepth; int nsol, i, j, run, x, y, wh = params->w*params->h, num;
char *ret, *p; char *ret, *p;
int *numindices; int *numindices;
@ -1060,7 +1482,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
* do this once, because if it gets used more than once it'll * do this once, because if it gets used more than once it'll
* be on a different grid layout. */ * be on a different grid layout. */
numindices = snewn(wh, int); numindices = snewn(wh, int);
for (i = 0; i < wh; i++) numindices[i] = i; for (j = 0; j < wh; j++) numindices[j] = j;
shuffle(numindices, wh, sizeof(*numindices), rs); shuffle(numindices, wh, sizeof(*numindices), rs);
while (1) { while (1) {
@ -1071,14 +1493,14 @@ static char *new_game_desc(game_params *params, random_state *rs,
place_lights(news, rs); place_lights(news, rs);
debug(("Generating initial grid.\n")); debug(("Generating initial grid.\n"));
place_numbers(news); place_numbers(news);
if (!puzzle_is_good(news, params, &mdepth)) continue; if (!puzzle_is_good(news, params->difficulty)) continue;
/* Take a copy, remove numbers we didn't use and check there's /* Take a copy, remove numbers we didn't use and check there's
* still a unique solution; if so, use the copy subsequently. */ * still a unique solution; if so, use the copy subsequently. */
copys = dup_game(news); copys = dup_game(news);
nsol = strip_unused_nums(copys); nsol = strip_unused_nums(copys);
debug(("Stripped %d unused numbers.\n", nsol)); debug(("Stripped %d unused numbers.\n", nsol));
if (!puzzle_is_good(copys, params, &mdepth)) { if (!puzzle_is_good(copys, params->difficulty)) {
debug(("Stripped grid is not good, reverting.\n")); debug(("Stripped grid is not good, reverting.\n"));
free_game(copys); free_game(copys);
} else { } else {
@ -1088,25 +1510,26 @@ static char *new_game_desc(game_params *params, random_state *rs,
/* Go through grid removing numbers at random one-by-one and /* Go through grid removing numbers at random one-by-one and
* trying to solve again; if it ceases to be good put the number back. */ * trying to solve again; if it ceases to be good put the number back. */
for (i = 0; i < wh; i++) { for (j = 0; j < wh; j++) {
y = numindices[i] / params->w; y = numindices[j] / params->w;
x = numindices[i] % params->w; x = numindices[j] % params->w;
if (!(GRID(news, flags, x, y) & F_NUMBERED)) continue; if (!(GRID(news, flags, x, y) & F_NUMBERED)) continue;
num = GRID(news, lights, x, y); num = GRID(news, lights, x, y);
GRID(news, lights, x, y) = 0; GRID(news, lights, x, y) = 0;
GRID(news, flags, x, y) &= ~F_NUMBERED; GRID(news, flags, x, y) &= ~F_NUMBERED;
if (!puzzle_is_good(news, params, &mdepth)) { if (!puzzle_is_good(news, params->difficulty)) {
GRID(news, lights, x, y) = num; GRID(news, lights, x, y) = num;
GRID(news, flags, x, y) |= F_NUMBERED; GRID(news, flags, x, y) |= F_NUMBERED;
} else } else
debug(("Removed (%d,%d) still soluble.\n", x, y)); debug(("Removed (%d,%d) still soluble.\n", x, y));
} }
/* Get a good value of mdepth for the following test */ if (params->difficulty > 0) {
i = puzzle_is_good(news, params, &mdepth); /* Was the maximally-difficult puzzle difficult enough?
assert(i); * Check we can't solve it with a more simplistic solver. */
if (params->recurse && mdepth == 0) { if (puzzle_is_good(news, params->difficulty-1)) {
debug(("Maximum-difficulty puzzle still not recursive, skipping.\n")); debug(("Maximally-hard puzzle still not hard enough, skipping.\n"));
continue; continue;
}
} }
goto goodpuzzle; goto goodpuzzle;
@ -1115,9 +1538,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
* %age of black squares (if we didn't already have lots; in which case * %age of black squares (if we didn't already have lots; in which case
