A user reported recently that they were trying this as an extra
challenge (solve the whole puzzle mentally and then draw it in
finished form in one UI action). But the backtracking behaviour of
Pearl's dragging mode meant that the loop erased itself as soon as the
drag came back to a revisited position.
In this commit I fix that by making the exception that you can
unconditionally return to the start point of the drag, _provided_ that
in doing so you don't create a grid cell of degree > 2.
Most of these aren't especially useful, but if we're going to have
them in the code base at all, we should at least ensure they compile:
bit-rotted conditioned-out code is of no value.
One of the new programs is 'galaxieseditor', which borrows most of the
Galaxies code but changes the UI so that you can create and remove
_dots_ instead of edges, and then run the solver to see whether it can
solve the puzzle you've designed. Unlike the rest, this is a GUI
helper tool, using the 'guiprogram' cmake function introduced in the
previous commit.
The programs are:
- 'combi', a test program for the utility module that generates all
combinations of n things
- 'divvy', a test program for the module that divides a rectangle at
random into equally-sized polyominoes
- 'penrose-test', a test program for the Penrose-tiling generator
used in Loopy, which outputs an SVG of a piece of tiling
- 'penrose-vector', a much smaller test program for the vector
arithmetic subroutines in that code
- 'sort-test', a test of this code base's local array sorting routine
- 'tree234-test', the exhaustive test code that's been in tree234.c
all along.
Not all of them compiled first time. Most of the fixes were the usual
kind of thing: fixing compiler warnings by removing unused
variables/functions, bringing uses of internal APIs up to date. A
notable one was that galaxieseditor's interpret_move() modified the
input game state, which was an error all along and is now detected by
me having made it a const pointer; I had to replace that with an extra
wrinkle in the move-string format, so that now execute_move() makes
the modification.
The one I'm _least_ proud of is squelching a huge number of
format-string warnings in tree234-test by interposing a variadic
function without __attribute__((printf)).
I don't know how I've never thought of this before! Pretty much every
game in this collection has to have a mechanism for noticing when
game_redraw is called for the first time on a new drawstate, and if
so, start by covering the whole window with a filled rectangle of the
background colour. This is a pain for implementers, and also awkward
because the drawstate often has to _work out_ its own pixel size (or
else remember it from when its size method was called).
The backends all do that so that the frontends don't have to guarantee
anything about the initial window contents. But that's a silly
tradeoff to begin with (there are way more backends than frontends, so
this _adds_ work rather than saving it), and also, in this code base
there's a standard way to handle things you don't want to have to do
in every backend _or_ every frontend: do them just once in the midend!
So now that rectangle-drawing operation happens in midend_redraw, and
I've been able to remove it from almost every puzzle. (A couple of
puzzles have other approaches: Slant didn't have a rectangle-draw
because it handles even the game borders using its per-tile redraw
function, and Untangle clears the whole window on every redraw
_anyway_ because it would just be too confusing not to.)
In some cases I've also been able to remove the 'started' flag from
the drawstate. But in many cases that has to stay because it also
triggers drawing of static display furniture other than the
background.
The Rockbox frontend allows games to be displayed in a "zoomed-in"
state targets with small displays. Currently we use a modal interface
-- a "viewing" mode in which the cursor keys are used to pan around
the rendered bitmap; and an "interaction" mode that actually sends
keys to the game.
This commit adds a midend_get_cursor_location() function to allow the
frontend to retrieve the backend's cursor location or other "region of
interest" -- such as the player location in Cube or Inertia.
With this information, the Rockbox frontend can now intelligently
follow the cursor around in the zoomed-in state, eliminating the need
for a modal interface.
Another thing I spotted while trawling the whole source base was that
a couple of games had omitted 'static' on a lot of their internal
functions. Checking with nm, there turned out to be quite a few more
than I'd spotted by eye, so this should fix them all.
Also added one missing 'const', on the lookup table nbits[] in Tracks.
This is the main bulk of this boolification work, but although it's
making the largest actual change, it should also be the least
disruptive to anyone interacting with this code base downstream of me,
because it doesn't modify any interface between modules: all the
inter-module APIs were updated one by one in the previous commits.
