puzzle backend function which ought to have it, and propagate those
consts through to per-puzzle subroutines as needed.
I've recently had to do that to a few specific parameters which were
being misused by particular puzzles (r9657, r9830), which suggests
that it's probably a good idea to do the whole lot pre-emptively
before the next such problem shows up.
[originally from svn r9832]
[r9657 == 3b250baa02a7332510685948bf17576c397b8ceb]
[r9830 == 0b93de904a98f119b1a95d3a53029f1ed4bfb9b3]
to add two kinds of Penrose tiling to the grid types supported by
Loopy.
This has involved a certain amount of infrastructure work, because of
course the whole point of Penrose tilings is that they don't have to
be the same every time: so now grid.c has grown the capacity to
describe its grids as strings, and reconstitute them from those string
descriptions. Hence a Penrose Loopy game description consists of a
string identifying a particular piece of Penrose tiling, followed by
the normal Loopy clue encoding.
All the existing grid types decline to provide a grid description
string, so their Loopy game descriptions have not changed encoding.
[originally from svn r9159]
part that converts from abstract grid coordinates into screen
coordinates. This should speed up window-resizing by eliminating
pointless reiteration of the complicated part of the algorithm: now
when a game_drawstate is renewed, only the conversion into screen
coordinates has to be redone.
[originally from svn r9157]
overly complicated algorithm that uses it to home in on the grid edge
closest to a mouse click. That algorithm is being stressed beyond its
limit by the new grid type, and it's unnecessary anyway given that no
sensibly sized puzzle grid is going to be big enough to make it
prohibitively expensive just to do the trivial approach of iterating
over all edges and finding the closest of the eligible ones.
[originally from svn r9108]
on Windows at all?! Fix some departures from the C standard, mostly
declaring variables after a statement has already been issued in the
same block. MSVC is picky about this where gcc is forgiving, and TBH
I'd change the latter given the choice.
[originally from svn r8166]
Lambrou. Now capable of handling triangular and hexagonal grids as
well as square ones, and then a number of semiregular plane tilings
and duals of semiregular ones. In fact, most of the solver code
supports an _arbitrary_ planar graph (well, provided both the graph
and its dual have no self-edges), so it could easily be extended
further with only a little more effort.
[originally from svn r8162]