* why couldn't we generate a puzzle?) and try again. */ * why couldn't we generate a puzzle?) and try again. */
if (params->blackpc < 90) params->blackpc += 5; if (params->blackpc < 90) params->blackpc += 5;
#ifdef DIAGNOSTICS debug(("New black layout %d%%.\n", params->blackpc));
printf("New black layout %d%%.\n", params->blackpc);
#endif
} }
goodpuzzle: goodpuzzle:
/* Game is encoded as a long string one character per square; /* Game is encoded as a long string one character per square;
@ -1234,20 +1655,22 @@ static char *solve_game(game_state *state, game_state *currstate,
game_state *solved; game_state *solved;
char *move = NULL, buf[80]; char *move = NULL, buf[80];
int movelen, movesize, x, y, len; int movelen, movesize, x, y, len;
unsigned int oldflags, solvedflags; unsigned int oldflags, solvedflags, sflags;
/* We don't care here about non-unique puzzles; if the /* We don't care here about non-unique puzzles; if the
* user entered one themself then I doubt they care. */ * user entered one themself then I doubt they care. */
sflags = F_SOLVE_ALLOWRECURSE | F_SOLVE_DISCOUNTSETS;
/* Try and solve from where we are now (for non-unique /* Try and solve from where we are now (for non-unique
* puzzles this may produce a different answer). */ * puzzles this may produce a different answer). */
solved = dup_game(currstate); solved = dup_game(currstate);
if (dosolve(solved, 1, 0, NULL) > 0) goto solved; if (dosolve(solved, sflags, NULL) > 0) goto solved;
free_game(solved); free_game(solved);
/* That didn't work; try solving from the clean puzzle. */ /* That didn't work; try solving from the clean puzzle. */
solved = dup_game(state); solved = dup_game(state);
if (dosolve(solved, 1, 0, NULL) > 0) goto solved; if (dosolve(solved, sflags, NULL) > 0) goto solved;
*error = "Puzzle is not self-consistent."; *error = "Puzzle is not self-consistent.";
goto done; goto done;
@ -1837,4 +2260,80 @@ const struct game thegame = {
0, /* mouse_priorities */ 0, /* mouse_priorities */
}; };
#ifdef STANDALONE_SOLVER
int main(int argc, char **argv)
{
game_params *p;
game_state *s;
char *id = NULL, *desc, *err, *result;
int nsol, diff, really_verbose = 0;
unsigned int sflags;
while (--argc > 0) {
char *p = *++argv;
if (!strcmp(p, "-v")) {
really_verbose++;
} else if (*p == '-') {
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
return 1;
} else {
id = p;
}
}
if (!id) {
fprintf(stderr, "usage: %s [-v] <game_id>\n", argv[0]);
return 1;
}
desc = strchr(id, ':');
if (!desc) {
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
return 1;
}
*desc++ = '\0';
p = default_params();
decode_params(p, id);
err = validate_desc(p, desc);
if (err) {
fprintf(stderr, "%s: %s\n", argv[0], err);
return 1;
}
s = new_game(NULL, p, desc);
/* Run the solvers easiest to hardest until we find one that
* can solve our puzzle. If it's soluble we know that the
* hardest (recursive) solver will always find the solution. */
for (diff = 0; diff <= DIFFCOUNT; diff++) {
printf("\nSolving with difficulty %d.\n", diff);
sflags = flags_from_difficulty(diff);
unplace_lights(s);
nsol = dosolve(s, sflags, NULL);
if (nsol == 1) break;
}
printf("\n");
if (nsol == 0) {
printf("Puzzle has no solution.\n");
} else if (nsol < 0) {
printf("Unable to find a unique solution.\n");
} else if (nsol > 1) {
printf("Puzzle has multiple solutions.\n");
} else {
verbose = really_verbose;
unplace_lights(s);
printf("Puzzle has difficulty %d: solving...\n", diff);
dosolve(s, sflags, NULL); /* sflags from last successful solve */
result = game_text_format(s);
printf("%s", result);
sfree(result);
}
return 0;
}
#endif
/* vim: set shiftwidth=4 tabstop=8: */ /* vim: set shiftwidth=4 tabstop=8: */