This just cleans up the code within each individual source file to use
bool in place of int where I think that makes things clearer.
This commit removes the old #defines of TRUE and FALSE from puzzles.h,
and does a mechanical search-and-replace throughout the code to
replace them with the C99 standard lowercase spellings.
encode_params, validate_params and new_desc now take a bool parameter;
fetch_preset, can_format_as_text_now and timing_state all return bool;
and the data fields is_timed, wants_statusbar and can_* are all bool.
All of those were previously typed as int, but semantically boolean.
This commit changes the API declarations in puzzles.h, updates all the
games to match (including the unfinisheds), and updates the developer
docs as well.
This function gives the front end a way to find out what keys the back
end requires; and as such it is mostly useful for ports without a
keyboard. It is based on changes originally found in Chris Boyle's
Android port, though some modifications were needed to make it more
flexible.
This allows me to use different types for the mutable, dynamically
allocated string value in a C_STRING control and the fixed constant
list of option names in a C_CHOICES.
Now midend.c directly tests the returned pointer for equality to this
value, instead of checking whether it's the empty string.
A minor effect of this is that games may now return a dynamically
allocated empty string from interpret_move() and treat it as just
another legal move description. But I don't expect anyone to be
perverse enough to actually do that! The main purpose is that it
avoids returning a string literal from a function whose return type is
a pointer to _non-const_ char, i.e. we are now one step closer to
being able to make this code base clean under -Wwrite-strings.
To do this, I've completely replaced the API between mid-end and front
end, so any downstream front end maintainers will have to do some
rewriting of their own (sorry). I've done the necessary work in all
five of the front ends I keep in-tree here - Windows, GTK, OS X,
Javascript/Emscripten, and Java/NestedVM - and I've done it in various
different styles (as each front end found most convenient), so that
should provide a variety of sample code to show downstreams how, if
they should need it.
I've left in the old puzzle back-end API function to return a flat
list of presets, so for the moment, all the puzzle backends are
unchanged apart from an extra null pointer appearing in their
top-level game structure. In a future commit I'll actually use the new
feature in a puzzle; perhaps in the further future it might make sense
to migrate all the puzzles to the new API and stop providing back ends
with two alternative ways of doing things, but this seemed like enough
upheaval for one day.
I was accidentally re-checking the value of component_state[comp]
after resetting comp to the special value -1, which caused a failure
to highlight stray path-shaped components if they existed in addition
to a large loop component. (Plus, of course, it's just illegal no
matter what visible behaviour it does or doesn't cause in practice.)
Fixed by adjusting the code to more closely match the version in Loopy
(I wonder how I managed to add two pieces of code in commit b31155b73
without noticing this difference between them).
In commits 24848706e and adc54741f, I revamped the highlighting of
erroneous connected components of those two puzzles' solution graphs
in cases where a non-solution loop existed, so that the largest
component was considered correct and the smaller ones lit up in red.
I intended this to work in the cases where you have most of a correct
solution as one component and a small spurious loop as another (in
which case the latter lights up red), or conversely where your mostly
correct component was joined into a loop leaving a few edges out (in
which case the left-out edges again light up red). However, a user
points out that I overlooked the case where your mostly correct
solution is not all one component! If you've got lots of separate
pieces of path, and one tiny loop that's definitely wrong, it's silly
to light up all but the longest piece of path as if they're erroneous.
Fixed by treating all the non-loop components as one unit for these
purposes. So if there is at least one loop and it isn't the only thing
on the board, then we _either_ light up all loops (if they're all
smaller than the set of non-loop paths put together), _or_ light up
everything but the largest loop (if that loop is the biggest thing on
the board).
Pearl has more or less the same attitude to loops as Loopy does, in
that a loop is required in the solution but some loops during play
want to be highlighted as errors. So it makes sense to use the same
strategy for loop highlighting.
