Franklin Wei f37913002a Refine drawing API semantics to pass drawing * instead of void *
This changes the drawing API so that implementations receive a
`drawing *` pointer with each call, instead of a `void *` pointer as
they did previously. The `void *` context pointer has been moved to be
a member of the `drawing` structure (which has been made public), from
which it can be retrieved via the new `GET_HANDLE_AS_TYPE()` macro. To
signal this breaking change to downstream front end authors, I've
added a version number to the `drawing_api` struct, which will
hopefully force them to notice.

The motivation for this change is the upcoming introduction of a
draw_polygon_fallback() function, which will use a series of calls to
draw_line() to perform software polygon rasterization on platforms
without a native polygon fill primitive. This function is fairly
large, so I desired that it not be included in the binary
distribution, except on platforms which require it (e.g. my Rockbox
port). One way to achieve this is via link-time optimization (LTO,
a.k.a. "interprocedural optimization"/IPO), so that the code is
unconditionally compiled (preventing bit-rot) but only included in the
linked executable if it is actually referenced from elsewhere.
Practically, this precludes the otherwise straightforward route of
including a run-time check of the `draw_polygon` pointer in the
drawing.c middleware. Instead, Simon recommended that a front end be
able to set its `draw_polygon` field to point to
draw_polygon_fallback(). However, the old drawing API's semantics of
passing a `void *` pointer prevented this from working in practice,
since draw_polygon_fallback(), implemented in middleware, would not be
able to perform any drawing operations without a `drawing *` pointer;
with the new API, this restriction is removed, clearing the way for
that function's introduction.

This is a breaking change for front ends, which must update their
implementations of the drawing API to conform. The migration process
is fairly straightforward: every drawing API function which previously
took a `void *` context pointer should be updated to take a `drawing *`
pointer in its place. Then, where each such function would have
previously casted the `void *` pointer to a meaningful type, they now
instead retrieve the context pointer from the `handle` field of the
`drawing` structure. To make this transition easier, the
`GET_HANDLE_AS_TYPE()` macro is introduced to wrap the context pointer
retrieval (see below for usage).

As an example, an old drawing API function implementation would have
looked like this:

void frontend_draw_func(void *handle, ...)
{
    frontend *fe = (frontend *)handle;
    /* do stuff with fe */
}

After this change, that function would be rewritten as:

void frontend_draw_func(drawing *dr, ...)
{
    frontend *fe = GET_HANDLE_AS_TYPE(dr, frontend);
    /* do stuff with fe */
}

I have already made these changes to all the in-tree front ends, but
out-of-tree front ends will need to follow the procedure outlined
above.

Simon pointed out that changing the drawing API function pointer
signatures to take `drawing *` instead of `void *` results only in a
compiler warning, not an outright error. Thus, I've introduced a
version field to the beginning of the `drawing_api` struct, which will
cause a compilation error and hopefully force front ends to notice
this. This field should be set to 1 for now. Going forward, it will
provide a clear means of communicating future breaking API changes.
2024-08-15 08:45:59 +01:00
2023-07-14 08:31:44 +01:00
2024-01-02 23:34:28 +00:00
2021-04-25 09:59:15 +01:00
2023-04-20 18:42:50 +01:00
2023-01-15 20:59:22 +00:00
2023-03-26 20:32:38 +01:00
2024-01-02 23:34:28 +00:00
2017-09-20 18:03:44 +01:00
2023-06-11 00:33:27 +01:00
2021-03-29 19:02:23 +01:00
2023-08-13 16:44:24 +01:00
2018-11-13 21:48:24 +00:00
2023-06-11 00:33:27 +01:00
2017-05-07 16:25:56 +01:00

This is the README accompanying the source code to Simon Tatham's
puzzle collection. The collection's web site is at
<https://www.chiark.greenend.org.uk/~sgtatham/puzzles/>.

The puzzle collection is built using CMake <https://cmake.org/>. To
compile in the simplest way (on any of Linux, Windows or Mac), run
these commands in the source directory:

  cmake .
  cmake --build .

The manual is provided in Windows Help format for the Windows build;
in text format for anyone who needs it; and in HTML for the Mac OS X
application and for the web site. It is generated from a Halibut
source file (puzzles.but), which is the preferred form for
modification. To generate the manual in other formats, rebuild it,
or learn about Halibut, visit the Halibut website at
<https://www.chiark.greenend.org.uk/~sgtatham/halibut/>.
Description
No description provided
Readme 26 MiB
Languages
C 93.3%
JavaScript 1.4%
Objective-C 1.1%
CMake 1.1%
HTML 0.8%
Other 2.2%