39
map.c
View File

@ -3119,45 +3119,6 @@ const struct game thegame = {
#ifdef STANDALONE_SOLVER #ifdef STANDALONE_SOLVER
#include <stdarg.h>
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(drawing *dr, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void draw_circle(drawing *dr, int cx, int cy, int radius,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
blitter *blitter_new(drawing *dr, int w, int h) {return NULL;}
void blitter_free(drawing *dr, blitter *bl) {}
void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
int print_mono_colour(drawing *dr, int grey) { return 0; }
int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
{ return 0; }
void print_line_width(drawing *dr, int width) {}
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
game_params *p; game_params *p;

33
mines.c
View File

@ -3095,41 +3095,8 @@ const struct game thegame = {
* 9x9:4,4,004000007c00010022080 * 9x9:4,4,004000007c00010022080
* $ ./mineobfusc 9x9:4,4,004000007c00010022080 * $ ./mineobfusc 9x9:4,4,004000007c00010022080
* 9x9:4,4,mb071b49fbd1cb6a0d5868 * 9x9:4,4,mb071b49fbd1cb6a0d5868
*
* gcc -DSTANDALONE_OBFUSCATOR -o mineobfusc mines.c malloc.c random.c tree234.c misc.c
*/ */
#include <stdarg.h>
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(drawing *dr, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
void midend_supersede_game_desc(midend *me, char *desc, char *privdesc) {}
void status_bar(drawing *dr, char *text) {}
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
game_params *p; game_params *p;

49
nullfe.c Normal file
View File

@ -0,0 +1,49 @@
/*
* nullfe.c: Null front-end code containing a bunch of boring stub
* functions. Used to ensure successful linking when building the
* various stand-alone solver binaries.
*/
#include <stdarg.h>
#include "puzzles.h"
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(drawing *dr, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void draw_circle(drawing *dr, int cx, int cy, int radius,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
blitter *blitter_new(drawing *dr, int w, int h) {return NULL;}
void blitter_free(drawing *dr, blitter *bl) {}
void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
int print_mono_colour(drawing *dr, int grey) { return 0; }
int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
{ return 0; }
void print_line_width(drawing *dr, int width) {}
void midend_supersede_game_desc(midend *me, char *desc, char *privdesc) {}
void status_bar(drawing *dr, char *text) {}
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}

View File

@ -1286,44 +1286,6 @@ const struct game thegame = {
#ifdef STANDALONE_SOLVER #ifdef STANDALONE_SOLVER
/*
* gcc -DSTANDALONE_SOLVER -o patternsolver pattern.c malloc.c
*/
#include <stdarg.h>
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_circle(drawing *dr, int cx, int cy, int radius,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
unsigned long random_upto(random_state *state, unsigned long limit)
{ assert(!"Shouldn't get randomness"); return 0; }
int print_mono_colour(drawing *dr, int grey) { return 0; }
void print_line_width(drawing *dr, int width) {}
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
game_params *p; game_params *p;

View File

@ -323,6 +323,20 @@ psdata *ps_init(FILE *outfile, int colour);
void ps_free(psdata *ps); void ps_free(psdata *ps);
drawing *ps_drawing_api(psdata *ps); drawing *ps_drawing_api(psdata *ps);
/*
* combi.c: provides a structure and functions for iterating over
* combinations (i.e. choosing r things out of n).
*/
typedef struct _combi_ctx {
int r, n, nleft, total;
int *a;
} combi_ctx;
combi_ctx *new_combi(int r, int n);
void reset_combi(combi_ctx *combi);
combi_ctx *next_combi(combi_ctx *combi); /* returns NULL for end */
void free_combi(combi_ctx *combi);
/* /*
* Data structure containing the function calls and data specific * Data structure containing the function calls and data specific
* to a particular game. This is enclosed in a data structure so * to a particular game. This is enclosed in a data structure so

42
slant.c
View File

@ -1996,48 +1996,6 @@ const struct game thegame = {
#include <stdarg.h> #include <stdarg.h>
/*
* gcc -DSTANDALONE_SOLVER -o slantsolver slant.c malloc.c
*/
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(drawing *dr, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void draw_circle(drawing *dr, int cx, int cy, int radius,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
int print_mono_colour(drawing *dr, int grey) { return 0; }
void print_line_width(drawing *dr, int width) {}
unsigned long random_bits(random_state *state, int bits)
{ assert(!"Shouldn't get randomness"); return 0; }
unsigned long random_upto(random_state *state, unsigned long limit)
{ assert(!"Shouldn't get randomness"); return 0; }
void shuffle(void *array, int nelts, int eltsize, random_state *rs)
{ assert(!"Shouldn't get randomness"); }
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
game_params *p; game_params *p;

40
solo.c
View File

@ -3092,46 +3092,6 @@ const struct game thegame = {
#ifdef STANDALONE_SOLVER #ifdef STANDALONE_SOLVER
/*
* gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
*/
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(drawing *dr, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
int print_mono_colour(drawing *dr, int grey) { return 0; }
void print_line_width(drawing *dr, int width) {}
unsigned long random_bits(random_state *state, int bits)
{ assert(!"Shouldn't get randomness"); return 0; }
unsigned long random_upto(random_state *state, unsigned long limit)
{ assert(!"Shouldn't get randomness"); return 0; }
void shuffle(void *array, int nelts, int eltsize, random_state *rs)
{ assert(!"Shouldn't get randomness"); }
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
game_params *p; game_params *p;