I've cloned-and-hacked the code from Loopy rather than abstracting it
out, because there were some fiddly differences in application (like
checking of untouched clues in Pearl). Perhaps some day I can come
back and make it all neater.
Also, while I'm here, I've cleaned up the loop_length field in
game_state, which was carefully set up by check_completion() but never
actually used for anything. (If I remember rightly, it was going to be
used for a fancy victory flash which never saw the light of day.)
I think this assertion must have been put under '#if 0' during early
development, and accidentally never taken out once the game started
actually working. Putting it back in doesn't cause the self-tests to
fail, so I'm reinstating it - if it does fail, I'd like to know about
it!
Keyboard dragging while holding Control now moves the cursor to the
target square. Shift-Control-arrowkey performs the previous behavior
of Control-arrowkey.
puzzle backend function which ought to have it, and propagate those
consts through to per-puzzle subroutines as needed.
I've recently had to do that to a few specific parameters which were
being misused by particular puzzles (r9657, r9830), which suggests
that it's probably a good idea to do the whole lot pre-emptively
before the next such problem shows up.
[originally from svn r9832]
[r9657 == 3b250baa02a7332510685948bf17576c397b8ceb]
[r9830 == 0b93de904a98f119b1a95d3a53029f1ed4bfb9b3]
new_desc. Oddities in the 'make test' output brought to my attention
that a few puzzles have been modifying their input game_params for
various reasons; they shouldn't do that, because that's the
game_params held permanently by the midend and it will affect
subsequent game generations if they modify it. So now those arguments
are const, and all the games which previously modified their
game_params now take a copy and modify that instead.
[originally from svn r9830]
the 'completed' flag is not reset if you make a new move transforming
a solved game into an unsolved state, so the game won't flash again if
you manually erase and redraw a line segment (though it still will if
you undo and redo past the first solved state in the undo history).
[originally from svn r9750]
basically just so that it can divide mouse coordinates by the tile
size, but is definitely not expected to _write_ to it, and it hadn't
previously occurred to me that anyone might try. Therefore,
interpret_move() now gets a pointer to a _const_ game_drawstate
instead of a writable one.
All existing puzzles cope fine with this API change (as long as the
new const qualifier is also added to a couple of subfunctions to which
interpret_move delegates work), except for the just-committed Undead,
which somehow had ds->ascii and ui->ascii the wrong way round but is
otherwise unproblematic.
[originally from svn r9657]
in the Java build - which turns out to be a JVM bug in OpenJDK 6,
causing the NestedVM rendition of the expression (i==1?3:4) to be
mis-JITed. OpenJDK 7 appears not to do that any more, but this
equivalent (for these purposes) rephrasing should perturb the code
just enough to dodge the problem.
[originally from svn r9408]
persisting between separate mouse actions. Revamp all uses of the
ndragcoords field in an attempt to stamp that out: we now distinguish
between active drags (>0), a valid click but no drag yet (0), and a
totally invalid situation in which all mouse activity will be ignored
until the next fresh attempt (-1).
[originally from svn r9405]
line here' cross mark by dragging, and furthermore, that doing so puts
that grid edge into a stuck state that no UI action short of undo can
get it back out of. Fix drags to stop at crosses, and fix execute_move
to fault any move string that nonetheless somehow managed to try to
set a line over a cross without explicitly tagging it 'R'.
[originally from svn r9400]
after return) to the callee (just before). Might print something
useful in the soak-test context (where that debug statement will now
be printed and previously wasn't), but the main aim is to remove the
variable 'ngen' at the main call site, which triggered a set-but-not-
used warning if the debug statement that printed it was compiled out.
[originally from svn r9392]
in the 'unfinished' directory for a while, and has now been finished
up thanks to James Harvey putting in some effort and galvanising me to
put in the rest. This is 'Pearl', an implementation of Nikoli's 'Masyu'.
The code in Loopy that generates a random loop along grid edges to use
as the puzzle solution has been abstracted out into loopgen.[ch] so
that Pearl can use it for its puzzle solutions too. I've also
introduced a new utility module called 'tdq' (for 'to-do queue').
[originally from svn r9379]