constraint: because some front ends interpret `draw filled shape' to
mean `including its boundary' while others interpret it to mean `not
including its boundary' (and X seems to vacillate between the two
opinions as it moves around the shape!), you MUST NOT draw a filled
shape only. You can fill in one colour and outline in another, you
can fill or outline in the same colour, or you can just outline, but
just filling is a no-no.
This leads to a _lot_ of double calls to these functions, so I've
changed the interface. draw_circle() and draw_polygon() now each
take two colour arguments, a fill colour (which can be -1 for none)
and an outline colour (which must be valid). This should simplify
code in the game back ends, while also reducing the possibility for
coding error.
[originally from svn r6047]
- most game_size() functions now work in doubles internally and
round to nearest, meaning that they have less tendency to try to
alter a size they returned happily from a previous call
- couple of fiddly fixes (memory leaks, precautionary casts in
printf argument lists)
- midend_deserialise() now constructs an appropriate drawstate,
which I can't think how I overlooked myself since I _thought_ I
went through the entire midend structure field by field!
[originally from svn r6041]
retired, and replaced with a simple string. Most of the games which
use it simply encode the string in the same way that the Solve move
will also be encoded, i.e. solve_game() simply returns
dupstr(aux_info). Again, this is a better approach than writing
separate game_aux_info serialise/deserialise functions because doing
it this way is self-testing (the strings are created and parsed
during the course of any Solve operation at all).
[originally from svn r6029]
and restore anything vitally important in the game_ui. Most of the
game_ui is expected to be stuff about cursor positions and currently
active mouse drags, so it absolutely _doesn't_ want to be preserved
over a serialisation; but one or two things would be disorienting or
outright wrong to reset, such as the Net origin position and the
Mines death counter.
[originally from svn r6026]
split into two functions. The first, interpret_move(), takes all the
arguments that make_move() used to get and may have the usual side
effects of modifying the game_ui, but instead of returning a
modified game_state it instead returns a string description of the
move to be made. This string description is then passed to a second
function, execute_move(), together with an input game_state, which
is responsible for actually producing the new state. (solve_game()
also returns a string to be passed to execute_move().)
The point of this is to work towards being able to serialise the
whole of a game midend into a byte stream such as a disk file, which
will eventually support save and load functions in the desktop
puzzles, as well as restoring half-finished games after a quit and
restart in James Harvey's Palm port. Making each game supply a
convert-to-string function for its game_state format would have been
an unreliable way to do this, since those functions would not have
been used in normal play, so they'd only have been tested when you
actually tried to save and load - a recipe for latent bugs if ever I
heard one. This way, you won't even be able to _make_ a move if
execute_move() doesn't work properly, which means that if you can
play a game at all I can have pretty high confidence that
serialising it will work first time.
This is only the groundwork; there will be more checkins to come on
this theme. But the major upheaval should now be done, and as far as
I can tell everything's still working normally.
[originally from svn r6024]
(solving it only requires matrix inversion over GF(2), whereas
several of the other puzzles in this collection are NP-complete in
principle), but it's a fun enough thing to play with and is
non-trivial to do in your head - especially on the hardest preset.
[originally from svn r5967]